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Abstract We present a phenomenological expression to describe the thermal mag-
netoconductivity of tungsten which unifies the zero-field thermal conductivity with
the low and high-field cases. Its basic form is derived from semi-classical magne-
toresistance theory with fitting parameters allowing adjustment to particular samples.
Thermal conductivity measurements at 5.5 K and in fields from 0 to 2 T are presented
on two single crystals of tungsten with significantly different purities. We find that—
with suitable adjustment of the fitting parameters—the equation is an excellent fit to
the data in both cases. The significance of the fitting parameters and differences in
their values are discussed, and we describe how they can be related to the individual
properties of the samples. It is concluded that the equation should be applicable to any
field below that at which orbit quantisation occurs and temperatures from 6 K down
to tungsten’s superconducting transition.
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1 Introduction

The magnetoresistive properties of tungsten have been studied since as early as the
1930s [1], motivated initially by the large magnitude and anisotropy of the effect in
comparison with other metals. The majority of the work that followed took advantage
of the ready availability of high-purity, single crystals to employ magnetoresistance
measurements as a tool for probing tungsten’s electronic structure [2,3]. These stud-
ies supported the detailed band structure calculations which had been performed on
the transition metals [4,5]. Later investigations [6–9] looked in detail at the trans-
port coefficients and scattering mechanisms at low temperature, and led to a largely
successful attempt to use Fermi Surface data gathered from other sources to predict
galvanomagnetic coefficients [10].

Although the majority of this past work focussed on electrical measurements, the
thermal magnetoconductivity has also been studied [6,8,11] and the effect is found to
be even larger than its electrical counterpart. This fact has attracted interest in the use
of high-purity tungsten as a low temperature heat switch which might be applied in
adiabatic demagnetisation refrigerators (ADRs) [12–15]. These refrigerators generally
operate below 4 K and are one of the main technologies for accessing temperatures
below the liquid helium regime. Cooling in an ADR is achieved by entropy reduction of
an assembly of magnetic dipoles (typically in the form of a paramagnetic salt) through a
cycle of magnetisation and subsequent demagnetisation. During magnetisation, the salt
requires a good thermal link with a cold sink to dump the heat generated in this stage of
the cycle, while during demagnetisation it must be thermally isolated from everything
except the object to be cooled. A heat switch that exhibits a large “switching ratio” (i.e.
the ratio of thermal conductivity in the “on” and “off” states) is therefore required. High
switching ratios allow the heat generated during magnetisation to be extracted quickly,
while ensuring a low parasitic heat load when the ADR is in the demagnetised state.
Generally, ADRs already contain superconducting magnets capable of producing fields
of several Tesla, which make incorporating a magnetoresistive switch relatively easy.
Furthermore, the simplicity of such a switch offers great potential for miniaturisation
of the cooler.

To facilitate the use of tungsten heat switches—in ADRs and other applications—it
is critical to be able to predict its thermal conductivity from zero-field up to fields of
several Tesla. Historically, it is only the high-field regime which has been studied and
the behaviour at low fields has been given scant attention. For the case of ADR heat
switches, this problem has been tackled by Canavan et al. [12], who proposed that
the thermal magnetoresistance can be assumed to act in parallel with the zero-field
resistance. This led them to formulate an expression for the thermal conductivity that
covers all magnetic fields, thereby allowing them to estimate heat switch performance
for the purposes of modelling. However, no detailed investigation was conducted to
validate the expression.

In this paper, we show how such a combined expression may be arrived at from
established semi-classical transport theory and that there is a basis for Canavan et al.’s
assumption. We then report on thermal conductivity tests at 5.5 K, in fields of 0–2 T, on
two different tungsten crystals, which demonstrate how well the theoretical equation
fits the measured behaviour.
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2 Theory

Thermal currents in tungsten, in common with any metal, are carried by two mecha-
nisms: the movement of “hot” electrons down a thermal gradient and “cold” electrons
up it; and by phonons carrying thermal energy from the “hot” to the “cold” regions. At
the temperatures we are concerned with in this paper (<6 K), the phonon contribution
to the heat current is at least 4 orders of magnitude smaller than the electronic contri-
bution [11]. Furthermore, it is not affected by the presence of the magnetic field. For
these reasons our theoretical approach focuses primarily on the electronic part of the
thermal conductivity and exploits the similarity of its behaviour in a magnetic field to
its electrical counterpart.

Semi-classical transport theory provides a framework for explaining the magnetore-
sistive properties of metals in both low and high-fields [16]. The distinction between
“low” and “high” fields is made using the quantity ωcτ , where ωcis the cyclotron fre-
quency and τ is the relaxation time. A metal is normally said to be in the “high-field”
condition when ωcτ >>1. Following Pippard [16], we interpret ωcτ as the mean
angle turned by an electron between collisions and make the more precise definition
for the high-field condition, ωcτ ≥2π—i.e. the applied field is such that an electron
can complete one or more orbits about the axis of the magnetic field before being
scattered. Furthermore, we assume that the field is not sufficient to cause orbit quan-
tisation effects, such as are associated with the Shubnikov-de Haas effect and other
oscillatory phenomena.

In the low-field case, solutions are found to the transport equations using power
series expansions in magnetic field, B, and these then lead to a form for the conductivity
which is a similar expansion [17]. In the high-field case, electrons complete one,
or more, real-space orbits and the corresponding k-space orbits are constrained to
surfaces of constant energy. The resulting effects on transport properties are determined
by the shape of these energy surfaces (the Fermi Surface). The theory in this case
[18,19] also leads to conductivities which are power series expansions in B, with
retention of only the first non-vanishing term deemed necessary for sufficient accuracy
of calculation [19]. For the case of transverse magnetoconductivity considered here
(where the thermal current and the measured thermal gradient are in the same direction,
which is perpendicular to the magnetic field) both the low and high-field theories
predict a conductivity which varies as 1/B2.

The governing equation for conduction problems, with and without the presence of
a magnetic field, is the Boltzmann equation [20]:

∂ fk

∂t

]
diff

+ ∂ fk

∂t

]
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+ ∂ fk

∂t

]
scatt

= 0 (1)

This tells us that, in steady state, the change in the distribution of electron states fk

caused by diffusion, external fields and scattering, respectively, must balance. In the
general case, where temperature gradients and electric and magnetic fields may be
present, the equation takes the following form [20,21]:
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Here e and vk are the electron unit charge and velocity, respectively, T is the temper-
ature, h̄ is the reduced Planck constant, E and B are the electric and magnetic fields
and k is the electron wave vector.

Rather than express the right-hand side of Eq. (2) using a complete collision integral
[22], we use the well-known relaxation time approximation [20]:

− ∂ fk

∂t

]
scatt

= fk − f 0
k

τ
= gk

τ
(3)

i.e. the “out-of-balance” part of the electron distribution gk decays exponentially on
removal of the applied fields according to a characteristic relaxation time τ :

− ∂gk

∂t
= gk

τ
(4)

So that
gk(t) = gk(0) exp(−t/τ) (5)

Although this is a simplified phenomenological description of the real processes
at work, it is generally considered a reasonable approximation when scattering is
catastrophic and there is evidence that it produces realistic results for tungsten [10]. It
is likely to be a good assumption at low temperatures when impurities and electron-
electron interactions are the dominant scattering mechanisms. Our measurements of
the temperature dependence of tungsten’s conductivity appear to back up this assump-
tion [Hepburn et al. in preparation], which is further reinforced by the findings of
others [8,11].

The implicit assumption in using the relaxation time approach is that the scattering
probability per unit time, P , is proportional to the reciprocal of the relaxation time
[23]:

1

τ
∝ P (6)

Now, as we are seeking an equation which covers the zero-field to high-field conditions
and everything in between, we postulate the following: an electron will be scattered
either by mechanisms which limit the zero-field conductivity (with probability P0) or
by the mechanisms that modulate the high-field conductivity (with probability PB)

and that these two mechanisms are independent. To find the total probability of an
electron being scattered we simply sum these two effects:

Ptot = P0 + PB (7)

This could equivalently be formulated in terms of Matthiessen’s rule:

1

τ
= 1

τ0
+ 1

τB
(8)

Here we have associated a relaxation time with the part of the conductivity which
varies in a magnetic field. This idea has been used before [24], where it was argued
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that one could equate the reversal of an electron’s motion due to the Lorentz force
with a scattering event. We make no claim that such a direct physical interpretation is
valid, but merely use it as a phenomenological mechanism to deal with conductivities
over a wide range of fields.

If a k independent relaxation time is assumed for each mechanism, each reciprocal
of relaxation time, 1/τ , can be associated with a resistivity due to that mechanism [23]
and we can write directly:

ρ = ρ0 + ρB (9)

i.e.
1

κe
= 1

κ0
+ 1

κB
(10)

where we have subsequently converted the resistivities to conductivities and κe is the
electronic part of the thermal conductivity. For the purposes of comparison, we note
here that the more rigorous approach of solving the Boltzmann equation using the
variational principle leads to ρ ≥ ρ0 + ρB [22].

For temperatures below 6 K the zero-field thermal conductivity as a function of
temperature is found to be well represented by [11],

1

κ0(T )
= a1 + a2T 2

T
(11)

where a1 and a2 are fitting parameters. If they are interpreted according to established
transport theory [22], then they represent contributions from impurity and electron-
electron scattering, respectively.

High-field measurements on tungsten [9] have shown that, below 6 K, κB , as a
function of temperature, can be fitted to

κB(T ) = a3T + a4T 4

Bn
(12)

where B is the magnetic field and a3, a4 and n are fitting parameters. Semi-classical
magnetoresistance theory predicts a value of 2 for n [18,25], although deviations from
this have been observed for tungsten [2,6,26,27].

Substituting (11) and (12) into Eq. (10) and re-arranging we have

κe(T ) = 1
a1 + a2T 2

T + Bn

a3T + a4T 4

(13)

At this point we include a term for the lattice conductivity, which we assume to be
acting in parallel to the electronic thermal conductivity. The lattice conductivity in
tungsten has been found to be proportional to T 2 [9,11], giving for the complete
thermal conductivity:

κ(T ) = b0T 2 + 1
a1 + a2T 2

T + Bn

a3T + a4T 4

(14)
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where b0 is the phonon conductivity coefficient. Equation (14) describes the behaviour
of the thermal conductivity of tungsten below 6 K as a function of magnetic field and
temperature, and is in agreement with the expression of Canavan et al. [12].

In this paper, we test Eq. (14) at constant temperature. For this case, all terms which
are functions of T become constant and the expression may be simplified to

κ = bl + 1
1
κ0

+ Bn

a

(15)

where κ0 is the electronic part of the zero-field conductivity and both a and bl are
fitting parameters. Equation (15) is the expression used to fit the data presented below.

3 Experimental Details

To test the validity of Eq. (15), thermal magnetoconductivity measurements were made
on two very different single crystal tungsten samples. The samples had significantly
different purities (see Table 1) and were chosen to demonstrate that Eq. (15) would
apply for different levels of impurity scattering. The details of both samples are given
below.

The first sample (Fig. 1) was cut from a zone-refined rod such that the length
of interest for the measurements was in the [100] direction (see Fig. 3). The short
length of the sample, combined with its high purity, meant that it was not possible
to measure its electrical resistance at 4 K and therefore the Residual Resistance Ratio
(RRR = resistance at 300 K/resistance at 4.2 K) could not be determined. However,
other samples from the same supplier with similar thermal conductivities had RRR
values of over 100,000. This will be referred to hereafter as sample C-3b.

The second sample was cut—from a less pure single crystal—into a more complex
shape to maximise the free length for heat switch applications (see Fig. 2). The crystal
was grown in the [111] direction and then cut so that the free length was in the
plane perpendicular to this direction (see Fig. 3). The sample’s RRR was measured
as 580 ± 65. Thermometers were placed such that the temperature difference was
measured over a length of 82 mm.

Table 1 Sample details

Sample Supplier Dimensions RRR Crystal orientation

C-3b Metal Crystals and
Oxides Ltda

(Cambridge, UK)

1.55 mm ×
1.37 mm ×
5.9 mm long

>100,000 [100] direction along
sample length (‖ to
heat flow) (see Fig. 3)

M-2.2 MaTecKb (Juelich,
Germany)

2.22 mm ×
2.12 mm ×
82 mm long

600 [111] � to plane
containing the sample
length (see Fig. 3)

a www.metal-crystals.com
b www.mateck.com
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Fig. 1 The high-purity tungsten
sample (C-3b) Colour figure
online

Fig. 2 The lower purity tungsten sample (M-2.2) Colour figure online

The samples were mounted in a cryogen-free cryostat, cooled by a Cryomech Pulse
Tube Refrigerator (PTR), and oriented such that the direction of heat flow between the
thermometers would be perpendicular to the magnetic field, which was provided by a
2 T, 2A superconducting magnet. For the low-field measurements, this was powered
from a Cryogenic power supply that permitted current control to ±1 mA, whereas
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Fig. 3 Measurement set-up showing relative orientations of the sample, the applied magnetic field and
known crystal axes a Sample C-3b, b Sample M-2.2 Colour figure online

for fields of >0.1 T current was provided by a Thurlby Thandar power supply with a
precision of ±10 mA. The true current flowing in the magnet was measured separately
on a Fluke ammeter.

In order to measure the thermal conductivity, one end of the sample was fixed to
the cold stage of the PTR. Cernox thermometers were mounted at each end of the
length of interest of the sample, as shown in Fig. 3, and these were used to measure
the temperature difference (�T) created by passing current through a heater (10 k	

resistor) mounted to the free end. The thermal conductivity was measured by recording
the steady-state temperature difference between the thermometers for a given heater
power. To improve measurement statistics, the thermometers were read by taking the
output from an AVS-47 resistance bridge into an Agilent nanovoltmeter and using this
to average a 30 s sample (with readings taken at approximately 2.5 Hz ≈ 75 readings).
Two separate measurements were made for each heater power and magnetic field
combination, and the temperature differences were averaged. The thermal conductivity
was then calculated according to

κ = Q

�T

L

A
(16)

with Q being the supplied power, L the sample length and A the area.
All measurements were performed at 5.5 K with a temperature stability of ±0.05 K

achieved by servo control of the PTR. At this temperature the PTR had sufficient
cooling power to absorb the heat input required to achieve a measureable �T of
∼250 mK.
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3.1 Errors

The following sources of error were considered when calculating the vertical error
bars in the figures: errors in the thermometer readings, errors in the measured voltage
and current in the heater, and errors in the measured sample dimensions. Errors in
the temperature readings were the averaged standard deviations of the 30 s samples
read out by the nanovoltmeter. Being of the order of 5–10 mK, these were much
larger than errors due to the thermometer calibration fits (1–2 mK) and self-heating
effects (∼20 pW), which were consequently both neglected. No account was made
for magnetoresistive effects in the thermometers, although previous research suggests
this will be less than 1 % for the temperatures and fields in this study [28,29]. Current
and voltage errors were assumed to be of the same order as the resolutions of the
respective meters. The sample dimensions were measured at room temperature, but
any change in size due to thermal contraction would only be a small fraction of ±20µm
errors assumed for the cross section dimensions and the ±50µm error assumed for
the sample lengths.

Of the sources of error mentioned above, by far the most dominant were errors
in the measured �T—these ranging from approximately 5 % to more than 25 % for
the lowest field measurements on sample C-3b. The same errors in sample M-2.2
were always below 5 % because the longer sample length enabled larger �Ts and
proportionally smaller errors. Errors in measured heater power ranged from less than
0.5 % to around 5 %; however, the largest errors were at the highest fields (when the
smallest powers were used), so that there was no coincidence of large power errors
and large �T errors. By comparison to the other errors, those in the measured samples
dimensions were small, being less than 1 % in length and less than 3 % in area.

As is evident from the figures, total errors are larger in the lower field measure-
ments, where the temperature differences are smaller. However, by taking advantage
of averaging at least two readings for each data point, they are reduced to less than
15 % in all but the lowest fields.

Horizontal error bars in the figures indicate the error in the measured field, taken
to be either 0.001 or 0.01 T depending on the power supply being used.

4 Results and Discussion

The results for sample C-3b are shown in Figs. 4 and 5; those for sample M-2.2 are
shown in Figs. 6 and 7. The fits were made using chi-square minimisation to Eq. (15).
The parameter values for the fits are summarised in Table 2.

The figures illustrate that Eq. (15) is an excellent fit to the thermal magnetoconduc-
tivity of both samples. As described in Sect.2, Eq. (15) combines a lattice conductivity
(bl) with a zero-field electrical conductivity (k0) and a field-dependent electrical con-
ductivity (a/Bn). The magnitudes of these elements of the conductivity are plotted
in Figs. 8a and 9a, which illustrate how they vary with magnetic field. For sample
C-3b, the field-dependent conductivity has become less than the zero-field electrical
term at 0.005 T, whilst in sample M-2.2 the crossover does not occur until 0.05 T. The
figures make clear that the main cause of this is the difference in the k0 term: it is
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Fig. 4 Magnetoconductivity of sample C-3b from 0 to 2 T. The fitted curve is to Eq. (15) (Colour figure
online)

Fig. 5 Low-field (0–0.15 T) magnetoconductivity of sample C-3b. The fitted curve is to Eq. (15) (Colour
figure online)

more than an order of magnitude larger for sample C-3b—a reflection of the higher
purity of this sample. Figure 8a shows that the lattice term is the smallest contribution
in sample C-3b, even at the highest fields. Note that the lattice contribution for sample
M-2.2 is not shown in Fig. 9 as, within the errors of the fits, bl was found to be zero
(see Table 2). Figures 8b and 9b show the percentage contribution from the different
elements of the conductivity. The difference in the field at which the field-dependent
component drops below the zero-field electrical component is clear from these figures
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Fig. 6 Magnetoconductivity of sample M-2.2 from 0 to 2 T. The fitted curve is to Eq. (15) (Colour figure
online)

Fig. 7 Low-field (0–0.2 T) magnetoconductivity of sample M-2.2. The fitted curve is to Eq. (15) (Colour
figure online)

too. There is also a more rapid drop in the field-dependent contribution for sample
C-3b compared to sample M-2.2 because of the smaller a term; this is discussed in
more detail below.

The chi-square minimisation produces different fitting parameters for each sample
and these will be described in turn. The lattice conductivity in sample M-2.2 is found
to be zero with the fitting error of ±0.30, compared to 0.93 ± 0.16 for sample C-3b.
The results of others [9,11] suggest that bl can be approximated by 0.05 T2 W/m K.
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Table 2 Comparison of fitting parameters for the two samples

Sample bl κ0(measured) κ0(fitted) n a Adjusted
R-squarea

C-3b 0.93±0.16 21,920 ± 6,530 17,085 ± 642 1.80 ± 0.01 9.11 ± 0.19 0.99923

M-2.2 0 ± 0.30 8,333 ± 223 8,032 ± 84 1.82 ± 0.01 23.48 ± 0.48 0.99895

a Used as a measure of the goodness of fit; the closer this value to 1, the better the fit. It is calculated as

R
2 = 1 − RSS/dfError

TSS/dfTotal
, where RSS is the residual sum of squares, TSS is the total sum of squares about

the mean, dfTotal is the total number of degrees of freedom (=(n − 1) where n is the sample size) and
dfError = (n−p − 1) where p is the number of parameters in the fitting expression

(a) (b)

Fig. 8 Relative contributions of the lattice, zero-field electrical and field-dependent parts of Eq. (15) for
sample C-3b plotted as a absolute magnitudes and b percentages of the total conductivity (Colour figure
online)

Using this with T = 5.5 K yields a value of 1.51, which is greater than the bl value in
both our fits. It is unlikely that there is no phonon contribution at all. However, it may
be that the phonon current is restricted by the geometry of our samples. Scattering
from the sample surface could act to destroy the phonon current, particularly in the
case of sample M-2.2 because the convoluted geometry forces a phonon that travels
the whole sample length to interact with the surface. A theoretical treatment of phonon
scattering at surfaces [22] indicates that scattering will be diffuse when the phonon
wavelength is significantly smaller than the typical asperity height on the surfaces.
It can be shown that this is likely to be the case in our samples by calculating the
wavelength corresponding to the peak in the phonon energy spectrum. Assuming a
Debye distribution, the frequency at which the peak occurs is given by [30]:

ωmax ≈ 2.82kB T

h
(17)
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(a) (b)

Fig. 9 Relative contributions of the lattice, zero-field electrical and field-dependent parts of Eq. (15) for
sample M-2.2 plotted as a absolute magnitudes and b percentages of the total conductivity (Colour figure
online)

where kB is the Boltzmann constant and h is Planck’s constant. Calculating this for
T = 5.5 K, yields ωmax = 3.23 x 1011s−1, which can then be converted to a wavelength
using the speed of sound in tungsten, vw :

λωmax = 2πvw

ωmax
(18)

If the speed of sound in tungsten is taken—from high frequency mechanical resonance
measurements [31]—as approximately 2,900 m/s, we find λωmax

∼= 0.06 µm. Surface
asperities this small would be difficult to achieve in a carefully polished sample and
our crystals were not subject to such preparation. On this basis, it is entirely possible
that surface scattering plays an important role in limiting the phonon current and may
explain why it is smaller in the case of M-2.2.

The difference in the zero-field conductivities (κ0) is as would be expected for
two samples of such differing purities. The values from both fits agree with the
measured zero-field conductivities of the samples to within the measurement errors:
21,920 ± 6,530 W/m K for sample C-3b and 8,333 ± 223 W/m K for sample M-2.2.
The larger error on the measured zero-field conductivity of sample C-3b is the result
of only being able to generate a small �T without raising the base temperature of the
apparatus (a consequence of the sample’s short length and high conductivity).

There is good agreement between fits for the magnetic field exponent (n). As noted
above, semi-classical magnetoresistance theory leads us to expect a value of 2. How-
ever, deviations from this that are of the same order as we observe have been seen by
Long [6], Canavan et al. [12], Marchenkov et al. [26] and Cherepanov et al. [27]. Long
attributes his value to an appreciable (field independent) lattice conductivity, but this
would be at odds with the minimal lattice contribution we find in our fits. It also seems
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inconsistent with tungsten’s relatively high Debye temperature (400 K [30]). Canavan
et al. merely note that the deviation from n = 2 is surprising without offering further
explanation. Marchenkov et al. [26], on the other hand, present a physical mechanism
related to the difference they observe in the exponent when the current is directed
along different crystal axes. They suggest that at certain temperatures, there will be
phonons of an appropriate wavevector to scatter electrons from one Fermi surface
sheet to a nearby point on an adjacent one. The sizes of the gaps between sheets in
k-space depend on the plane in which the electrons are moving. For certain crystal ori-
entations, this intersheet scattering then permits some electron orbits to become open,
or extended, even though the energy surfaces themselves are closed. The presence
of some open orbits changes the predictions of semi-classical magnetoconductivity
theory significantly: for orientations in which these orbits play a role in conduction,
the electrical part of the thermal conductivity is expected to saturate at a constant value
as B approaches infinity [16]. In other words, the conductivity becomes independent
of B at high-fields and n tends towards zero. In their experiments, Marchenkov et
al. [26] only see this effect become significant at temperatures above 30 K although,
given a Debye phonon distribution, there is no reason why it should not be seen at
lower temperatures.

Quasi-open orbits may arise from another source: namely the Static Skin Effect
[32]. This effect has been studied extensively [32,33] and it has been shown that when
the Larmor radius (rB) of electrons (i.e. the radius of the electron orbits) is significantly
smaller than the sample dimension perpendicular to the magnetic field, the majority
of the electron transport takes place in a layer of approximately the same thickness
as the Larmor radius next to the surface. This is because electrons reflected from the
surface (either specularly or diffusely) are much more likely to progress along the
sample than those in the bulk, which make multiple orbits before scattering and are
hence constrained to travel no further than the Larmor radius. The Larmor radius can
be calculated using the following equation.

rB = mv

eB
(19)

Here, m, e and v are the electron mass, charge and velocity, respectively; B is the
magnetic field. Using standard values for the mass and charge of a free electron
and a typical value for the Fermi velocity of an electron in tungsten (≈5 × 105m/s
[34]), we find that rB in our samples varies between approximately 6×10−2 mm at
B = 0.05 T and 1.4×10−3 mm at B = 2 T—i.e. several orders of magnitude smaller
than the sample dimensions. This, taken together with the fact the electron mean free
paths for our samples in the absence of magnetic field are likely to be much greater
than these values, satisfies the conditions for the Static Skin Effect [33].

When incident and reflected electrons at a surface are correlated, with just the
component of momentum perpendicular to the sample surface being reversed, they
can be said to be specularly reflected. Electrons interacting in this way are able to move
to a different Fermi surface sheet, creating an open trajectory. These open orbits may
then contribute to a change in n on the same basis as described above for intersheet
scattering. Some initial results from a study by Volkenshtein et al. [35] suggested that
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when sample faces specularly reflect a high proportion of electrons (approximately
60 %) the magnetoresistance contains an additional linear component. However, in a
fuller report on their findings [33], they conclude that a magnetic field exponent of
1.96 ± 0.05 fits their data for samples with both specularly and diffusely reflecting
surfaces.

A separate, but connected, surface effect that may also be present in our samples
is the influence of lattice defects just below the surface [27]. Our crystals were spark-
eroded to their final geometry and were not subject to any polishing or other surface
treatment. As a result, we might expect some level of damage to the crystal structure
in the vicinity of the sample surface. Lattice defects arising in this way can penetrate
hundreds of microns into the sample [27] and thus encompass the region of the sample
where most of the electron current is present under the Static Skin Effect. Cherepanov
et al. [27] studied the impact of this on the magnetoresistance through high-field
measurements on spark-eroded crystals which satisfied the conditions for the Static
Skin Effect: they measured the transverse magnetoresistance for samples after spark
eroding and again after they had been electro-polished to remove the defect layer.
Polishing caused the magnetic field exponent to increase from 1.34 to 1.98, indicating
that sub-surface defects were responsible for a reduction in the magnetic field exponent.
We believe that this is the most likely cause of the fact that we find a magnetic field
exponent of less than 2. The mechanism for the change is discussed in more detail by
Kolesnichenko [36]; it is related to the fact that the increased scattering in the defect
layer causes the magnetoresistance to depend not just on the applied field, but on the
electron mean free path in the layer and the layer’s thickness. Kolesnichenko derives an
expression for the change in transverse conductivity that contains two terms: the first
includes the Larmor radius squared (and is hence proportional to 1/B2, by equation
(19)), while the second is a function of the product of the thickness of the defect layer
and the mean free path of the electrons in this layer [36]. The implication is that the
change in conductivity can no longer be expected to be a simple function of 1/B2.

Lastly, the different values of a can be interpreted as a reflection of the different
levels of impurity scattering in the two samples. Wagner [9] shows that an expres-
sion for a, derived according to semi-classical theory, is of the same form as the
theoretical expression for the zero-field thermal resistivity found by solving the Boltz-
mann equation using the variational method [37]. As illustrated by Eq. (11), this is
expected—and it has been confirmed experimentally [11]—to contain a 1/T term,
which can be associated with the impurity scattering. This term will increase with
greater impurity scattering (i.e. lower sample purity and RRR) and the a value in our
fits seems to follow this general trend, being significantly larger for the lower purity
sample M-2.2.

5 Conclusions

We have proposed an equation to describe the thermal magnetoconductivity of tung-
sten from zero- to high-field conditions drawing on the principles of semi-classical
transport theory. This equation has been tested against results from two very different
single crystals of tungsten and has been shown to be an extremely good fit to the
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data in both cases. Our measurements cover a sufficient range of fields to include
regions where the high-field conductivity contribution dominates and where the low-
field contribution dominates. The magnetic fields associated with these regions differ
between the samples due to their differing purities. We are thus able to conclude that
our fit works well in both low-field and high-field regions and that it handles differing
sample impurities well through appropriate adjustment of the κ0 and a parameters.
The magnetic field dependence of the electronic part of the thermal conductivity is
not—as one might expect from semi-classical transport theory—precisely quadratic.
We believe the most likely cause of this to be lattice defects in the sub-surface layer
resulting from spark eroding the samples. We find a minimal phonon contribution to
the thermal conductivity in our fits and suggest that this may be the result of surface
scattering.

The data presented in this paper confirm the applicability of Eq. (14) at 5.5 K and
between 0 and 2 T. Nevertheless, we also expect it to work equally well at any tem-
perature below 6 K (down to tungsten’s superconducting transition at approximately
10 mK [38]) and at any magnetic field below that at which electron orbit quantisation
occurs. Its validity at lower temperatures will be the subject of a future publication.
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