GALCIT SM REPORT 79-15 H. Chai, C, D, Babcock,W.G. Knâdsyember 1979 INFORMAL PROGWSS FEPORT NO. 3

ON
THE INCORPORATION OF BENDING INTO THE BUCKLING DELAMINATION ANALYSIS

In a previous report ${ }^{\star}$ a one dimensional model of buckling-delamination in a column was summarized. The main assumption made in that report was that the unbuckled portions of the column can be assumed to remain straight. The purpose of this report is to investigate the more general problem in which bending effects are taken into account. We deal here with the case of a single off center delamination in a column. (The case of multi-delaminations in a column can be worked out too under slight modifications.) Following the general procedure outlined in previous reports, consider the column of unit width shown in fig, la, State I represents the unstressed column while state II denotes the axially and uniformally compressed column. State III differs from 11 by allowing the delamination to buckle. Our aim here is to find an expression for the strain energy release rate of state III.

In order to do this, we assume that the deformed column of state TTT can be divided into three beam-column portions having the same angle of rotation ( $\theta_{0}$ ) at their ends, as shown in fig. lb. Under this assumption, we now proceed as follows:

The beam-column differential equation is given by

$$
E I \frac{d^{4} y}{d x^{4}}+k^{2} \frac{d^{2} y}{d x^{2}}=0, \quad k^{2}=P / E I
$$

$P$ is the axial load, $E$ is Young's modulus and $I$ is the cross section moment of inertia.

The general solution of this equation is given by

[^0]\[

$$
\begin{equation*}
y=A_{1} \cos k x+A_{2} \sin k x+A_{3} x+A_{4} \tag{1}
\end{equation*}
$$

\]

where $A_{i}$ are constantsof integration
Referring to fig. $1 b$ we have the following boundary conditions
Portion (1): $y_{1}(0)=y_{1}\left(\ell_{1}\right)=0 \quad, y_{1}^{\prime}(0)=-y_{1}^{1}\left(\ell_{1}\right)=\theta_{0}$
Portion (2): $y_{2}(0)=y_{2}^{\prime}(0)=y_{2}^{\prime \prime \prime}(0)=0 \quad, y_{2}^{\prime}\left(l_{2}\right)=\theta_{0}$
Portion (3): $y_{3}(0)=y_{3}\left(l_{3}\right)=0 \quad, y_{3}^{\prime}(0)=-y_{3}^{\prime}\left(l_{3}\right)=\theta_{0}$
Inserting (2) in (1), we found

$$
\begin{align*}
& y_{i}-\frac{\theta_{0}{ }^{\ell}{ }_{i}}{2 u_{i}} \sin u_{i}\left[\cos \left(u_{i}-\frac{2 u_{i}{ }_{i}}{\ell_{i}}\right)-\cos u_{i}\right] \quad, \quad \mathbf{i}=1,3  \tag{3a,b}\\
& y_{2}=\frac{\partial}{2}_{2} o^{\ell} \sin 2 u_{2}
\end{align*}
$$

where

$$
\begin{equation*}
u_{j}=\frac{k_{j} \ell_{j}}{2}=\sqrt{\frac{P_{j}}{E I}} \frac{\ell_{j}}{2}, \quad j=1,2,3 \tag{3c}
\end{equation*}
$$

Now, regarding portion (3), we observe that $y_{3}\left(\ell_{3} / 2\right)>0$ when $\mathrm{u}_{3}<\mathrm{n}$ and $\mathrm{y}_{3}\left(\ell_{3} / 2\right)<0$ when $2 \pi<\mathrm{u}_{3}>\pi$

Referring to figs-la, $1 b$ it is clear that under physical consideration $y_{3}\left(l_{3} / 2\right)<0$, i.e., $\pi<u_{3}<2 \pi$

Remembering that $u_{3}=\pi$ is the Euler buckling parameter for clampedclamped beam $\left(\theta_{o}=0\right)$, and having in mind that we are seeking solution eo a problem where portion (3) is pose buckle, we set $u_{3}=\pi+6, \delta>0$. Under the assumption that $\theta_{0}$ is small, we assume that 6 is also small $(\delta \ll \pi)$ (this assumption will be confirmed lateron). Putting $u_{3}=\delta+\pi$ in the expression for $y_{3}$ and collecting terms up to order $\delta$, we found

$$
\begin{equation*}
\mathrm{Y} 3=\mathrm{A}_{3}\left[1-\cos \left(\frac{2 \pi+2 \delta}{\ell_{3}} \mathrm{x}-\delta\right)\right] \tag{3d}
\end{equation*}
$$

where $A_{3}=A(1-\delta / \pi), A=\frac{-\theta_{0} \ell_{3}}{2 \pi \delta}$
Now we find $\theta_{0}$ from the condition that $M_{2}=M_{1}+M_{3}+P_{3}\left(\frac{T-H}{2}-P_{1} \frac{H}{2}\right.$ (see fig. lb). Upon using $\mathrm{M}_{1}=-\mathrm{EI}_{1} \mathrm{y}^{\prime \prime} \mathbf{1}^{\prime}(0), \mathrm{M}_{7}=-\mathrm{EI}_{2} \mathrm{y}_{2}^{\prime \prime}\left(\ell_{2}\right), \mathrm{M}_{3}=-\mathrm{EI}_{3} \mathrm{y}_{3}^{\prime \prime}$ (0) and equations (3) we found

$$
\begin{equation*}
\theta_{0}=\frac{P_{1} \frac{H}{2}-P_{3}\left(\frac{T-H}{2}\right)+E \frac{H^{3} A \pi^{2}}{3 l_{3}^{2}}\left(1-\frac{\theta_{0} \ell_{3}}{2 \pi^{2} A}\right)}{\frac{P_{2} l_{2}}{2 u_{2}} \operatorname{ctan} 2 u_{2}+\frac{P_{1} l_{1}}{2 u_{1}} c t a n u_{1}} \tag{4}
\end{equation*}
$$

The distributions of axial strains in the three column portions can be found by the fact that the column ends are fixed during the passing of the system from state II to III. This gives (see figs. la, lb)

$$
\begin{equation*}
2 \varepsilon_{2} \ell_{2}+2 \frac{1}{2} \int_{o}^{\ell_{2}} \mathrm{y}_{2}^{\prime 2} \mathrm{dx}+\varepsilon_{1}^{\ell_{1}}+\frac{1}{2} \int_{o}^{\ell_{1}} \mathrm{y}_{1}^{\prime 2} \mathrm{dx}+\mathrm{H} \theta_{o}=\varepsilon_{0} L \tag{5}
\end{equation*}
$$

Compatibility between portion (1) and portion (3) is governed by

$$
\begin{equation*}
\varepsilon_{3} \ell_{3}+\frac{1}{2} \int_{0}^{\ell_{3}} y_{3}^{\prime 2} \mathrm{dx}=\varepsilon_{1}^{\ell_{1}}+\frac{1}{2} \int_{0}^{\ell_{1}} \mathrm{y}_{1}^{\prime 2} \mathrm{dx}+\mathrm{T} \theta_{0} \tag{6}
\end{equation*}
$$

Balance of axial forces between the column portions gives

$$
\begin{align*}
& P_{2}=P_{1} 3 P_{3} \text { or, since } E \text { is common } \\
& T \varepsilon_{2}=(T-H) \varepsilon_{1}+H \varepsilon_{3} \tag{7}
\end{align*}
$$

where we made use of the relations $\mathrm{P}_{1}=(\mathrm{T}-\mathrm{H}) \mathrm{E} \varepsilon_{1}, \mathrm{P}_{2}=\mathrm{TEE}_{2}$, $P_{3}=H E \varepsilon_{3}$. Using the assumption that $u_{3}=\pi+\delta$, we found $\varepsilon_{3}$ by using (3c) to be

$$
\begin{equation*}
\varepsilon_{3}=\frac{\pi^{2}}{3} \frac{H^{2}}{l_{3}^{2}}(1+2 \delta / \pi) \tag{8}
\end{equation*}
$$

Using (3) and (8), the system (5) - (7) can be expressed as follows

$$
\begin{align*}
& E_{1}-\frac{\overline{\mathrm{E}}_{0}-(1-\overline{\bar{\ell}}) \overline{\bar{H}}^{3} / \overline{\bar{\ell}}^{2}}{(1-\overline{\mathrm{H}}+\bar{\ell} \overline{\mathrm{H}})}+\frac{(1-\bar{\ell}) \alpha_{2}+\alpha_{3}}{(1-\overline{\mathrm{H}}+\bar{\ell} \overline{\mathrm{H}})} \\
& \bar{E}_{2}=\frac{(1-\overline{\mathrm{H}}) \bar{\varepsilon}_{0}+\overline{\mathrm{H}}^{3} / \bar{\ell}}{(1-\overline{\mathrm{H}}+\bar{\ell} \overline{\mathrm{H}})}+\frac{(1-\overline{\mathrm{H}}) \alpha_{3}-\alpha_{2} \bar{\ell}}{(1-\overline{\mathrm{H}}+\bar{\ell} \overline{\mathrm{H}})}  \tag{9}\\
& \overline{\mathrm{r}}^{2}=\frac{\overline{\mathrm{E}}_{0}-\overline{\mathrm{H}}^{2} / \bar{\ell}^{2}}{(1-\overline{\mathrm{H}}+\mathrm{RH})}+\frac{(1-\overline{\bar{\ell}}) \alpha_{2}+a_{3}}{(1-\overline{\mathrm{H}}+\bar{\ell} \overline{\mathrm{H}})}+\alpha_{1}
\end{align*}
$$

where

$$
\begin{array}{r}
\bar{\varepsilon}_{\mathrm{o}}=\frac{\varepsilon_{0}}{\varepsilon_{\mathrm{L}}} \quad \bar{\varepsilon}_{1}=\varepsilon_{1} / \varepsilon_{\mathrm{L}} \quad, \quad \bar{\varepsilon}_{2}=\varepsilon_{2} / \varepsilon_{\mathrm{L}} \quad, \overline{\mathrm{c}}=\frac{\mathrm{A} \mathrm{\pi}}{\ell} /\left(\varepsilon_{\mathrm{L}}\right)^{1 / 2} \\
\overline{\mathrm{H}}=\mathrm{H} / \mathrm{T}, \quad \bar{\ell}=\ell / \mathrm{L} \quad, \delta=\frac{-\sqrt{3} \bar{\theta}_{0}}{2 \pi \bar{\Sigma}} \quad \bar{\theta}_{\mathrm{O}}=\frac{L_{\mathrm{T}} \theta_{0}}{} \tag{10}
\end{array}
$$

and $\varepsilon_{L}=\frac{\pi^{2}}{3} \frac{T^{2}}{L^{2}}$ (Euler buckling strain. for clamped-clamped column of length $L$ and thickness $T$ ). Note that we have taken $\ell_{1}=2$, $\ell_{2}=(L-\ell) / 2, \quad \ell_{3}=\ell$
also

$$
\begin{align*}
& \alpha_{1}=\frac{3 \bar{\theta}_{o}}{\pi^{2} \bar{\ell}}\left(1-\frac{\overline{\mathrm{c}} \bar{\ell}}{2 \sqrt{3}}+\frac{\overline{\mathrm{I}}^{2}}{\sqrt{3} \overline{\ell \bar{c}}}\right)+\frac{3 \bar{\theta}_{o}^{2}}{8 \pi^{2}} \frac{\left(2 u_{1}-\sin 2 u_{1}\right)}{u_{1} \sin ^{2} u_{1}} \\
& \alpha_{2}=\frac{\sqrt{3} \bar{H}^{3} \bar{\theta}_{o}}{\pi^{2} \bar{c} \bar{\ell}^{2}} \\
& \alpha_{3}=\frac{-3 \overline{\mathrm{H}} \bar{\theta}_{0}}{\pi^{2}}-\frac{3 \bar{\theta}_{o}^{2}}{8 \pi^{2}}\left[\frac{\bar{\ell}^{2}}{\bar{u}_{1}} \frac{\left(2 u_{1}-\sin 2 u_{1}\right)}{\sin ^{2} u_{1}}+\left(1-\frac{\left(4 u_{7}-\sin 4 u_{2}\right)}{2 u_{2} \sin } \frac{2 u_{2}}{2}\right]\right. \tag{11}
\end{align*}
$$

with

$$
u_{1}=\frac{\pi \bar{\ell}}{(1-\overline{\mathrm{H}})} \sqrt{\bar{\varepsilon}_{1}} \quad, \quad u_{2}=\frac{\pi(1-\bar{\ell})}{2} \sqrt{\bar{\varepsilon}_{2}}
$$

and $\theta_{0}$ is found from equ. (4) to be

$$
\begin{equation*}
\bar{\theta}_{0}=\frac{\left(\bar{\varepsilon}_{1}-\bar{\varepsilon}_{2}\right)(1-\overline{\mathrm{H}})+\frac{2 \overline{\mathrm{H}}^{3} \overline{\mathrm{c}}}{\sqrt{3}}}{\frac{\bar{\varepsilon}_{1} \bar{\ell}(1-\overline{\mathrm{H}})}{\mathrm{u}_{1} \tan \mathrm{u}_{1}}+\frac{\bar{\varepsilon}_{2}\left(1-\overline{\ell_{1}}\right)}{2 \mathrm{u}_{2} \tan 2 \mathrm{u}_{2}}+\frac{\overline{\mathrm{H}}^{3}}{-\ell^{2}}} \tag{12}
\end{equation*}
$$

The system (9) - (12) composed of three basic unknowns, namely $\bar{\varepsilon}_{1}$, $\bar{\varepsilon}_{2}$ and $\bar{c}$. A solution of this system is carried out by means of a numerical iteration scheme. The method can be summarized as follows:

Step zero: Choose $\bar{H}, \bar{l}, \bar{\varepsilon}_{0}$
Step one: Solve (9) with $\alpha_{1}=\alpha_{2}-\alpha_{3}=0$
Step two: Use these values to calculate $\bar{\theta}_{\mathrm{O}}$ (equ. 12)
Step three: Calculate $\alpha_{1},{ }^{\prime} 2^{\prime} \alpha_{3}$ (eq11. 11)
Step four: Calculate again $\bar{\varepsilon}_{1}, \bar{\varepsilon}_{2}$, $\bar{c}$ equ. (9) by using the values just obtained for $\theta_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$.
Step five: Repeat this process until convergency of the system variables is achieved. It was found that about five iterations are needed in order to provide satisfactory convergence.

The assumption that $\delta \ll 1$ (equ. 10) (so that equ. (3b) could be approximated by (3d)) is checkedout in fig. 2 and
found valid. Figure 3 shows the dependence of $\bar{\theta}_{n}$ on geometrical and loading parameter.

Strain energy calculations
The strain energy of state III is given by

$$
\begin{aligned}
\mathrm{U}_{\mathrm{III}}=\frac{2 \mathrm{P}_{2}}{2} \varepsilon_{2}^{\ell}{ }_{2}+\frac{\mathrm{P}_{1}}{2} \varepsilon_{1}^{\ell} \ell_{1}+\frac{\mathrm{P}_{3}}{2} \varepsilon_{3}^{\ell} \ell_{3}+\mathrm{E} \frac{\mathrm{I}_{3}}{2} \int_{0}^{\ell_{3}} \mathrm{y}_{3}^{2, \prime} \mathrm{dx} & +\frac{\mathrm{EI} 1}{2} \int_{0}^{\ell_{1}} \mathrm{y}_{1}^{2,1} \mathrm{dx} \\
& +2 \frac{\mathrm{EI}}{2} \int_{0}^{\ell_{2}} \mathrm{y}_{2}^{2, \prime} \mathrm{dx}
\end{aligned}
$$

where the first three terms are associated with compression, while the last three are due to bending.

Upon making use of equ. (3), we found

$$
\begin{align*}
& 18 \mathrm{~L}^{3} \\
& +\frac{3}{4} \frac{(1-\bar{H})^{3}}{\pi^{4}} \frac{u_{1}}{\bar{\ell}} \bar{\theta}_{o}^{2} \frac{\left(2 u_{1}+\sin 2 u_{1}\right)}{\sin ^{2} u_{1}}+\frac{3}{2 \pi^{4}} \frac{u_{2}}{(1-\bar{\ell})} \bar{\theta}_{o}^{2}  \tag{13}\\
& \begin{array}{c}
\left(4 u_{2}+\sin 4 u_{2}\right) \\
\sin ^{2} 2 u_{2}
\end{array} \equiv F
\end{align*}
$$

where again we $\operatorname{set} \ell_{1}=\ell \cdot \ell_{3}=\ell, \ell_{2}=(\mathrm{L}-\ell) / 2$
Once the values of $\bar{\varepsilon}_{1}, \bar{\varepsilon}_{\rho}, \bar{c}, \bar{\theta}_{0}$ are obtained using the numerical procedure outlined earlier, $U_{\text {III }}$ can be calculated, The strain energy release rate can be found from (13) by

$$
\bar{G} \equiv \frac{\frac{\partial U_{I I I}}{\partial \ell}}{\frac{E T^{5}}{L^{4}}}=\frac{\pi^{4}}{18} \frac{\partial F}{\partial \bar{L}}
$$

The derivative is then approximated numerically as follows;

$$
\begin{equation*}
\overline{\mathrm{G}}=\frac{-\mathrm{n}^{4}}{18} \frac{F(\bar{\ell})-F(\bar{l}+\Delta \bar{l})}{\Delta \bar{l}} \quad, \Delta \bar{l} \text { is small } \tag{15}
\end{equation*}
$$

$\overline{\mathrm{G}}$ has been calculated numerically and the results are shown in fig. 4 and 5. Also shown in fig. fis are the results for the beam-column analysis which does not include the bending effect. Note that this limit case is obtained by setting the number of iteration to zero, Discussion of results.

In order to interpret the fracture energy criterion using these results, a plot of experimentally obtained fracture energy for graphite epoxy composite laminates is plotted in fig, 5 for the special case
$E=1.04 \times 10^{7}$ P.S.i,$L=7^{\prime \prime}$ and $T=.24$ !' By considering the results of fig. 5, it can be concluded that the arresting capability of initial crack is greater in the current analysis over the previous one (no bending effect, i.e., $\theta_{o}=0$ ) provided $\bar{\ell}, 5$, roughly. This observation is important, since they tend to back up our experimental results. Furthermore, the deviation of the current analysis from the previous one ( $\theta_{0} \equiv 0$ ) is not affected much by the thickness ratio $H / T$, but is affected largely by the loading parameter $\bar{\varepsilon}_{\mathrm{O}}$. Roughly speaking, both analyses produced close results for $\bar{\varepsilon}_{0} \leqslant .5$ and deviate considerably for larger $\bar{\varepsilon}_{0}$. In order to gain more information regardinig this matter,
consider the sollowing problem:
A thin delaminated layer attached to a halif-space.
Consider a uniformly compressed isotropic-elastic half-space containing a thin delamination of thickness $H$, length $\ell$ and unit width, as shown in fig. 6 . State I represents the unstressed half-sapce, while state II denotes the axially and uniformally compressed hall' space. State III differs from II by allowing the delamination to split. Our- aim here is to find an expression for the strain energy of states III. For simplicity let $v=0$ ( $v$ is the Poisson's ratio). Regarding the thin buckle as a D.C.B. having zero slope at both ends it is easy to show, using strength of material approximation that

$$
\begin{align*}
& \omega(x)=A(1+\cos 2 \pi x / \ell) \\
& \varepsilon_{\mathrm{cr}}=\frac{\pi^{2}}{3} \frac{H^{2}}{\ell^{2}} \tag{16}
\end{align*}
$$

where $\omega(x)$ is the deflection and $\varepsilon_{c r}$ is the Euler buckling strain of a clamped-clamped column of thickness $H$ and length $R$.

$$
\text { - } 8-
$$

Assuming that after buckling, the state of uniform compression remains unaltered in the unbuckled medium, the compatability condition before and after buckling of this delamination can be expressed as

$$
\begin{equation*}
\varepsilon_{c r^{\ell}}+\frac{1}{2} \int_{-\ell / 2}^{\ell / 2}\left(\frac{\partial \omega}{\partial x}\right)^{2} d x=\varepsilon_{0} \ell \tag{17}
\end{equation*}
$$

The strain energy occupied by the buckled column is

$$
U_{b}=\frac{E H}{2} \underset{c r}{2} a \neq \frac{E I}{2} \int_{-l / 2}^{\ell / 2}\left(\frac{\partial^{2} \omega x^{2}}{2}\right)^{2} d x \quad, \quad I=\frac{H^{3}}{T 2}
$$

by making use of (16) and (17), he find

$$
U_{b}=\frac{E H}{2} \ell \varepsilon_{c r}\left(2 \varepsilon_{0}-\varepsilon_{c r}\right)
$$

The strain energy in the unbuckled portion (the half-space less a void of thickness $H$ and length $\ell$ ) is

$$
U_{2}=\frac{-E H}{2} \varepsilon_{0}^{2} \ell+U_{0}
$$

Note that $U_{0}$ is the strain energy of a hal1'-space under uniform compression $\varepsilon_{0} \cdot\left(U_{0}=\right.$ const.)
Then the total strain energy in state III is

$$
\begin{equation*}
U_{I I I}=U_{b}+U_{2}=\frac{E H}{2} l \varepsilon_{c r}\left(2 \varepsilon_{0}-\varepsilon_{c r}\right)-\frac{E H}{2} \varepsilon_{0}^{2} l+U_{0}=\frac{-E H}{2} \ell\left(\varepsilon_{0}-\varepsilon_{c r}\right)^{2}+U_{0} \tag{18}
\end{equation*}
$$

also

$$
\begin{equation*}
G_{\infty} \equiv \frac{-\partial U_{I I I}}{\partial l}=\frac{E H}{2}\left(\varepsilon_{0}-\varepsilon_{c r}\right)\left(\varepsilon_{0}+3 \varepsilon_{c r}\right) \tag{19a}
\end{equation*}
$$

or

$$
\begin{equation*}
G_{w}=\frac{E H}{2}\left(\varepsilon_{0}-\frac{\pi^{2}}{3} \frac{H^{2}}{\ell^{2}}\right)\left(\varepsilon_{0}+\frac{\pi^{2} H^{2}}{\ell^{2}}\right) \tag{19b}
\end{equation*}
$$

Introducing fictitious parameter T and L , (4b) can be written as

$$
\begin{equation*}
\bar{G}_{\infty} \equiv \frac{G_{\infty}}{E T^{5} / L 4}=\frac{\pi^{4}}{18} \bar{H}\left(\bar{\varepsilon}_{0}-\bar{H}^{2} / \bar{\ell}^{2}\right)\left(\bar{\varepsilon}_{0}+\xi^{2} / \bar{l}^{2}\right), \quad \bar{\varepsilon}_{o}=\frac{\varepsilon_{o}}{\frac{\pi^{2} T^{2}}{3} L^{2}} \tag{19C}
\end{equation*}
$$

where $\bar{H}=H / T, \bar{\ell}=\ell / L$. Now recall eq. (8) of P.R. No. 2 with $N=1$ (a column of thickness T and length L containing a single delamination of thickness $H$ and length $\ell$ ). This equation can he written as

$$
\begin{equation*}
\bar{G} \equiv \frac{-\partial U}{\partial \ell}\left(\frac{E T^{5}}{L 4}\right)=\frac{\pi^{4} H}{18} \frac{(1-\bar{H})}{(1-H+\bar{l} H)^{2}}\left(\bar{\varepsilon}_{0}-\frac{H^{2}}{\bar{\ell}^{2}}\right)\left(\bar{\varepsilon}_{0}+\frac{3 H^{2}}{\bar{l}^{2}}+\frac{4 \bar{H}^{2}}{\bar{l}^{2}} \frac{\bar{\ell} H}{(1-H)}\right) \tag{20}
\end{equation*}
$$

Note that (20) reduces to (19) as $\bar{H} \rightarrow 0$, as might be expected.
To see the rule of $\bar{H}$, we use (19) and (20) to get

$$
\begin{equation*}
\frac{G-G_{\infty}}{G_{\infty}}=\frac{\bar{H}}{(1-\bar{H}+\bar{\ell} H)^{2}}\left(1-\bar{H}-\bar{\ell}^{2} H-\overline{2}+2 \overline{H Q}+\frac{4 \bar{\ell}}{3\left(1+\frac{1}{3} \frac{\varepsilon_{0} \bar{\ell} \overline{H^{2}}}{\bar{H}^{2}}\right)}\right. \tag{1}
\end{equation*}
$$

Relation ( ${ }^{19}$ ) is plotted in fig, 7 , relation (21) is plotted in fig.8..
So far we have made three approximations to the problem of a single delamination in a column, The more accurate one is that given by eq. (15) (a delamination in a column in which the unbuckled portions are allowed to bent, ) The second is the less accurate problem given by eq. (8) of P.R. No. 2 (a delamination in a column in which the unbuckled portions assumed to remain straight). The third approximation, given by eq. (19b) or ( 19 c ) of this report (a delamination in a half-sapce) is the limit case of the above two as $\mathrm{T} \rightarrow \infty$, fig. 9 shows a comparison between the three methods. It is seen that the error in the approximation of a real problem of delamination in a column as delamination attached to a half space is on the order of $\bar{H}$, provided the load is sufficiently lower than the Euler buckling load of the undelarninated column.


FIG. 1b. FREE-BODY DIAGRAM OF THE COLLUMN PORTIONS


FIG. la. THREE STATES IN THE DEFORMATION OF COLLMMN

fig. 1b. Free-booy diagram of the collimn portions
$\delta$



Fig. 2. The dependence of 8 on ldadinc


$\bar{\theta}_{0}$


Fig. 3 The dependence of rotation angle $\theta_{0}$ on loadingo


FTG. 3 THE DEPENQENCE OF ROTATION ANGLE $\theta_{0}$ ON LOADINGO


FIG. 3. CONT.


FIC. 3. CONT.


FI6. 3. CONT.


FIG. 3. CONT.


Fic. 3 CONT.


FIG. 4. BENDING AND COMPRESSION CONTRIBUTIOMSTO THE STRAIN ENERGY release rate


FIG. 4. BENDING AND COMPRESSION CONTRIEUTIOWSTO THE STRAIN ENERGY release rate


FIG. 5. DEPENDENCE OF STRAIN ENERGY RELEASE RATE ON LOADTNG


Fic. 5. depemdence of strain emergy release rate on luading


FIG. 5. CONT.


F [1E. F CONT.


FIG. S. CONT.


FIG. 5. CONT.


FIG. 5. CONT.


FIG. 5. CONT.


FIG. 6 Theie states in the depormation of $a$ COLun




FIG. 7 Strain energy renlense rate of a delantuatton atthofed

fig. 7 Strain emergy penease rate of a delmimation attachod TO A MLF SPACE

$$
\begin{aligned}
& \text { File } 11 \\
& \text { 日: gto "zix" } \\
& \text { 1: 『clr } \\
& \text { 2: wrt 705,"U54 } \\
& 3: f x d 8 \\
& 4: 5010,300,3,
\end{aligned}
$$

$$
\begin{aligned}
& \text { "yS2" } \\
& 5: \times 6 \times 0,36,0, \\
& \text { 500. } 5 \\
& \text { 6: } 72 \times 8 \times 166+6 \text { s } \\
& 1069: 2 \\
& \text { 7: six': } \\
& \text { 8: Ent E } \\
& \text { 9: } .5 \rightarrow \mathrm{R}
\end{aligned}
$$

$$
\begin{aligned}
& \text { * } \\
& \text { 11:-. } 45+L+L \\
& \text { 12: } 0 \div K \\
& \text { 12: "one": } \\
& \text { 14: } K+1+K \\
& 15: L+R+L \\
& \text { 16: (E-( } \quad \text { (L) 个 } \\
& \text { 3) } *(E+(\pi / L+2)= \\
& \text { G } \\
& \text { 17: } 1000920086+5 \\
& \text { 18: if K:159:0 } \\
& \text { "t气ト" } \\
& \text { 13: } 21 \% \text { L!G3 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 21: wrt 705,"そ52 } \\
& \text { 2こ: RIt Ls, } 2 \\
& \text { 23: if L SER? } \\
& 9+6 \text { " コn星 } \\
& 45889
\end{aligned}
$$

```
File II
B%"%":%
1. ह%!
```



```
# Fxd %
```



```
    |लघध|: \क,
    *s%
#% we% #, b, %
    का, 
% %% क, %%-%
    H&%:
```



```
O! 4% %
9:5%%
```



```
14-7-4!+%
12
13" "+Ne":
14B 4+1+6
15 1+F%1
AG IE-G!G!O
```



```
B
I7: |कलपसक,%
4s b>% % % %
    ": %%"
#% #! %:
2ृ "ten"
```



```
2e% !: % %
25 \% , %%%
    #%
&a%
```




```
9: #to "six"
1: 2clr
2: fxd 2
3: wrt 705,"454"
4: scl 日,1,苃,2;
    u+t. 705,"प52"
5: wrt 735:"V52"
6: xu8 8.,12%,2.
    1,20
7: yaz 0,.02,0,
    .2,20
8; "six":
9: ent H
10: Ent F
11: }\textrm{B}+\textrm{R
12:(H+2/E)+.5*L
13: 0+K
14: "one":
15: K+1->K
16: R+.00005>R
17: L+R>L
18: 4*L/3/(1+1/
    3*E*(L/H)+2)*G
19: G+1-H-L*L*H-
2*L+2*H*L*G
20:G*H/11-H+L*
    H) +2->C
21: if K>1;g+2
    "脑"
22: 01t 1.f.1
23: "ten":
24: wrt 705,"452
25: 01t A,B=%
26: 1f L>!!8*0
    "s1\times"
27! sto "one"
*29328
```

```
## 0.8"5%"
1" %1!
#* 人x e
## w% Tby%"घ&"
```





```
G% x%x %
    1,20
7% अपष %% कृ:#
    2%%
E#":x"*
9# E%% !
㫜 En= E
1H D&B
H2# HTEG&T:5%
## 6%K
14; "%%"*
1% &%t*&
```



```
|F# :%%
B# 18L, % %%,
```




```
    &+E4H24%
2% 64,4,4+4
    HTE+G
```



```
    * Ef"
2% 人方 人4:
इE: "ध%"*
```



```
#% %t % %
## \! % ! % 4
    "E&%"
ध" %ध")
*%%%
```



FIG. qa COMPARASTON OF STRALM ENERGY RELEASE RATE RESULTED USIMG THREE DIFFERENT APPRDACHED


FIG ga COMPMRASIOU OE STRAIM ENERGY RELEASE RATE RESTHTED LSTN THREE DIFFERENT APPROACHED
cos．fop．E．N． 4 cose of P，R．No2

| 日：₹to＂six＂ | 9：3t．＂six＂ |
| :---: | :---: |
| if pelr | 1： $\mathrm{pc1r}$ |
| 2：fxd 2 | 2：fxd 2 |
| 3：wrt 705，＂YS4＂ | 3：wrt 755，＂W5a＂ |
| 4：scl 日，1，日，－5： | 4：3c1 日，1，6，55 |
| wrt 705，＂452＂ | wrt 705，YS\％ |
| 5：brt 705，＂VS2＂ | 5：wrt 785，－${ }^{\text {a }}$ |
| 6：$\times$ a $0,125,0$ ， | 6：xax 8，125，0． |
| 1，2 |  |
| 7 7 yax 0，．05．8， |  |
| g：5，2 | 8\％＂six＂： |
| 9：six＂， | 9：ent N |
| 10：Ent $E$ | 10：ent H |
| 11：$\quad \rightarrow \mathrm{R}$ | 11：ent E |
| 12：（HT2／E）＋，5 + L | 12： $9 \rightarrow$ R |
| 13：$\quad$ ¢ K | 13：（H个2／E）${ }^{\text {c }}$ ． $5 \rightarrow 1$ |
| 14：＂one＂： | 14： $0 \rightarrow$ K |
| 15：K＋1＊K | 15：＂one＂： |
| 16：$R+.80005+R$ | 16：$K+1+k$ |
| 17：$L+R+L$ | 17： $\mathrm{R}+2.80905 \rightarrow \mathrm{R}$ |
| 18：$n \uparrow 4 / 18 * \mathrm{H} \rightarrow \mathrm{G}$ | 18：$L+R \rightarrow L$ |
| 19：（E－（H／L）+2 ） | 19：$\pi+4 / 18 * N * H *$ |
| $\{E+3 * H * H / L / L\}$ | $(1-\mathrm{N} * \mathrm{H}) /(\mathrm{N} * \mathrm{H} * \mathrm{~L}+$ |
| $G \rightarrow G$ | $1-N * H) T 2+G$ |
| 20：if $\mathrm{K}>13 \mathrm{yto}$ |  |
| ＂t，${ }^{\text {an＂}}$ | （E＋3＊H＊H／L／L＊ |
| 21：plt L，G，1 | $(1+4 / 3 * N * H * L /$ |
| 22：＂ten＂： | $(1-N * H)) * G+G$ |
| 23：（4／（1－L） $12+$ | 21： $6 / \mathrm{N}+\mathrm{G}$ |
| $(1+N * H * L-N * H)-$ | 22：if K＞1；sto |
| H＊H 3 ／L）／（ $1-\mathrm{H}^{*}$ | ＂ten＂ |
| H）$\rightarrow 2$ | $234 \mathrm{Nlt} \mathrm{L}, \mathrm{G}, 1$ |
| 24：wrt 705，＂乡32 | 24：＂ten＂： |
| －4：wrt 705，132 | 25：14／（1－L） 12 ＊ |
| 25：if E＞（1／L） 12 | $\left(1+\mathrm{N} * \mathrm{H}_{2} \mathrm{~L}-\mathrm{N} * \mathrm{H}\right)-$ |
| ＊（（1－N＊H）＋2＊（1－ | $\mathrm{N}=\mathrm{HT} 3 / 1) /(1-\mathrm{N} *$ |
| $\mathrm{N} * \mathrm{H}+\mathrm{L} * \mathrm{H} * \mathrm{H})+(1-$ | H）$\rightarrow 2$ |
| L）$\because \mathrm{H} \sim \mathrm{H}+3)$ ；pen\＃ | 26：wrt 705：＂YS2 |
| 2iline 2，1；gto |  |
| 29 ， $264 \times 1$ | $*((1-N * H)+2 *(1-$ |
| 26： $1+N * H * L .(1-$ |  |
| H＊H）－H＋3＊N | L) * N*H*3) ; pen\# |
| E）S；line i，．5； | 2；1ine 2，1；yto |
| Ren\＃ 3 | 31 － 3 |
| 27：if EくS；pen\＃ | 28： $1+\mathrm{N} * \mathrm{H} * \mathrm{~L} / \mathrm{Cl}$－ |
| 1；1ine | N＊H）－H＋3＊N／L |
| 28：if E＞Zipen\＃ | $(1-\mathrm{N} * \mathrm{H}) \rightarrow \mathrm{S} ;$ if |
| 4 4 4 － | E）S；line 1，．5： |
| 29：plt L，G， 2 | pen\＃ 3 |
| 30：if L＞1；3t0 | 29：if E＜SIpen\＃ |
| ＂six＂ | 1\％1ine |
| 31：9to＂one＂ | 30：if E＞Z；pen\＃ |
| ＊27474 | 4 ＋L |
|  | 31：plt L，G，2 |
|  | 32：if L＞1isto |
|  | ＂six＂ |
|  | $\begin{aligned} & 33 ; 9 t 0 \\ & +13462 \end{aligned}$ |

cose of pinnod

```
#% %"=%"
```

\#% %"=%"
1: \#!-
1: \#!-
\#\#we

```
##we
```




```
4% क, b, 1P% %
```

```
4% क, b, 1P% %
```




```
# wrym%%%
```


# wrym%%%

G xax 4, te5,b
G xax 4, te5,b
1-2

```
    1-2
```




```
    #
```

    #
    z" "-4x";
z" "-4x";

# m, !

# m, !

19: ent |
19: ent |
1% ent E
1% ent E
12: B*%

```
12: B*%
```




```
4% B+6
```

4% B+6

## "%\#"=

## "%\#"=

E= EO+b
E= EO+b
|: Rt=6gक5%z
|: Rt=6gक5%z
18: 1+64

```
18: 1+64
```




```
    |, H%|, |H%H{
```

    |, H%|, |H%H{
    1-4%H+2%
    1-4%H+2%
    20; !E-(H,H)+2!
20; !E-(H,H)+2!
E+S*H*H H L
E+S*H*H H L
A\&4 3%H+46
A\&4 3%H+46
(\&)
(\&)
S: Gr,GC
S: Gr,GC
22: if C:B\#to
22: if C:B\#to
t-n"
t-n"
2% च|t \&,b:
2% च|t \&,b:
24: "方毕品"
24: "方毕品"
25% 4.4,4-4,2%
25% 4.4,4-4,2%
\&44%!-4,0

```
    &44%!-4,0
```




```
    H)\div7
```

```
    H)\div7
```









```
    3
```



```
    Ha|jm+14Mx+1
    C-4,4,0%:
```



```
    ##%索3
```






```
    "=% *'
#% %t! ......"
#%家家
```

t＂sin＂efx：
A $\# 5 \mathrm{H}$
$z *+\mathrm{CB}$



于

1：2

$5 \%$
Q＂$\quad \mathrm{A} \mathrm{X}^{2}:$
9\％ent
1母 घ ज F
14： $\mathrm{E}+\mathrm{E}$

$\therefore \because \mathrm{B}$
4号＂：
$1=\mathrm{K}+1 \div \mathrm{K}$
$16: 5+B+\operatorname{Fat}$
$17=1+6+1$
15： $7+4 \tan 4$
19

$9 \%$
大日：if ＂tn＂
Ei\＃EIt L：G1

－5


$H \div$

玉＂д itryidery



29

HHOH＋B＋1，



27

要＋


$"=x^{2}$
 $+274$


[^0]:    *Informal Progress Report No. 2

