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I n a previous report* a one di mensional nodel of buckling-del am n-
ation in a colum was sunmari zed. The main assunption nmade in that
report was that the unbuckl ed portions of the colum can be assuned
to remain straight. The purpose of this report is to investigate the
nore general problem in which bending effects are taken into account.

W deal here with the case of a single off center delanminationin a

colum. (The case of multi-delaminaticns in a colum can be worked out too
under slight nodifications.) Follow ng the general procedure outlined

I n previous reports, consider the colunm of unit width shown in fig, |a,
State | represents the unstressed column while state II denotes the

axially and uniformally conpressed column. State III differs fromi1i

by allow ng the delamnnation to buckle. Qur aimhere is to find an
expression for the strain energy rel ease rate of state III.

In order to do this, we assune that the defornmed columm of state TTT
can be divided into three beam col utm portions having the sanme angl e
of rotation (e ) at their ends, as shown in fig. 1b. Under this
assunption, we now proceed as fol | ows:

The beamcolum differential equation is given by

4 2
el S+ x> S =0, &% = p/EI
dx
Pis the axial load, E is Young's nmodulus and | is the cross section
nmonment of inertia.

The general solution of this equation is given by

*Informal Progress Report No. 2



y = 4 coskx'l'A2 sin kx t A;x + A, (1)

where A; are constantsof integration
Referring to fig. 1b we have the following boundary conditions
Portion (1): y1(0) =y, (&) =0 , y{(0) = -y3(&q) = 84

Portion (2): yz(O)

¥,(0) =y (0) =0 , yy(8,) = 8 (2)

O

Portion (3): y5(0) = y3(23) =0 yé(O) = -y§(23) =6

Inserting (2) in (1), we found

5] R/i 2u.x1

o) 3
V. — 5—=—~——7 | COS (u; - ———)- COS U. .
i 2ui sin ui[ i R |] 1 =1,3 (3a,b)
° 227_ {l cos 2up%ry
= — O - e
b 2u2 sin 2u, 2 J
where U
k. 8. \izl Ly
%3 = 51- ET, 27 ¢ J° 1,2,3 (30

Now, regarding portion (3), we observe that y3(%3/2)> 0 when

u; <n and y3(23/2) < 0 when 27 <ug > oW

Referring to figs-la, 1b it is clear that under physical consideration

Y3(Z3/2) <0, i.e., 1< u3 < 27

Remembering that Ug = T i s the Euler buckling parameter for clamped-
clamped beam (6, = 0), and having in nind that we are seeking solution
eo a problem where portion (3) is pose buckle, we set Ug = +6, 6 >0.
Under the assumption that 0 is small, we assume that 6 is also small

(8 << m ) (this assumption will be confirmed later on).Putting Uy = & + 7

in the expression for Y3 and collecting terms up to order § , we found

I 27 + 28
Y3 = A3|l - cos ( T X - 6)] (3d)
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where 4, = Al -¢/m), A = T?;Eg
, L _ ) H
Now we find eofromthe condi tion that M, = My +M +p (——2——— .

- By

(see fig. Ih. Upon using M; =-Elqyq (0), M, =EL,yh' (1;) My = -EL,¥4 (0)

and equations(3) we found

3,.2 0%
H T - H H AT 0”3
p, 2o 4 g (1--23)
L2 7302 315 2n°A
eo = PZSZ, Pl}L )
Zu, ctan2uy + g ctanty
2

The distributions of axial strains in the three colum portions can be
found by the fact that the colum ends are fixed during the passing of

the systemfromstate II to III. This gives (see figs. la, Ib)

2e,0, + 23 IQ 2 gx +oeng + 1 g2 +HO_ = e L (5)
€22 yp© dx t ety 3 . 1 o

Compatibility between portion(1l) and portion(3) is governed by

W2 _ 1 2
a}% +2—,/' y3dx—el£l+7£ V]dx+Teo (6)

Bal ance of axial forces between the column portions gives

P, = Py 3 Py oOr, since E is common

Te, = (T - H)eq + Heg (7
where we nmade use of the rel ations Pl = (T - H)Eeq, P, = TEe,.
P, = HEe, . Using the assunption that uy = m+ ¢, we found e,
by using (3c) to be ., - g2 % A+ 25/m). )

Using(3) and (8), the system(5 - (7) can be expressed as foll ows



' a-Rti 1 -8+ i)
(1 -8 +8/T (1 - Ba, ~ asf
g, = S + 3 2 (9)
2 . ——— I, -——
(1 - H+ gH) (L - H+ 2H)
- =2,=2 -
- H - +
52 _ Eg /2 + (1 I)ocz a,2 .
(1-5tRH) @-mtzm ~ !
wher e
- _ % o .. — - Amn ,_ 2
eo—-s—l—‘ El—-al/eL ; €y = EZ/E‘L s C—T/‘\EIL)
- _ /373 - L
H=H/T, T =24/L ,5=_‘/_?l__i0_ 60=T60 (10)
27eC
2 .2
and €1, = %— — (Euler buckling strain. for clanped-clanped col um
L
of length L and thickness T). Note that we have taken 2y = 2,
g = (L= 2)/2, 83=2
also B _9
3 =—°(1-§i+ ﬁZ )+360 (.2u1-sin2u1)
L w2 2/3 /336 81" up sin’ y
/3 B
062 = —2———2—_ —
T e %
__3ﬁéo 35(2) 3 (2ug - sin 2ul) - (4u, - sin 4uy) =
U3 7 2 - g;? Lﬁl sinZ U + @ - 2u, sin ]
2u2
W th
g - -2 =
Y1 = VBl WyE—=VE,
(1 - H)
and 6, is found fromequ. (4) to be

(11)



3
- — = 2H"e
_e_ - (81 - €2) (l - H) + 72 I

e £2(1 - B) . Ty(1 - %)

(12)
I-{3

- 2
2u2 tan 2.112 Lm

+

Ult an ul

The system (9) - (12) composed of three basic unknowns, namely &,
€, and . A solution of this system is carried out by means of a
numerical iteration scheme. The method can be summarized as follows:

Step zero: Choose H, 7, €,

Step one: Solve (9) with a; = a, = gy = 0
Step two: Use these values to calculate 60 (equ. 12)
Stenp three: Calculate Qg w0 (equ. 11)

Step four: Calculate again €4, €4, T €qu. (9) by using the values
just obtained for Bys G1» Ggs QGg.

Step five: Repeat this process until convergency of the system
variables i sachieved. It was found that about five
iterations are needed in order to provide satisfactory
convergence.

The assumption that § << 1 (equ. 10) (so that equ. (3b) could be
approximated by (3d))is checkedout in fig. 2 and
found valid. Figure 3 shows the dependence of 6_ on geometrical and

loading parameter.

Strain energy calculations

The strain energy of state IIIis given by

2P2 Pl P3 I, R3 Z EIl 4 %‘
Uprr = 7 €% T 3788 T 57 383 F E—~ f vy dx + —t g yy' dx
%, 2
+ 22— f Y' ! dx
o 2
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where the first three terms are associated with compression, while

the last three are due to bending.

Upon making use of equ. (3), we found
Urir 2 =2 . =5,-3 , 2H%G2 VIW 4 g,
—=—= (1 - DE; + (1 - MIe] + /27 + e — 28 (5+ ()
Ef T 2 yu':
18L —)3 u (2u, + sin 2u,) u
T [ sin"u, 2r (1 - %)
(bu, + 'sin 4u2? .
si nZ 2u2
where again we set &; = &, &3 =4, L, = (L - 9)/2

Once the values of E1s Ty, C, 6, are obtained using the numerical
procedure outlined earlier, Uppp can be calculated, The strain energy

release rate can be found from (13) by

-0
a: aﬂ; _—.AT‘—[‘-:_;_F_
- 13 57

L

The derivative i s then approximated numerically as follows;

4 - - _
— -n F(L) - F(T +AD - .
G 85— NG , AZis small (15)

G has been calculated numerically and the results are shown in fig. 4
and 5. Also shown in fig. 4,5 are the results for the beam-column
analysis which does not include the bending effect. Note that this limit

case i s obtained by setting the number of iteration to zero,

Discussion of results.

In order to interpret the fracture energy criterion using these
results, a plot of experimentally obtained fracture energy for graphite

epoxy composite laminates i s plotted in fig 5 for Hhe specianl case



- 7 -

E= lohxiot p.sel, L=7"and T = .24" By considering the results of
fig. 5, it can be concluded that the arresting capability of initial
crack is greater in the current analysis over the previous one (no

bending effect, i.e., 6 = 0) provided %>.5, roughly. This observation

o]
is important, since they tend to back up our experimental results.

Furthermore, the deviation of the current analysis from the previous
one (6, = 0) is not affected much by the thickness ratio H/T, but is
affected largely by the loading parameter €, Roughly speaking, both
analyses produced close results for E‘“O < .5 and deviate considerably
for larger _50‘ Tr ofder o Goin wmore intormahion Njcxrdn‘v‘fj s motke v

Congrler He 500@9(»‘1\17 Fmbﬁsz:

A thin delaminated layer attached to a hdif-space.

Consider a uniformly compressed isotropic-elastic half-space containing
a thin delamination of thickness H, length & and unit width, as sown in
fig.6 . State | represents the unstressed half-sapce, while state II denotes
the axially and uniformally compressed hall' space. State III differs from II
by allowing the delamination to split. Our- aim here is to find an expression
for the strain energy of states III. For simplicity let v= 0 (v is the Poisson's
ratio). Regarding the thin buckle as a D.CB. havirg zero slope at both ends
it is easy to show, using strength of material approximation that

w(x) = A(l + cos 21 x/4)

Y (i8)

2

=

]

>
cr

where w(x) is the deflection and €., is the Euler buckling strain of a

r

clamped-clamped column of thickness H and 1ength R.
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Assuming that after buckling, the state of uniform compression remains

und tered in the unbuckl ed medi um the conpatability condition
before and after buckling of this del ami nation can be expressed as
(13)

W
L 39k = e

e t=
cr 2 Y X
The strain energy occupied by the buckled column is
BH 2., B Y2 3%.2 H3
U, = at = J (3 &K , I =
b= 7 o™t 02 12
. we find

by making use of (e) and (%)
)

_ EH
Up = 7 2ecp (2&:0 ~ Fep

The strain energy in the unbuckled portion (the half-space less a void of

thickness H and length 2) is
_ -EH .2
L+ U

U, = ¢

2 2 o
Note that U, is the strain energy of a hall-space under uniform compression

£ (U0 = const.)

o -
Then the total strain energy in state III 1s
U =Y v % =3 28cr(zeo 8cr) 7 SF Y 74 (e, er
also
-3U
_ IIT _ EH
6, =55 " 72(& - 8cr)(eo * 3e,)
or
2 2 2,2
EH 7 H 7 H
G, =5 (e, - 5 =g, + )
2 Yo T3 70 T T
Introducing fictitious parameter T and L, (4b) can ke written as
G 4 £
= _ o _ T Ty F2 22y = L Whl, w2 - _ _©
G = WH(EO"H/E)(EO‘{'@H/E), 60— )
T T
3.2

" ET/14

(lac)
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where H = H/T , T = g¢/L. Now recall eq. (8) of PR. Na 2 with N =1
(a column of thickness T and length L containing a single delamination of

thickness H and length v). This equation can he written as

P} 4 2 72 e =T
= - -9UJET mH (1 -H) (e Hoyo 3H 4H™ 2H :
G = e - 5)E, + + oy @)
Note that (20) reduces to (19) as H -~ 0, as might be expected.
To see the rule of H, we use (19) and (20 to get
o0 H
co (1 -H+ A

> (1 -F-%F -2+ 2R + fgo@z) (@)

) 3

Relation (1¥b) is plotted in fig, #, relation ¢ is plotted in fig.g._.
S far we have made three approximations to the problem of a single

delamination in a column, The more accurate one i s that given by eq. (15)

(a delamination in a column in which the unbuckled portions

are alowed to bent,) The second is the less accurate problem given by

eg. (8) of P.R. No.2 (a delamination in a column in which the unbuckled

portions assumed to remain straight). The third approximation, given by

eq. (9b) or (4c) of this report (a delamination in a half-sapce) is the

limit case of the above two as T -+, fig.9 shows a comparison between the

three methods. It is seen that the error in the approximation of a real

problem of delamination in a column as delamination attached to a half space

is on the order of H, provided the load is sufficiently lower than the

Euler buckling load of the undelarninated column.
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