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ABSTRACT 

These Guidelines provide state-of-the-art guidance on the construction of vulnerability relationships from 

post-earthquake survey data. The Guidelines build on and extend procedures for empirical fragility and 

vulnerability curve construction found in the literature, and present a flexible framework for the construction 

of these relationships that allows for a number of curve-fitting methods and ground motion intensity 

measure types (IMTs) to be adopted. The philosophy behind the design of the framework is that the 

characteristics of the data should determine the most appropriate statistical model and intensity measure 

type used to represent them. Hence, several combinations of these must be trialled in the determination of 

an optimum fragility or vulnerability curve, where the optimum curve is defined by the statistical model that 

provides the best fit to the data as determined by a number of goodness-of-fit tests. The Guidelines are 

essentially a roadmap for the process, providing recommendations and help in deciding which statistical 

model to attempt, and promote trialling of models and IMTs.  

The Guidelines are targeted at analysts with Master’s level training in a numerate subject that includes some 

level of statistics. The Authors recognise that the statistical analysis understanding of analysts varies. To 

accommodate for these differences, two levels of statistical approaches for constructing empirical fragility 

functions that include procedures of increasing complexity, are proposed.  

All stages of the fragility and vulnerability curve construction are reviewed and presented in the Guidelines 

with practical advice given for the preparation of empirical data for use in the construction of these curves, 

for the identification of sources of uncertainty in the data and in the chosen intensity measures, and where 

possible, for uncertainty quantification and modelling.  

To facilitate adoption of the Guidelines, the code and commands required for the implementation of the 

described statistical models are provided for the open source software R (2008). Appendices B to G also 

provide example applications of the guidelines, where each step of the guideline is illustrated for empirical 

datasets deriving from the 1980 Irpinia, Italy, earthquake, the 1978 Thessaloniki, Greece, Earthquake, the 

1989 Newcastle and 2010 Kalgoorlie, Australia, earthquakes and for two earthquakes that affected the town 

of Christchurch New Zealand in 2010 and 2011. The fragility and vulnerability curves developed from these 

applications are all presented using a reporting template (presented in Appendix A) designed to facilitate the 

evaluation and inclusion of empirical fragility curves derived using these Guidelines into the Global 

Earthquake Model (GEM).  

Keywords

Empirical vulnerability; empirical fragility; post-earthquake survey; uncertainty; model fitting. 
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Casualty Ratio: The number of people ina geopgraphical unit who suffered a certain casualty level of 

above over the total exposed population in this unit.  

Confidence Intervals: Intervals expressing the confidence in the systematic component of a statistical 

model. 

Damage Factor: The cost of repairing one building over the cost of replacing this building. For a group 

of buildings, the mean cost of repair over the mean replacement cost.  

Data Point: A point expressing levels of the response variable and one or more explanatory 

variables.  

Damage Ratio: The number of buildings located in a geographical unit which sustained damage 

greater or equal to a given damage state over the total number of buildings in this 

unit.  

Empirical Fragility 

Assessment: 

The construction of a fragility function from the statistical analysis of field 

observations.  

Fragility Function: A relationship expressing damage as a function of an intensity measure type. 

Geographical unit: The smallest survey geographical area from which a sample size is obtained.  

Intensity Measure: A measure of the ground motion intensity at the site where the examined assets are 

located.  

Intensity Measure 

Level: 

A value of a given type of the intensity measure, e.g., peak ground acceleration=0.5g. 

Intensity Measure 

Type: 

Type of the ground motion intensity measures, e.g., peak ground acceleration, 

spectral displacement. 

Loss: Consequences of seismic damage.  

Loss Measure: Measures of loss expressed in terms of cost of direct damage, casualty and 

downtime. 

Prediction Interval: Intervals used to predict the response variable for future values of the explanatory 

variables.   

Explanatory variable: The ‘input’ to a statistical model, which is used to predict the level of the response 

variable. Here, explanatory variable is the intensity measure type.  

Statistical Modelling 

Techniques: 

Techniques which fit a parametric or non-parametric statistical model to the 

available data points. 

Statistical Model: A parametric or non-parametric model which allows for the prediction of damage or 

loss given an intensity measure type. 

Response Variable: The ‘output’ of the regression model.  

Structural Unit: A measure of the surveyed elements, i.e., buildings, dwellings or rooms. 



 xiii 

Empirical 

Vulnerability 

Assessment: 

The construction of vulnerability functions by fitting statistical models to field 

observations. 

Vulnerability 

Function : 

A relationship expressing seismic loss (i.e., economic loss of direct damage to 

buildings, casualties or downtime) as a function of an intensity measure type. 
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1 Introduction  

1.1 Scope of the Guidelines 

This document aims to provide a simple but flexible guide for the construction of vulnerability curves from 

post-earthquake damage and loss survey data. The guidelines attempt to provide a rational and statistically 

rigorous approach for the construction of empirical fragility and vulnerability curves that explicitly quantifies 

the uncertainty in the data, and where possible reduce the epistemic uncertainty.  

The Guidelines build on existing literature on empirical fragility and vulnerability functions, and consider how 

best to develop empirical functions from post-earthquake survey data of diverse type and quality (see 

Rossetto et al. (2013), for a description of common approaches to constructing fragility and vulnerability 

functions and a detailed discussion of empirical data quality issues). The guidelines have been developed so 

as to be used in constructing fragility and vulnerability functions from post-earthquake survey data recorded 

in the GEM Earthquake Consequence Database (GEMECD)1. However, databases which suffer from severe 

sampling bias or cover a very narrow band of ground motion intensity levels may not result in meaningful 

empirical fragility or vulnerability functions. 

Guidance is provided for the construction of empirical vulnerability functions for a defined buildings class, 

i.e., a discrete or continuous relationship between an intensity measure type and a loss measure, from field 

data. In the context of this document, the seismic loss measures considered are expressed in terms of direct 

cost of damage, fatalities and downtime. In addition, ground shaking is considered the only source of seismic 

damage to the building inventory. A ‘direct’ and an ‘indirect’ approach are proposed for the construction of 

vulnerability functions depending on the nature of the available data. If loss data are available, a ‘direct’ 

approach should be used in order to relate the loss measure to an intensity measure type through the use of 

statistical model fitting techniques. By contrast, if damage data are available, an ‘indirect’ approach is 

necessary, which constructs vulnerability curves in two steps. First, suitable statistical model fitting 

techniques are adopted to construct fragility curves. Next, the fragility curves are transformed into 

vulnerability curves through the use of appropriate damage-to-loss functions (e.g., fatality rates or damage 

factors conditioned on damage state).  

These Guidelines present a framework for the construction of empirical vulnerability and fragility functions 

that allows for a number of curve-fitting methods and ground motion intensity measure types (IMTs) to be 

adopted. The philosophy behind the design of the framework is that the characteristics of the data should 

determine the most appropriate statistical model and intensity measure type used to represent them. Hence, 

several combinations of these must be trialled in the determination of an optimum fragility or vulnerability 

curve, where the optimum curve is defined by the statistical model that provides the best fit to the data as 

determined by a number of goodness-of-fit tests. The Guidelines are essentially a roadmap for the process, 

providing recommendations and help in deciding which statistical model to attempt, and promote trialling of 

models and IMTs. It is noted that both direct and indirect empirical vulnerability procedures need to address 

                                                             

1 http://www.globalquakemodel.org/what/physical-integrated-risk/consequences-database/ 

http://www.globalquakemodel.org/what/physical-integrated-risk/consequences-database/
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a number of uncertainties, as summarized in Figure 1.1. The present document provides guidance on the 

identification of sources of uncertainty, and where possible, their quantification and modelling.  

The guidelines are targeted at analysts with Master’s level training in a numerate subject that includes some 

level of statistics. The Authors recognise that the statistical analysis understanding of analysts varies. To 

accommodate for these differences, two levels of statistical approaches for constructing empirical fragility 

functions that include procedures of increasing complexity, are proposed: 

 Level 1 approaches are appropriate for use by any analyst with a basic understanding of statistical 

modelling. 

 Level 2 approaches can be applied by analysts who are confident in using advanced parametric 

statistical models (e.g. Bayesian regression analysis) as well as fitting non-parametric models to 

data.  

To facilitate use of the Guidelines, the code and commands required for the implementation of the described 

statistical models are provided for the open-source software ‘R’ (2008). Furthermore, example applications 

of the Guidelines to different post-earthquake survey datasets are provided in Appendices B to G. 

1.2 Relationship to other GEM Guidelines and Work 

In the present state-of-the-art, seismic fragility and vulnerability functions can be derived through three 

different approaches: empirical, analytical and via expert opinion (Porter et al., 2012). The purpose of the 

GEM Global Vulnerability Estimation Methods (GEMGVM)2 working group is to develop guidelines for the 

construction of each of these three types of vulnerability function. In term of relationship, the four guidelines 

produced by the working group (i.e., the present report; D’Ayala et al., 2014; Porter et al., 2014; and Jaiswal 

et al., 2014) are complementary. As the construction of empirical vulnerability functions requires the fitting 

of statistical models to loss and excitation observations, the white papers produced during the GEMGVM 

project by Noh and Kiremidjian regarding the use of Bayesian analysis (Noh et al., 2011) 3 and the fitting of 

nonparametric models (Noh, 2011b4; Noh et al., 2011; Noh et al., 2013) have been incorporated into this 

report. 

The strategy foreseen by the GEMGVM consortium is that when consistent empirical vulnerability functions 

are lacking, the gaps are filled first using the results from analytical methods, and then by using expert 

opinion. This assumes that empirical vulnerability functions are the most credible type (Porter et al., 2012) 

and post-earthquake data can be found in the Global Earthquake Consequences Databases (So and Pomonis, 

2012)5. However, the reliability of empirical fragility or vulnerability functions is questionable if few data of 

poor quality are available. For these cases, a system for evaluating the reliability of existing empirical fragility 

and vulnerability functions is provided in Rossetto et al. (2013). A possible procedure for combining existing 

fragility and vulnerability functions is also provided in Rossetto et al. (2014). 

For what concerns the nomenclature of building typology and sub-typology and building attributes, reference 

is made to the classification recommended by GEM Building Taxonomy v2 (Brzev et al. 2013)6. For what 

                                                             

2 http://www.globalquakemodel.org/what/physical-integrated-risk/physical-vulnerability/ 
3http://www.nexus.globalquakemodel.org/gem-vulnerability/files/uncertainty/fragility-function-updating-using-
bayesian-framewo.pdf 
4http://www.nexus.globalquakemodel.org/gem-vulnerability/files/uncertainty/fragilityusingkernelsmoothing-
haeyoungnoh.pdf 
5 http://www.globalquakemodel.org/what/physical-integrated-risk/consequences-database/ 
6 http://www.globalquakemodel.org/what/physical-integrated-risk/building-taxonomy/ 

http://www.globalquakemodel.org/what/physical-integrated-risk/physical-vulnerability/
http://www.globalquakemodel.org/what/physical-integrated-risk/consequences-database/
http://www.globalquakemodel.org/what/physical-integrated-risk/building-taxonomy/
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concerns the hazard and the seismic demand reference is made to the output of the Global Ground Motion 

Prediction Equation component (e.g., Stewart et al. 2013a,b)7, while for data on typology distributions, 

exposure and inventory we will refer to the Global Exposure Database (Gamba et al. 2012)8 and the GEM 

source for damage and loss data from past events is, as mentioned previously, GEMECD1. 

                                                             

7 http://www.globalquakemodel.org/what/seismic-hazard/gmpes/ 
8 http://www.globalquakemodel.org/what/physical-integrated-risk/exposure-database/ 

http://www.globalquakemodel.org/what/seismic-hazard/gmpes/
http://www.globalquakemodel.org/what/physical-integrated-risk/exposure-database/
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Figure 1.1 Examples of sources of uncertainty associated with indirect empirical vulnerability assessment. 
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2 Proposed Framework for Vulnerability Assessment and Structure of the 

Guidelines 

The proposed framework for the direct and indirect construction of empirical vulnerability functions consists 

of seven and eight main steps, respectively, as illustrated in Figure 2.1. The structure of this report (the 

Guidelines) essentially follows the main steps of the framework, and the relevant sections of the report are 

also referred to in Figure 2.1.  

In Step 1, the quality and quantity of the available loss or damage data are assessed. If these are found to be 

acceptable then the data are prepared for use in the model-fitting procedure. In §3, minimum levels of 

information and number of buildings required for the development of reliable vulnerability and fragility 

functions are proposed. Guidance is also provided in identifying, quantifying and reducing the bias in a 

database, as well as how to combine multiple databases.     

In Step 2, a set of intensity measure types for use in vulnerability function derivation is proposed. In §4 

guidance is also given on procedures for evaluating their values for the locations of the available loss or 

damage data, and how to identify sources of uncertainty in the IM evaluation.  

Vulnerability or fragility functions are stochastic relationships which express the loss or damage as a function 

of ground motion characteristics and buildings characteristics. These functions are constructed by fitting a 

parametric or non-parametric statistical model to the post-earthquake data.  Three models are proposed 

here namely, the Generalized Linear Model (GLM), the Generalized Additive Model (GAM) and the Gaussian 

Kernel Smoothers (GKS). In Step 3, statistical models suitable for use in constructing the vulnerability or 

fragility functions are selected. In §5, guidance is provided for identifying the  statistical models which best 

fits the data as well as estimating the level of confidence around the obtained vulnerability and fragility 

functions.   

In Step 4, the statistical models selected in Step 3 are fitted to the post-earthquake data. §§6-8 describe 3 

model fitting procedures of increasing complexity, which can be used to construct the vulnerability or 

fragility functions and their confidence intervals. Procedures for assessing the goodness-of-fit of the selected 

models to the data are also provided. Blue boxes translate procedures discussed in the text into the open-

source statistical programing language and software environment called ‘R’  (R Development Team, 2008) to 

assist the analyst in performing the model fitting and goodness-of-fit assessments.  

It is emphasised that the guidance provided is intentionally not prescriptive, and a set of statistical model 

fitting methods are outlined for the vulnerability or fragility assessment in Step 4. The reason is that the 

‘nature’ of the available loss or damage and ground motion intensity data, (i.e., any issue regarding the 

quality and quantity of these data, see Rossetto et al., 2013), will influence the selection of statistical model, 

intensity measure type and fitting method adopted.  
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Figure 2.1 Illustration of the framework for direct and indirect empirical vulnerability assessment. Reference is made 
in the flowchart to relevant sections of the guidelines document (VC: vulnerability functions, FC: fragility functions).  
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The authors also recognise that the level of understanding of the analyst around the statistical model fitting 

techniques varies. For this reason, within each step of the framework, proposed procedures are grouped into 

two levels of difficulty: 

 Level 1 approaches require a basic understanding of parametric statistical model fitting techniques. 

The analyst can simply copy the ‘R’ code provided and produce fragility or vulnerability curves 

following the supplied examples.  

 Level 2 approaches require that the analyst is confident in the use of advanced parametric statistical 

model-fitting techniques and has a good understanding of non-parametric statistical models. For 

Level 2 approaches, general guidance is provided and it is left to the analyst to advance the 

complexity of the models and to identify the vulnerability or fragility function that best fits their 

data, based on the proposed goodness-of-fit tests and their experience. 

Even in the case of experienced analysts, it is recommended that Level 1 approaches are attempted first, and 

more complex procedures adopted only when the simpler Level 1 approaches do not yield a satisfactory fit of 

the empirical data to the statistical model. 

Step 5 is necessary only if damage data are available and an ‘indirect’ approach is used for vulnerability 

assessment. In this step the empirical fragility curves, obtained from Step 4, are transformed into 

vulnerability curves following the procedures presented in §9. 

The framework envisages that Step 4 be repeated for several IMs, and that the choice of final vulnerability 

function be based on a consideration of which IM results in the empirical fragility or vulnerability function 

associated with the lowest uncertainty. Hence, in Step 6, the optimum empirical vulnerability or fragility 

function is identified. A procedure for this step is provided in §10. 

In Step 7, the optimum empirical vulnerability function is assessed on whether it is fit for purpose. §11 

outlines procedures for assessing the performance of the optimum empirical vulnerability relationship 

against a new database of empirical data, or subset of the empirical database that was not used for the 

construction of the fragility or vulnerability function.  

Finally, in Step 8 it is recommended that a report is prepared, which summarises the results of the 

vulnerability assessment, the adopted procedures in each step and any unresolved issues. Appropriate 

reporting must accompany any vulnerability or fragility function that is to be included in the GEM Global 

Vulnerability Database. A template for this type of report is provided in Appendix A, and applications of it 

shown in Appendices B to G.  

Six applications of the proposed guidelines are found in Appendices B–G. In particular, the damage data 

collected in the aftermath of the 1980 Irpinia (Italy) earthquake are adopted in order to illustrate the use of 

GLMs, GAMs and GKSs in Appendices B, F and G, respectively. The damage data from four successive strong 

events that affected Christchurch (New Zealand) in 2010 are used in order to illustrate the GLMs and how to 

construct fragility curves for successive strong events in Appendix C. Appendix D constructs vulnerability 

functions by fitting GLMs to the loss data from the 1989 Newcastle and the 2010 Kalgoorie earthquakes in 

Australia. Finally, Appendix E uses Bayesian analysis in order to fit a GLM model to the 1978 Thessaloniki 

damage data. 
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3 Step 1: Assessment and Preparation of Loss or Damage Data 

3.1 Introduction 

The quality of vulnerability and fragility curves strongly depends on the quality and quantity of observations 

in the adopted empirical database. The survey method, the sample size (i.e., the number of buildings 

surveyed as a proportion of the total population of buildings located in the affected area), and level of detail 

of the collected information affect the reliability of the data. These factors also affect the level of detail in the 

analyst’s determination of damage scales and building classes for the construction of the 

vulnerability/fragility curves. A detailed discussion of the main sources of observational damage and loss 

data, and their associated characteristics can be found in Rossetto et al. (2013), and are summarised in Table 

3.1.  

Table 3.1 Database typologies and their main characteristics. 

Type Survey Method 

Typical 

Sample 

Sizes 

Typical Building 

Classes 

Typical No.  

of  

Damage 

States 

Reliability  

of 

observations 

Typical issues 

D
am

ag
e

 

Rapid Surveys Large All buildings 2-3 Low Safety not damage 

evaluations. 

Misclassification 

errors. 

Detailed “Engineering” 

Surveys 

Large to 

Small 

Detailed Classes 4-6 High Unrepresentative 

samples. 

Surveys by 

Reconnaissance Teams 

Very 

Small 

Detailed classes 4-6 High Unrepresentative 

samples. 

Remotely sensed Very 

Large 

All buildings in 

an area 

2-3 Low Only collapse or very 

heavy damage states 

may be reliable. 

Misclassification 

errors. 

Ec
o

n
o

m
ic

  

Lo
ss

 

Tax assessor data Very large All buildings/ 

Detailed classes 

- High May include data on 

damaged buildings 

only. 

Claims data 

 

Very large All buildings - High Concentrate on 

damaged and/or 

insured buildings 

only. 
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C
as

u
al

ti
e

s 
Government Surveys 

 

 

Surveys by NGOs/ 

hospitals 

 

Detailed Casualty 

Surveys 

Very large 

 

 

Varies 

 

 

Very 

Small 

All buildings 

 

 

All buildings 

 

 

Detailed classes 

1-2 

 

 

1-5 

 

 

3-5 

Low 

 

 

Low 

 

 

High 

Unlikely association 

of building damage 

and causes of injury 

Possibility of 

unrepresentative 

samples. 

Possibility of 

unrepresentative 

samples. 

 

 

 
In this section, guidance on determining the minimum level of information and sample sizes necessary for 

the construction of reliable vulnerability or fragility curves is provided. In addition, procedures for dealing 

with biases in the databases (refer also to Rossetto et al., 2013 for discussion of data biases) or small sample 

sizes are also presented.  

Guidance is then provided on how to transform data from post-earthquake surveys into a set of data points 

for the regression analysis of direct vulnerability and fragility curves (see Figure 3.1).  

For the construction of fragility curves, a data point represents an intensity measure level and the 

corresponding damage ratio, i.e. the fraction of buildings of a given class that suffered damage reaching or 

exceeding a damage state, divided by the total number of buildings in the examined building class located in 

an area affected by a specified intensity measure level. Similarly, a data point used in the construction of 

direct economic loss curves is expressed in terms of an intensity measure level and a corresponding damage 

factor, i.e., the repair cost divided by the replacement cost of a single building (or group of buildings within 

the building class of interest) exposed to the specified intensity measure level. Finally, a data point for the 

construction of direct casualty curves is expressed as an intensity measure level and a corresponding casualty 

ratio, i.e., the fraction representing the number of people who died (or who were injured and died) divided 

by the total exposed population in an area affected by the specified intensity measure level.  

 

Figure 3.1 Fictitious data points for the direct construction of (a) fragility curves and (b) vulnerability curves for 

economic loss measured in terms of a damage factor and (c) vulnerability curves for human loss expressed in terms of 

a casualty ratio. 

 

a) b) c) 
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3.2 Preliminary Quality Assessment of a Single Database 

Before beginning the process of data treatment for the construction of a fragility or vulnerability curve, the 

basic quality of a damage or loss database should be examined to ensure that the constructed curves are 

meaningful and fit for purpose. The quality of the database depends on the design and execution of the 

survey used to collect the data as well as the level of information collected for the buildings and the site 

where they are located. This section provides guidance on the basic characteristics of a high, medium and 

low quality database for use in the construction of fragility and vulnerability curves. It also provides guidance 

for identifying databases of an unacceptably low quality that are unlikely to yield reliable fragility or 

vulnerability functions. Figure 3.2 depicts the categories of information required to assess the quality of an 

empirical database.  

A high quality database should derive from a reliable and detailed survey. A large sample (>100 buildings) of 

buildings in each building class is collected over a wide range of intensities measure levels, thus allowing the 

construction of a fragility or vulnerability curve. The sample should be representative of the total population 

of affected buildings, e.g., the sample should not contain data only on damaged buildings. In addition, the 

location (e.g., longitude-latitude) of each building and soil on which it is founded need to be well-defined. 

Ideally, the buildings should be located in the close vicinity of ground motion recording stations to allow a 

good estimation of the seismic excitation they were subjected to. Building classes should be described 

according to the construction material, the structural system, the height and the occupancy of the building, 

which are considered the minimum set of attributes for the definition of high quality. A detailed description 

of damage or loss should also be available, e.g., four or more damage states are used to describe the 

damage.  

Medium quality databases are based on less detailed or reliable surveys. These databases contain a sufficient 

sample (>30 buildings) of buildings in each building class, collected over a wide range of intensities measure 

levels. However, the building classes may not be described in as much detail as for the high quality 

databases, e.g., the height of the buildings is not provided or the structural system is not clear. Similarly, the 

description of damage or loss may be less detailed, e.g., the three safety tagging system is used, which can 

ascribe a wide range of damage levels to each safety tag. In some cases, the exact location of the buildings 

may not be clear, e.g., aggregated information of damage or loss is provided at the level of a municipality. 

These databases can be used for vulnerability assessment but the resulting empirical functions might not be 

able to accurately capture the uncertainty due to the aggregated nature of the observational data. 

Moreover, medium quality databases can be characterised by the absence of ground motion stations from 

some or all the locations of interest. In this case, the measurement errors in the intensity measure levels 

should be modelled.  
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Figure 3.2 Minimum level of information for an empirical database.  

 

A low quality observational damage or loss database is one that, in addition to the attributes of a medium 

quality database, is also associated with errors in the design or the execution of the surveys, e.g., only 

damaged buildings are surveyed or there is a known misclassification of building damage. In this case, the 

databases can be used for the construction of empirical vulnerability assessment only if these errors are 

reduced through the use of independent databases, as described in §3.3.  

Finally, a database is of unacceptably low quality and should not be used for the construction of vulnerability 

or fragility functions if: 

 The sample size of a buildings class is smaller than 30 buildings.   

 The data are concentrated in single level of macroseismic intensity or a very narrow range of 

intensity measure levels and no additional databases are available that could expand the range of 

intensity measure levels.  

 The database is heavily biased and no independent databases are available for reducing this bias 

If the analyst is able to characterise their observational damage or loss database as high to low quality, the 

next step is to address any biases in the data and prepare the data for use in the statistical modelling.  

3.3 Preparation of Loss or Damage Data from a Single Survey Database 

Within the following sub-sections guidance is provided for the preparation of empirical damage or loss data 

for use in the construction of fragility or vulnerability functions, respectively. Here it is assumed that the 

empirical data being used derive from a single earthquake event and an in-field survey procedure. In 

particular, advice for the identification of potential sources of bias and uncertainty in the database is 

provided. It is emphasised that in cases where multiple surveys are adopted, each database should be 

checked for these sources of uncertainty. 

Type of 

information 

Survey 

Buildings 

Survey type 

Survey method 

Non-response rate 

Geographical location  

Structural characteristics – (material type at minimum) 

Damage/loss measures and scale 

Site 

Characteristics of event 

Intensity measure level 
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3.3.1 Type of Data 

Irrespective of the data source, the empirical damage or loss data are typically presented at two levels of 

detail: 

 Building-by-Building data: when loss or damage data are recorded at an individual building basis. These 

data typically provide detailed information regarding the location of the affected buildings as well as the 

level of loss or damage they have sustained. Such data are more likely to be obtained from detailed 

surveys, specialist reconnaissance, or from the interpretation of aerial or satellite imagery. 

With regard to the construction of fragility curves, the data point based on this type of data can take two 

values: 

1 the building sustained damage 
data point

0 the building sustained damage 

i

i

DS ds

DS ds

 
 



 (3.1) 

With regard to the construction of vulnerability curves for economic loss, the data point can be 

expressed in terms of the damage factor for each building: 

repair cost for a given building
data point

replacement cost for a given building
  (3.2) 

 

 Grouped Data: when empirical distributions (e.g., histograms) of the loss or damage observations for a 

building class over defined areas or IM values are reported. These data contain less information and are 

typical of past earthquake surveys for which detailed data were not collected, where loss data have 

been aggregated to maintain anonymity or in cases where the original survey forms are unavailable. The 

construction of useful models may be difficult for highly aggregated databases due to the difficulty in 

exploring alternative (perhaps more complex) models indicated by the diagnostic procedures. 

With regard to the construction of fragility curves, the data point for a given geographical unit based on 

this type of data is expressed in the form: 

No of building in a given unit sustained damage 
data point

Total No of buildings in a given unit

iDS ds
  (3.3) 

With regard to the construction of vulnerability curves for economic loss, the data point for a given 

isoseismic unit can be expressed in terms of the damage factor for each building: 

repair cost for all building in a given unit 
data point

replacement cost for these building
  (3.4) 

 

 

A single survey database could contain both types of data. In this case it is recommended that the database 

be brought to a common form, i.e., that the building-by-building data be aggregated in a similar way to the 

grouped data present in the database. 

3.3.2 Identification and treatment of uncertainty  

The level of uncertainty associated with a single database depends on sampling as well as non-sampling 

errors, as presented in Figure 3.3 (UN, 1964). Sampling errors occur because only a subset of the population 

of buildings located in the affected area has been surveyed. Non-sampling errors represent the remaining 

sources of error occurring in the survey design, as well as errors in the collection and processing of the data.  
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Figure 3.3 Errors in a single database. 

 

Four main sources of non-sampling error have been identified (United Nations, 1982), namely: coverage, 

response, measurement and processing errors (see Figure 3.3). A brief description of these four types of 

errors is presented in Sections 3.2.2.1 to 3.2.2.5, where guidance is provided on how to reduce or eliminate 

them from the database. The proposed procedures depend on whether the identified large errors are 

random or systematic. The influence of the nature of these two types of errors on a variable X is illustrated in 

Figure 3.4. Figure 3.4a shows that random errors do not affect the ‘true’ mean of X but do affect the level of 

its uncertainty, with large random errors leading to increased spread in the density distribution of X. Random 

errors can be reduced mainly through the use of larger sample sizes. By contrast, Figure 3.4b shows that high 

systematic errors lead to estimates of mean that differ widely from the ‘true’ mean. The elimination of 

systematic errors requires procedures based on the analyst’s understanding of the mechanism that 

generated the errors and through comparisons with independent databases.  

 

 

Figure 3.4 Impact of (a) random error and (b) systematic error on variable X. 

 

In the following sections, common sources of errors found in seismic loss or damage databases are identified 

and the nature of the errors taken into account to suggest approaches for their reduction or elimination. 

Adjusting for non-sampling errors is a largely unexplored subject in empirical vulnerability assessment 

literature and limited guidance is provided below. The analyst may refer to the broader literature for more 

information, e.g., Lessler and Kalsbeek (1992).    

Uncertainty 

Sampling Errors 

Non-Sampling 

Coverage Errors 

Response Errors 

Measurement 

errors 
Processing errors 

(a) (b) 
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3.3.2.1 Sampling error 

Sampling error is introduced when the database contains only a subset of the total number of buildings 

located in the affected area. The sampling error is acceptable if the subset is shown to be representative of 

the target population of buildings. The required number of buildings required for the sample to be 

representative can be calculated from standardised procedures, which vary according to the sampling 

approach (see Levy and Lemeshow, 2008).  

However, most post-earthquake surveys are not designed to collect a statistically representative sample of 

buildings in the affected area. Samples are often small and may lead to unacceptably wide confidence 

intervals around the mean vulnerability and fragility curves. In this case, the analyst should ideally increase 

the sample size with a new field survey designed using a well thought out sampling technique to ensure 

representativeness. Alternatively, sampling error can be, to some extent, reduced by combining the small 

database with one or more other surveys from the same event or from different events for similar tectonic 

environments, which affected similar building inventories (see Section 3.5).   

3.3.2.2 Coverage error 

Coverage errors is a systematic error which occurs in cases where the database of damage or loss 

observations is not representative of the target population of the considered asset, e.g., total number of 

buildings in the affected area. In other words, the database is biased and larger sample sizes cannot reduce 

this error. Typical coverage errors include missing data and duplicate data:  

 Missing data introduce a “no-coverage” or ”under-coverage” error. In general, the analyst should 

quantify this error by comparing the survey observations with data from independent sources. If the 

difference between the survey and independent database is found to be unacceptably high, e.g., 

>10%, then this error should be eliminated from the database. Typical examples of missing data 

found in the empirical vulnerability literature are presented in Table 3.2 together with suggested 

approaches to treating or eliminating these errors.  

 Duplicate data introduce an “over-coverage” error. This error is found when data gathered from 

different sources overlaps (e.g. Eleftheriadou and Karampinis, 2008) or when field surveys are 

carried out with overlap occurring between the areas covered by different survey teams. If the 

analyst has access to the survey forms, then they should try to remove the duplicate entries from 

the database. If access to the survey forms is not possible, but there are strong indications of over-

coverage, then the analyst should not use the total number of units in the database but they should 

randomly select a large sample, e.g. 50%, of available buildings, which can reduce impact of the 

over-coverage error. 

 

Table 3.2 Identification and elimination of coverage errors found in the literature. 

Error Example Treatment 

Under-

coverage 

Damage data are collected by surveying 

the buildings only upon the building 

owner’s request.   

 

If it is safe to assume that almost all the damaged 

buildings have been surveyed in the affected area, then 

the total number of buildings can be estimated using a 

building counts from a census (compiled as close to the 

event as possible). 

The data regarding losses below the 

deductibles are absent from a database 

of insured loss data.  

 

The analyst can use the existing database to construct 

direct vulnerability curves for loss values greater than 

the deductible. If, however, the zero losses or the losses 

below the deductibles are required, additional 
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information should be obtained from other sources that 

may assist the analyst to adjust for this bias.      

  

3.3.2.3 Response error 

Response error occurs when for parts of the survey all desired attributes of a building, damage level or loss 

that are required for a fragility or vulnerability assessment are not collected. This can happen when the 

survey is conducted rapidly, by an inexperienced team, when there is poor supervision or when there are 

problems with survey questionnaire used e.g., it is too lengthy and/or unclear. How can response errors be 

identified? The analyst is expected to be able to contact the authority/organisation that collected the data 

and investigate in detail the survey method and identify the whether there is notable response error as well 

as its nature. Response errors can either be random or systematic in nature, and this needs to be identified 

through examination of the survey forms and any observable patterns. For example, systematic errors may 

occur when a particular survey team consistently omits to fill in that the surveyed buildings are undamaged 

in the survey form. In both random and systematic response error cases, the ratio of incomplete to complete 

survey forms (termed rate of non-response) should be estimated. The type of non-response should also be 

identified. Typically this is of two types: (1) total non-response errors, where survey forms for buildings are 

missing or inappropriately geo-referenced, such that the location of the building cannot be identified (2) 

partial non-response errors, where only certain fields of the survey forms for buildings are incomplete. 

In the case of total non-response errors, depending on the rate of non-response, the database may still be 

used. For example, if damage data is grouped at the level of a municipality (with data available for multiple 

municipalities), and the total non-response rate in any one municipality is ≤5%, the analyst may assume that 

the database for this municipality is complete. If the non-response rate is >5% then the analyst needs to 

understand the characteristics of the non-surveyed buildings, either by the gathering more information on 

the survey or from independent surveys of the same area, to assess whether the error is random or 

systematic. If the error is random, higher non-response rates can be adopted but the analyst needs to 

perform sensitivity checks (e.g., see Rota et al 2008), to establish the level of error introduced by the 

assumed rate of completeness. If the error is systematic, the analyst should explore whether the data can be 

completed with additional census data (e.g. if the non-response errors pertain to undamaged buildings only), 

or whether smaller geographical units with lower non-response rates could be used. 

Partial non-response error occurs when only some of the fields of the survey form are missing. If the missing 

data are ≥5% of the total collected information (e.g. Graham, 2009), then the analyst should try to identify 

whether this error is systematic or random.  

The data can be missing completely at random, e.g., if one or more teams omitted accidentally some 

information from the survey form. In this case, the analyst can remove the buildings with missing data 

altogether. This will reduce the sample size but the database is unbiased.  

The data can be missing at random. For example, the structural system of RC buildings is more likely to be 

missing for severe damage states due to the inability of the teams to access severely damaged buildings. In 

this case, the missing data can be completed by the observed data using a procedure termed multiple 

regression imputation. According to this procedure, the missing data of a given variable are completed by 

fitting a parametric statistical model using as response variable the variable whose missing values are 

estimated, and as explanatory variables all the other variables in the database. The procedure is performed 

for all variables. The user is referred to Schafer (1999) and Little and Rubin, (2002) for more information 

regarding this procedure, which has not been applied to the field yet. In most cases, it is not straightforward 
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to identify whether the mechanism is missing completely at random or at random. In these cases, the analyst 

is advised to follow both procedures and compare the two models.  

Finally, the data are not missing at random e.g., if one or more teams systematically fails to enter the slight 

damage in the survey forms. In this case, more information regarding the reason why they are missing is 

required in order to reduce this error.    

3.3.2.4 Measurement error  

Measurement error describes the deviance of the observed value of a variable from its ‘true’, but 

unobserved value. In the case of post-earthquake survey data such errors usually arise due to 

misclassification, i.e. a building is attributed to a damage state when it is really in another. This error 

commonly occurs due to the data collection method (e.g., remote sensing procedures are prone to large 

misclassification errors), the procedure followed in the field (e.g., rapid external assessments of building 

damage can result in misclassification errors due to ignorance of internal damage extent), the use of 

inexperienced engineers for the field surveys. The quantification of measurement errors is difficult and 

requires comparison with additional highly detailed survey data for the same area or for a representative 

subset of the area.  

It is important to note that misclassification error does not only concern the damage or loss evaluation but 

also the hazard. In the latter case, bias is introduced by considering that the damage/loss results from the 

main shock, rather than also as a result of large aftershocks. In cases where secondary hazards (e.g., fire) 

have contributed to the recorded damage or loss this source of error should be quantified from independent 

surveys and the data should be appropriately adjusted or corrected.  

In §6, a procedure for including misclassification error in the response variable in the model fitting procedure 

is proposed. 

3.3.2.5 Processing errors 

A damage/loss database is compiled from a number of survey forms. Processing the data may result in errors 

due to typing mistakes, misunderstanding of the nomenclature, etc. If the analyst has access to the original 

survey forms they should check whether the data are accurate. In general, processing errors of peer 

reviewed databases are considered negligible.  

3.3.3 Construction of building classes 

A vulnerability and fragility curve should be based on observations from buildings with very similar seismic 

performance (i.e. for a building class), which ideally minimises the uncertainty due to the seismic response 

(see Figure 1.1). This can be achieved by defining highly detailed buildings classes, constructed following the 

definitions of GEM Building Taxonomy v2 (Brzev et al. 2013). In practice, however, the level of detail for 

which the building classes can be defined depends on: 

 The level of detail recorded in the post-earthquake building survey forms. Typically, detailed 

‘engineering’ and reconnaissance surveys include detailed descriptions of the buildings structural 

characteristics. By contrast, remote sensed studies, rapid surveys and claims data include broad 

descriptions of the buildings. 

 The total number of buildings belonging to each class. The total number of buildings in the database 

is affected by the type of survey (see Table 3.1). However, it is highlighted that even in the case of 

surveys that include large samples, the sample sizes of particular building classes that are not 

common in the affected area can be small.  
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 The distribution of data points resulting from a building classification across a range of IM values. If 

the data points resulting from a particular building classification are highly clustered, a wider range 

of IMs may be obtained from a coarser definition of the building class or through the combination of 

multiple surveys for similar building types (see §3.5 for the latter).  

A reliable fragility or direct vulnerability curve depends on a minimum number of buildings and data points 

(see §3.4). Hence, the building classes are determined as a compromise between level of detail in the 

building class definition and the number of observations required to construct a vulnerability and fragility 

function with acceptable levels of confidence.  

3.3.4 Determination of damage/loss scales/measures 

When using existing damage/loss databases, the analyst is advised to use the same definitions for 

damage/human loss scales and economic loss measures as the data source in order to avoid the unnecessary 

introduction of uncertainty.  However, if these definitions are not appropriate for the overall risk assessment, 

then the uncertainty introduced from conversion between parameters/scales should be considered and 

quantified if possible. If the error cannot be quantified, it should at least be acknowledged. Conversion 

between damage scales is covered in Rossetto et al., (2014).  

If the analyst aims to collect new post-earthquake damage/loss data or if they need damage-to-loss 

relationships for the indirect assessment of vulnerability, then the guidance provided in Rossetto et al., 

(2014) should be followed in selecting the most appropriate damage/human loss scales and economic loss 

measures. 

3.4 Minimum Number of Data 

A database including high quality data, as defined in §3.2, can result in reliable mean vulnerability and 

fragility curves, (i.e., having very narrow confidence intervals), only if it contains a large number of 

observations, which result in data points that are distributed across a wide range of ground motion intensity 

values. In general, the minimum number of data points required to construct a vulnerability or fragility 

function depends on the level of uncertainty the analyst is willing to accept, with a smaller number of points 

resulting in larger uncertainties. However, a determination of the level of confidence around the mean 

vulnerability or fragility curves that is achievable by using different sample sizes for the construction of direct 

vulnerability and fragility curves requires a sensitivity analysis to be carried out and the presence of a very 

large number of available observations. This can be problematic if the analyst wants to decide whether a 

sample size is adequate before fitting their statistical models.  

Rules of thumb for establishing minimum number of sample sizes necessary for the prediction of the trend in 

linear models have been proposed in the literature. For example, researchers (Miller and Kunce, 1973; 

Harrell et al, 1985; Bartlett et al, 2001, Babyak 2004) commonly advocate the used of 10 data points for a 

single explanatory variable. Other researchers increase the number of data points to 51 (e.g., Harris, 1975). 

In other cases 100 data points are suggested (see Green, 1991), whilst 200 data points are proposed by both 

Guadagnoli and Wayne (1988)  and  Nunnally and Bernstein (1994).  

The user is advised to ensure a sample size of at least 100 observations spanning a wide range of IM values 

for the construction of vulnerability curves from data reported at the building-by-building level. In the case of 

fragility curves, a minimum of 100 buildings should be used and at least 30 of them should have reached or 
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exceeded a given damage state (see also Noh etal., 2012)9, again with the data points spanning a wide range 

of IM values. 

In the case of grouped loss or damage data (typical of medium or low quality databases, see §3.2), a database 

comprising at least 200 building surveys (individual building observations) and resulting in at least 10 data 

points (each data point being grouped data based on a similar number of building observations), can be 

considered acceptable for the construction of vulnerability function or damage-state specific fragility 

functions. Data points obtained from observations (of loss or damage) made on less than 30 buildings can be 

used for the construction of vulnerability and fragility curves but the analyst should expect very large 

confidence intervals around the mean vulnerability or fragility, which will question their usefulness for the 

prediction of damage or loss for future events.  

It is advisable to assess the feasibility of constructing vulnerability or fragility functions from databases early 

on in the process, in order to ensure the desired outcome is achievable within acceptable limits. It is 

recommended that not only the quantity of data points available for each damage/loss limit state be 

assessed, but also the spread of these data points across the IM range desired. For example, if the data are 

clustered in the low damage/loss state area and low IM value range (typical of empirical data collected from 

small to moderate earthquakes), vulnerability or fragility functions constructed from this data will not give a 

meaningful prediction for high damage/loss states at low IM values or for any damage/loss state at high IM 

values.  

In the case of small or highly clustered datasets, it is recommended two different strategies. Firstly, the 

analyst is advised to use a Bayesian analysis, which informs existing vulnerability or fragility curves with the 

small available database. Alternatively, the analyst should consider adopting data from multiple surveys for 

the construction of vulnerability and fragility functions (see §3.5). In the case of datasets with some 

clustering it is possible to construct fragility functions, but the analyst is limited in the types of regression 

techniques this guideline would recommend (see §5).  

3.5 Preparing Empirical Loss or Damage Data from Multiple Databases 

Multiple databases of damage or loss from post-earthquake surveys can be adopted in the construction of 

single sets of vulnerability and fragility relationships. This may be desirable if the number of observations in 

one or more single databases is small and/or does not cover a wide range of IM values. However, care should 

be taken when considering which databases to combine, with only data from regions with similar tectonic 

environments and for the same building classes used. In the literature observational data from different 

databases has been typically been aggregated into a single database with little or no consideration of the 

relative reliability of each database (e.g. Rossetto and Elnashai, 2003; Rota et al, 2008; Colombi et al, 2008). 

In the present guidelines, the analyst is given the opportunity to construct vulnerability or fragility curves 

accounting for the different sources of the observations and their reliability. Guidance for this is provided in 

§6.3.6 and §7.3.6. 

In the case of multiple surveys, the procedures set out in §3.3 and §3.4 for single surveys should still be 

carried out for each database, so as to determine data type, minimum number of observations per dataset, 

appropriateness of number of data points and their spread across the IM range, and sources of uncertainty 

associated with the database. In addition, if the available surveys correspond to the same earthquake, the 

                                                             

9http://www.nexus.globalquakemodel.org/gem-vulnerability/files/uncertainty/issues-in-empirical-fragility-functions.pdf 
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analyst is advised to use only the database with the higher quality. If both databases are of acceptable quality 

then oth can be used but occurrences of repeated data should be checked for and eliminated.  

3.5.1 Harmonising data type 

The types of data of multiple databases should be expressed in a common form in order to be adopted in the 

construction of vulnerability and fragility curves. If one database presents data at a building-by-building level 

and another contains grouped data, then the more detailed building-by-building data should be aggregated 

and transformed into the same form as the grouped data. The aggregation process should be carried out 

after a common building class and damage/loss scale has been determined and the data appropriately 

transformed (see §3.5.2 and §3.5.3).  

The aggregation method should also follow that of the grouped database. For example, grouping over an 

area with similar IM may be done by aggregating buildings in a geographical area (e.g., zip-code or town), or 

by grouping all observational data for all areas deemed of constant IML (e.g., in an isoseismal). However, the 

number of observations in the new (combined) database should also be checked to satisfy the minimum 

number of data criteria set out in §3.4, and the new database assessed for new sources of uncertainty 

resulting from the aggregation process.  

3.5.2 Harmonising building classes 

The combination of multiple databases in empirical vulnerability and fragility assessment cannot be achieved 

unless observations in the individual databases refer to the same building class. However, each database may 

include different structural characteristics of the surveyed buildings. Once the GEM Building Taxonomy v2 

has been followed to assign building class definitions to each database, the lowest level (coarsest) definition 

of building class present in the databases should be applied when describing the resulting vulnerability and 

fragility function. 

3.5.3 Harmonising the damage/loss scales/measures 

The least uncertainty is introduced in the empirical vulnerability assessment if the adopted databases adopt 

identical damage scales or loss measures. However, the differing purposes of surveys or changes over time in 

survey methods and tools lead to the use of different scales/measures even for earthquakes occurring in the 

same country. In these cases, the analyst is advised to select an appropriate damage/human loss scale or loss 

measure from those adopted by the databases being combined, and converting all the damage/loss data to 

this scale. Strong assumptions have to be made to transform a database presented in terms of few 

damage/loss states into one consisting of a larger number of damage/loss states. These would introduce 

large, and poorly quantifiable, uncertainties in the resulting vulnerability and fragility curves. Hence, the 

analyst is advised to adopt the damage/loss scale with the coarsest definition and lowest number of 

damage/loss states, and transform the more detailed survey data to this scale. 

No guidance is here provided to convert between (economic or human) loss scales, as the measures used in 

their definition vary significantly between surveys. In the case of fragility functions, damage scale conversion 

tables are provided in Rossetto et al. (2014) for common reinforced concrete, masonry and timber types of 

construction. The list of damage scales present in these tables is not exhaustive but includes those damage 

scales that have been reported in the majority of past empirical fragility curves. These tables can be used to 

map the more detailed to the coarser damage definitions. Where the more detailed damage state definition 

appears to straddle two of the coarser damage states, it is recommended that observations from the detailed 

damage state in question be mapped onto the lower damage state of the coarser scale (it is not 
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recommended that assumptions be made to distribute the observational data between the two damage 

states). 
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4 Ground Motion Intensity 

Within this section a brief overview of the ground motion intensity measures (IM) most commonly adopted 

in the construction of empirical fragility and vulnerability functions is presented. Suggestions are then 

provided for the appropriate evaluation of the IMs at sites, where the surveyed buildings are located. As 

outlined in §2, these guidelines prescribe that several IMs should be used for the construction of empirical 

vulnerability curves. Ideally, the optimum of the aforementioned vulnerability curves is the one which yields 

the fitted vulnerability or fragility curve with the smallest confidence bounds.   

The incorporation of the uncertainty in the ground motion intensity in the empirical vulnerability assessment 

is a relatively new subject. Straub and Der Kiureghian (2008) have been the first (and only to date) to 

construct empirical fragility functions (for electrical substations) that account for measurement error in the 

ground motion intensity. Recently Ioannou et al. (2014) highlighted the importance of this error in the shape 

of the fragility curve, thus it is believed by the authors of this Guideline that the incorporation of uncertainty 

in IM is important for an accurate evaluation of the vulnerability and fragility functions as well as their 

confidence and prediction intervals. Sources of uncertainty in IM determination are therefore highlighted in 

this section. A first attempt procedure is also proposed to incorporate uncertainty in IM in §6. It is 

highlighted that this proposed procedure has only been tested on a few datasets, and as it is still unclear 

whether including uncertainty in the IM of vulnerability and fragility curves is a better approach than the 

established procedure, which models the measurement error of IM in the hazard curve for the assessment of 

the overall risk, the proposed method for carrying out the former should be regarded as novel but optional. 

In any case, that care should be taken to avoid double counting the measurement error of IM in risk 

assessment  

4.1 Introduction to Intensity Measures and Considerations for Empirical Vulnerability  

There are two main categories of ground motion intensity measures that are used in empirical vulnerability 

and fragility assessment: (1) those based on macroseismic intensity scales (e.g., Modified Mercalli Intensity, 

MMI); (2) those based on instrumental quantities (e.g., peak ground acceleration, PGA). Here, a general 

description of these intensity measures is presented together with some considerations that should be taken 

into account when using them for the construction of empirical vulnerability curves. 

Macroseismic intensity scales are based on how strongly the ground shaking is experienced in an area, as 

well as observations of building damage. This means that they are readily available for any site where there 

are humans present to observe, and buildings present to be damaged. In fact, the same damage survey that 

is used to collect fragility or vulnerability data can also be used to estimate the macroseismic intensity. In a 

sense, this means that macroseismic scales are really an intermediate quantity between fragility and 

intensity – they already include information about building fragility in the areas in which they have been 

calibrated. This should be taken into account when applying a macroseismic scale outside the area in which it 

was originally developed – for example, using the European Macroseismic Scale (EMS) outside Europe. We 

could expect that regressed fragility relationships based on macroseismic intensity scales would have tighter 

confidence intervals, since damage data are already implicitly included in the intensity measurement. 
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Moreover, Intensities are recorded as some average of effects over some spatial scale. This averaging is seen 

to reduce the standard deviation for Intensity Prediction Equations (IPE) with respect to Ground Motion 

Prediction Equations for other IMs that are evaluated at point locations (e.g., Peak Ground Acceleration).  

With the exception of online questionnaire-based macroseismic intensities (Wald et al., 2011), macroseismic 

scales are discrete rather than continuous – fractional values have no meaning, and often Roman numerals 

are used to reflect this. They are monotonic (in the sense that VII generally relates to a stronger ground 

shaking than VI, for example), but nonlinear (each increment does not necessarily represent a constant 

increase in ground shaking). Ground motion intensity conversion equations (GMICE) indicate log-linear, often 

bilinear progressions of peak ground motions versus intensity. Fragility or vulnerability relationships that 

were consistent with these properties would be step-wise functions, and the mean estimates of damage for 

each intensity value would be constrained to be monotonically increasing. However, this is not usually done 

in practice, and a continuous functional form is fitted to the data. To a certain extent, the nonlinearity in the 

intensity measure can then be accommodated by judicious selection of the functional form – noting that a 

functional form that fits MMI data well, for example, may not be appropriate for other macroseismic 

intensity measures (e.g., MSK). The artificial continuousness is also carried through the overall risk 

calculation, as prediction equations also give continuous intensity estimates, rather than being constrained 

to discrete values. However, this is unlikely to introduce significant inaccuracy in damage or loss estimates. 

Instrumental intensity measures are based on quantities that have been (or could be) calculated from strong 

ground motion recordings. The most commonly used instrumental measure in the vulnerability and fragility 

literature is peak ground acceleration (PGA), with peak ground velocity (PGV) also being used in several 

relationships. Compared with macroseismic scales, instrumental measures may be less correlated with 

damage, and regressed fragility relationships could be expected to have wider prediction intervals reflecting 

this increased variability.  

Derived quantities such as spectral acceleration, spectral displacement, or Arias Intensity (Arias, 1970) have 

also been used in the literature, and may be classified as instrumental measures. Spectral ordinates are used 

to attempt to include the effects of frequency content of the seismic excitation. The spectral ordinate is 

evaluated at a period that is considered to be most relevant for damage in the building class – generally an 

estimate of the mean elastic fundamental period. In practice, building vibration periods are not available for 

damage survey data, or building inventories for loss estimation, and therefore an empirical relationship 

based on the height of the building and structural system is used. Damping is usually assumed to be 5%. 

Furthermore, a building class is likely to contain structures with different heights and configurations, and 

hence a non-constant fundamental period applies across the building class. The use of an empirical 

relationship for estimating the period of the buildings, the variation of structural periods in a building class, 

and the assumed damping, all introduce additional epistemic and aleatory uncertainties. These are not 

generally considered in empirical vulnerability and fragility regression analysis. It is also worth noting that the 

residual on the empirical period relationship (i.e., the amount by which the relationship over- or 

underestimates the real period) is potentially correlated with the fragility of the building. For example, a 10-

m tall building that has a shorter period than average for its height may be stiffer due to a larger area of 

structural walls per floor than average, and therefore may also be less likely to be damaged in earthquake 

shaking of a given intensity. Again, this uncertainty and its influence on fragility estimation is not typically 

considered in loss assessment. If the uncertainty in structure period prediction is accounted for together with 

the uncertainty in the ground motion prediction equation, the perceived benefit in using a spectral ordinate 

rather than a peak ground motion value as IM (i.e., as it accounts for more characteristics of the earthquake), 
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might be removed due to the larger resulting prediction intervals in the vulnerability and fragility 

relationships. However, it is not possible to determine this a priori. 

When spectral ordinates are used, there is a choice between spectral acceleration and displacement (also 

velocity, although this is not used in any of the reviewed literature). Spectral acceleration has traditionally 

been used, presumably due to its role in the estimation of forces for seismic design. More recently there has 

been a movement towards the use of spectral displacement, based on the fact that damage is known to 

correlate better with displacement than with force. In any case, spectral displacements and accelerations are 

related by the building period squared; therefore for buildings of the same height, there is no additional 

predictive power introduced by switching from spectral acceleration to displacement. Amongst buildings 

with different heights (and periods), there is no strong argument that higher spectral displacements should 

be correlated with higher damage – the problem is that displacements are not necessarily directly linked to 

deformations, which are much more directly related to damage. For example, a two-storey moment frame 

building with 100 mm of roof displacement (not identical to spectral displacement, but neglect this 

difference for the moment) may suffer similar damage to a one-storey building with the same roof 

displacement if it deforms in a soft storey (column sway) mechanism in which all the ductility demand is 

concentrated over a single floor. On the other hand, if a beam sway mechanism develops (which will ideally 

be the case for capacity-designed frames), the damage would be similar to a one-storey frame with around 

50 mm of roof displacement, as the ductility demand is distributed in the beams at both levels. Spectral 

displacement (or spectral acceleration) alone cannot distinguish between these different mechanisms, and 

therefore we rely upon the building classification to group together buildings that are likely to be damaged or 

fail in a similar manner – e.g., older, pre-capacity design, buildings are more likely to exhibit soft storey 

failures. If we also use building classes with a small height range and therefore relatively small variation in 

estimated periods, then there is little difference between the predictive power of different spectral 

measures. 

Some instrumental measures, such as strong ground motion duration, may not be efficient intensity 

measures on their own, but may be a relevant second parameter to consider, along with some measure of 

peak motion or spectral response, in a vector intensity measure. Ground motion duration is especially 

important for degrading structures, such as unreinforced masonry (Bommer et al., 2004). Vector IMs would 

require significant architectural changes to GEM’s OpenQuake-engine framework (Pagani et al., 2014; Silva et 

al., 2013), and have not been considered further here.  

4.2 Selection of IMs for Construction of Empirical Vulnerability Curves 

The choice of IMs for use with an empirical dataset depends on the location of the damage or loss survey and 

availability of locally applicable GMPEs. These guidelines recommend that a number of parameters for IM be 

tried, with empirical vulnerability and fragility functions constructed for each.  

In general terms, due to the absence of a single macro-seismic intensity scale that is adequate for all 

locations across the world, instrumental measures are preferred, with PGA, PGV, Sa(T1)5% and Sd(T1)5% 

suggested. However, this is not prescriptive, and further instrumental IMs or macro-seismic intensities can be 

used. It is noted that within the context of seismic risk assessment in GEM, the final choices for IM measures 

may be influenced by GEM guidance for hazard assessment at a particular location (e.g., the availability of 

ShakeMaps (Wald et al., 1999b), recordings or reliable GMPEs for different parameters at the assessed site).  
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4.3 Evaluation of IM Values 

This section focuses on estimating intensity measure values associated with damage survey data for the 

development of vulnerability and fragility relationships. In this section, reference is made to GEM 

documents, in particular the OpenQuake-engine (Pagani et al., 2014; Silva et al., 2013) and the GEM GMPE 

pre-selection guide (Douglas et al., 2013). Conversions between measures can be used, with relationships 

available in the literature (e.g., Trifunac and Brandy, 1975; Wald et al., 1999; Faenza and Michelini, 2010), but 

these conversions introduce a significant amount of uncertainty into the loss estimates (whether accounted 

for or not), and should be avoided if possible. At the time of writing this document, GEM’s OpenQuake-

engine and platform are still under development, and therefore the processes here reported for hazard 

evaluation in GEM may differ from the final procedures. 

Within the context of the empirical vulnerability guidelines, once a candidate set of IM measures has been 

chosen, values of the IM must be evaluated at each survey site. The method for IM evaluation depends 

strongly on the amount of information available on the earthquake event causing the damage, its source, 

survey location site, building characteristics and the availability of local recordings of the ground motion.  

Assigning a macroseismic intensity value to each set of damage survey data is relatively straightforward, as it 

may be assigned directly based on damage observed in the survey. However, this introduces a direct 

interdependence between the axes of the derived fragility curves. It is therefore preferred that the 

macroseismic intensity be assigned to sites from field observations that also account for the other factors 

influencing macroseismic intensity (for example, human response and geotechnical failures). Of course, there 

is subjectivity in the assignment of macroseismic intensity values, and therefore uncertainty about the “true” 

value. Ideally, this uncertainty could be estimated by having multiple engineers assign intensity values 

independently.  

Instrumental measures (e.g., PGA, PGV, Sa(T1)5% and Sd(T1)5%) can be evaluated directly from ground motion 

recordings at post-earthquake survey sites. Ideally, damage survey data would be collected in the vicinity of 

an accelerometer that recorded the earthquake ground motion (e.g., Liel and Lynch, 2009), but in most 

cases, this would impose a large restriction on the quantity of data available, as accelerometers are not 

common (especially in developing countries). In any case, even over a distance of hundreds of metres, local 

soil conditions can lead to large variations in ground shaking values. Therefore, until we have accelerometers 

in the basement of every building a degree of uncertainty on our estimates of instrumental values is 

inevitable. 

In the more general case where few or no recordings, local macroseismic intensity observations or a 

ShakeMap are available in the area of study, ground motion prediction equations (GMPEs) can be used to 

estimate the intensity measure value at surveyed sites from knowledge of the earthquake characteristics, 

site conditions and the distance of the site from the earthquake source. Uncertainty in the IM values is 

introduced when GMPEs are used rather than on-site recordings/observations, and these are discussed 

further in §4.4.1-§4.4.2. 

An alternative estimate of the spatial distribution of ground shaking intensity for historical events can be 

obtained from the USGS ShakeMaps system (http://earthquake.usgs.gov/shakemap/). The GEM Earthquake 

Consequences Database (Pomonis and So, 2012) will provide IMs standard for the USGS ShakeMap system 

(PGA, PGV, Sa(T), and MMI) for nearly one-hundred earthquakes with reported loss data. The ShakeMap 

Atlas (Allen et al., 2008) and its update (Garcia et al., 2012) provide ShakeMaps for hundreds of additional 

earthquakes with archived loss data. The advantage of using the gridded ShakeMap IM values is that they are 

intelligently interpolated using all available source, site, macroseismic and ground motion data and employ 

http://earthquake.usgs.gov/shakemap/
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GMPEs bias-corrected to remove the inter-event aleatory uncertainty as best possible (Allen et al., 2008). 

ShakeMap values also provide uncertainty estimates at each point (Worden et al., 2010). This spatial 

distribution of both ground shaking level and uncertainty could be used to correlate observed levels of 

damage in the event with ground motion intensity. 

4.4 Sources of Uncertainty in IM 

These guidelines provide a possible procedure for incorporating uncertainty in IM in empirical vulnerability 

and fragility functions. This procedure is presented in §6, and assumes the uncertainty is quantifiable and 

represented by a variance value. The following sections provide a discussion of the sources of uncertainty 

that may contribute to this variance value.  

The discussion provides some pointers on what to consider when quantifying these uncertainties and advice 

on potential ways to reduce them. Full guidance on IM uncertainty evaluation is not provided and falls 

outside the scope of these Guidelines. However, it is noted that IM uncertainty evaluation should be carried 

out with a full appreciation of how the hazard is calculated in the overall risk analysis, so as to avoid the 

double counting of sources of uncertainty. 

4.4.1 Uncertainty due to choice of GMPE 

Complete guidance on selecting GMPEs for different regions around the world is provided by GEM (Stewart 

et al., 2013). However, if dealing with empirical data from past earthquakes, and some recordings of ground 

motion were available, a further criterion for the selection of GMPE would be the inclusion of these 

recordings in the equation.  

Stewart et al. (2013b) suggests that it is good practice to choose and combine multiple GMPEs to estimate 

the IM values. This can be done through the use of a logic tree approach. Such an approach can quantify the 

epistemic uncertainty in the GMPE choice. Guidance for this is provided in Devalaud et al. (2012). It is noted 

that the OpenQuake-engine (Pagani et al., 2014; Silva et al., 2013) provides a scenario-based earthquake 

hazard based on a deterministic event that can be used to calculate IM values at sites of interest by inputting 

the earthquake parameters. This tool has the functionality to allow multiple GMPEs to be used and also 

allows the source characteristics to be varied, if these have not been appropriately constrained (e.g., for 

earthquakes in the significant past). 

Where some recordings are available, a method for constraining inter-event variability is to adjust the IM 

estimates from the GMPEs (e.g., by selecting an appropriate value of standard deviation from the median 

prediction) so as to provide a good fit to the recorded ground motion values, see 4.4.2.   

4.4.2 Uncertainty due to measurement error in GMPE  

The measurement error of IM estimates from GMPEs is significant. The standard deviation on ground motion 

prediction equations, when calculated on the natural logarithm of an intensity measure, is generally of the 

order of 0.5–0.7, meaning that one standard deviation on either side of the median can represent a range of 

half to double of the median estimate. This uncertainty is not reduced when multiple GMPEs are combined. 

Although there is significant uncertainty in estimates of instrumental intensity made in this way, there are 

many additional sources of information that could be used to reduce the uncertainty, and potentially adjust 

median estimates of intensity. A likely source is when ground motion recordings are available from the 

earthquake in which damage data were collected. Even if these were recorded some distance from the site 

of interest, the measurements give an indication of whether the event was typical of an earthquake with the 
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same magnitude, distance and source characteristics, or whether it produced higher or lower levels of 

ground shaking. Most modern ground motion prediction equations separate the standard deviation (σT) into 

“inter-event” (τ) and “intra-event” (σ) components (Joyner and Boore, 1993): 

σT
2 = τ2 + σ2 (4.1) 

The first term, the inter-event term, represents the event-to-event variation, while the second term, the 

intra-event, represents the variation in intensities measured from a single event (record-to-record 

variability).  

The inter-event standard deviation is typically of the order of three times smaller than the intra-event term, 

and therefore the benefit from removing τ from Eq. (4.1) may be small. For example, if τ = 0.2 and σ = 0.6, 

then σT = 0.63, so very minimal benefit is obtained by fixing the number of τ. That said, Jayaram and Baker 

(2010) recently showed that the inter-event term is underestimated by the traditional approaches used for 

the development of ground motion prediction models, and therefore there may be some added benefit from 

removing it from Eq.(4.1). ShakeMaps do remove the inter-event term where it is knowable (Worden et al., 

2010). 

If we have recordings reasonably near our site of interest, we could reduce the total uncertainty further by 

taking into account spatial correlation of ground motions. For example, if a single recording of an event is 

available a few kilometres from where the damage survey data was collected, the spatial correlation of the 

residuals can be taken into account. If this recording is higher than expected (positive residual with respect to 

the median of the GMPE), then it is likely that the site where damage data were collected also experienced 

greater-than-expected shaking. The probability distribution for the intensity at the site conditioned on the 

relatively nearby recording has a higher mean and is narrower (lower standard deviation) than the a 

posteriori distribution for the intensity without any recordings. When more than one recording is available, 

this distribution can be refined further. These considerations, and the resulting spatially-varying effect on 

uncertainties, are explicitly included in the ShakeMap methodology (Worden et al., 2010). 

Spatial correlation has been taken into account in risk assessment calculations, but has not currently been 

considered in the development of fragility or vulnerability relationships, except coarsely in the collection of 

survey data only within a specified radius (say 100 feet of a recording station, King et al., 2005). The latter 

essentially assumes that ground motion intensity levels are identical and fully correlated within this radius, 

and sufficiently uncorrelated outside the radius that the damage data are not worth collecting. This is of 

course an approximation, and also provides a basis for randomising the locations of survey areas (assuming 

accelerometers were placed somewhat randomly, and not, for example, because high or low ground shaking 

was expected in that location). Currently this remains an area for further research. 

4.4.3 Uncertainties from spatial variation across geographical survey units 

Many existing databases of observed damage and loss present the data in aggregated form, the aggregation 

being by geographical area. The survey units can be of varied size (e.g., ZIP-Codes, communes, villages, 

towns, cities) but invariably are assigned a single value of IM in existing vulnerability and fragility studies (see 

Rossetto et al., 2013). Unless the survey unit area is very small, there will be a variation in the IM values 

affecting buildings within it. This variation derives from a number of factors, which can include differences in 

distance and site conditions across the area. The variation is more likely to be larger for large survey units, 

and can vary across datasets from single surveys if the size of survey units differs (e.g., ZIP-Codes may have 

different areas). 
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This source of uncertainty can be evaluated by treating each survey unit as an area, rather than a point, 

when determining the IM values as per §4.3. Considering variations in earthquake source distance and site 

conditions across the area, it is thus possible to obtain a mean estimate and variance for the mean IM 

associated to each survey unit. It should be noted that this source of uncertainty is in addition to those 

highlighted in 4.4.1 and 4.4.2. Reference is made to Stafford (2012) where an approach for reducing the 

variance of the ground motion (as compared to the value given by the GMPE) is proposed, when the latter is 

modelled over an area, rather than a single point. 

In the case of high-quality building-by-building damage or loss data, the intensity measure levels are 

evaluated at the location of each individual building observation. This type of empirical data is therefore not 

affected by this additional source of uncertainty. 

4.4.4 Uncertainty in estimation of spectral values for building classes 

An additional source of uncertainty arises (especially for aggregated damage or loss data) if a spectral 

ordinate is used as the intensity measure type. In existing empirical fragility or loss functions, the spectral 

ordinate is commonly evaluated at a structural period thought to be representative of the natural period of a 

typical structure for the building class being assessed. However, a building class contains a variation in 

building configurations, heights, seismic design and materials that may not be known in detail. This is 

especially true when using data from past surveys for which the building classification is coarse and the 

original survey forms are unavailable. Consequently any building class will contain a variation in structural 

periods, which will result in a variation in the spectral ordinates for any dataset. 

This is an area that has not been researched in the past, and hence no guidance can be given as to what type 

of distribution in structural periods is typical of different building class definitions.  

In the case of analytical vulnerability or fragility functions, as the structural models are known in detail, their 

natural period can be evaluated and variation across the building class (set of known structural models) 

included in their performance evaluation (e.g., Rossetto and Elnashai, 2005). Hence, this source of 

uncertainty may not be an issue. In the case of empirical fragility functions , this source of uncertainty can be 

reduced if building-by-building data are available, obtained from detailed on-the-ground surveys that have 

captured the structural properties of each building in detail. It can also be reduced through the use of 

detailed building classes.However, it is still likely to remain an issue. 
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5 Introduction to Statistical Models and Model Fitting Techniques 

5.1 Introduction 

In general, statistical-model fitting techniques aim to determine the probability distribution characteristics of 

a response variable Y, i.e., damage or loss, conditioned on one or more explanatory variables X=[X1, X2,…, 

XNx], e.g., ground motion intensity. They do this by fitting a statistical model to the empirical data. Hence, the 

proposed procedure for constructing empirical fragility and vulnerability functions from data points 

essentially includes three main steps: 

1. Selection of a statistical model 

2. Selection of a model fitting technique 

3. Assessment of the model’s goodness of fit  

 

The Guidelines suggest a series of statistical models and associated model fitting techniques be adopted in 

the development of empirical fragility and vulnerability relationships, with the simpler techniques (Level 1) 

attempted first and more complex techniques (Level 2) attempted only if the simpler approaches yield 

unsatisfactory goodness-of-fit. Goodness-of-fit can be assessed using a series of diagnostic tools described 

for each statistical model in §6 to §8. Hence, steps 1 to 3 above may be repeated several times. 

This section presents an overview of the likely forms that response and explanatory variables can take in the 

case of empirical data. It then introduces the three main statistical models considered in these Guidelines, 

which are described in operational detail in §6 to §8. Finally, it provides an overview of which combinations 

of statistical models and model fitting techniques should be used according to the characteristics of the 

empirical data adopted. 

5.2 Understanding Empirical Data in terms of Response and Explanatory Variables  

Before embarking on the construction of empirical fragility and vulnerability functions, it is important to 

understand the characteristics of the observational survey data being used and the resulting form of the 

predictor and response variables that will define the data points (xj1, xj2, …, xjNx,yj)  for the statistical-model 

fitting.  

In the case of empirical vulnerability and fragility relationships, the main explanatory variable is the ground 

motion intensity (IM). Depending on the choice of an intensity measure type, the explanatory variable can be 

modelled either as discrete (e.g., for macroseismic intensities) or continuous (e.g., for instrumental 

measures). The nature of the intensity measure type does not affect the construction of the statistical model. 

These guidelines recommend that the analyst try various ground motion intensity measure types with the 

option to add more explanatory variables, e.g. soil conditions, as part of the diagnostics tools (see §6.3.2 and 

§7.3.3) in order to examine whether the model can be improved by adding more relevant variables.     
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Within the following sections, where vulnerability functions for economic loss are to be constructed, 

economic loss is modelled as a continuous non-negative variable, which can be positively skewed (see 

Wesson et al., 2004). In this case, data points (xj,yj) are introduced in ‘R’ as presented in Figure 5.1. 

 

 

Figure 5.1 Form of damage data points in ‘R’.  

For vulnerability functions for human loss or fragility functions are to be constructed, human loss or damage 

are typically recorded in the survey forms in terms of a discrete variable that increases in intensity, e.g., No 

damage (ds0), Slight damage (ds1), Moderate damage (ds2), Severe Damage (ds3) and Collapse (ds4). Hence, 

the proposed statistical model fitting techniques in §6-§8 accommodate the modelling of response in terms 

of a binary variable. For example, the binary response variable, Y, for building-by-building damage data is 

expressed in terms of: 

1

0

i

i

DS ds
Y

DS ds

 
 



 (5.1) 

In this case, the data points (xj,yj) express the ground motion intensity levels, that affect a structural unit j 

and its binary response yj, which equals 1 if the building has suffered damage equal to or exceeding dsi and 0 

otherwise (see Figure 5.2). 

If grouped data are available, the data points (xj,(yj,nj-yj)) contain yj counts of buildings with DS≥dsi and nj-yj 

counts of buildings with DS<dsi for bin j with intensity measure level xj (see Figure 5.2). 

 

 

Figure 5.2 Form of damage data points in ‘R’.  

 

### Loss data  

> Dat<-data.frame(loss=c(1000,50000,100000),IM=c(0.1,0.4,0.5)) 

> Dat      # example of a database of economic loss in $ and PGA in g.  

      loss     IM      

1 1e+03    0.1 

2 5e+04    0.4 

3 1e+04    0.5 

…. 

   

### Form of building-by-building damage data assuming Y is expressed by Eq.(5.1). 

Dat<-data.frame(Y=c(0,1,1),Damage=c(0,3,4),IM=c(0.1,0.4,0.5))  # Damage refers to the damage state dsi=0-4,  

                                                                                                         #  IM is in terms of  PGA in g,  

                                                                                                         # Y is the indicator obtained by Eq(5.1) for e.g. ds1. 

> Dat 

     Y Damage     IM 

1   0        0          0.1 

2   1        3          0.4 

3   1        5          0.5        

… 

 

### Form of grouped damage data. 

> Dat<-data.frame(DSi=c(20,30,90),noDSi=c(80,70,10),IM=c(0.1,0.4,0.5))  # assuming 100 buildings in each bin 

> Dat 

   DSi noDSi  IM 

1  20    80     0.1 

2  30    70     0.4 

3  90    10     0.5 

… 
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5.3 What are Statistical Models and which should I use? 

The data points based on the damage or loss databases are used in to construct fragility or direct 

vulnerability curves by fitting an appropriate statistical model.  

A statistical model is a stochastic relationship between the seismic damage or loss and ground motion 

intensity. Practically, a statistical model consists of two components: random and systematic: 

 The random component expresses the probability distribution of the response variable (e.g. the 

counts of buildings reaching or exceeding a damage state or the economic loss for each building) 

given the explanatory variable (i.e. the ground motion intensity).  

 The systematic component expresses the mean response as a function of the explanatory variable. 

In fragility assessment, the systematic component typically represents the fragility curve, i.e., the 

probability that a damage state is reached or exceeded given ground motion intensity. In loss 

assessment, the systematic component is termed vulnerability curve, e.g., the mean loss given 

intensity measure levels.  

Three types of statistical model are proposed in these Guidelines for expressing direct vulnerability and 

fragility relationships: 

1. Generalised linear models (GLM). GLM are robust well-established models that depend on a small 

number of model parameters. Their systematic component is a strictly monotonic function. These 

models also have strong predictive capacity provided that the assumptions regarding their random 

and systematic component are met. They have been used for the construction of empirical fragility 

curves for bridges (e.g. Shinozuka et al., 2000) and steel tanks (e.g. O’Rourke and So, 2000) and 

buildings (Ioannou et al., 2012).     

2. Generalised additive models (GAM). These are novel in the field of empirical fragility and 

vulnerability assessment. They differ from GLMs in the level of flexibility allowed in the systematic 

component, i.e., the trend is non-strictly monotonic. Within GAM the systematic component can be 

used to capture a non-strictly monotonic trend in the data. Like GLM a number of assumptions 

regarding their two components have to be satisfied for them to result in reliable fragility and 

vulnerability relationships.    

3. Gaussian Kernel Smoothers (GKS). GKSs do not make any assumptions regarding the systematic and 

random components and hence are the most flexible of the three statistical model types. They can 

fit the data very closely and like GAM can accommodate a non-strictly monotonic trend in the data. 

Their use in the field is limited (see Noh et al., 2013).  

Guidance for fitting these three models is provided in §6-§8. The reader may refer to the classic books of 

McCullagh and Nelder (1989) and Hastie and Tibshirani (1990) for a detailed introduction to linear and 

additive models, respectively. The reader is also referred to the book by Wand and Jones (1995) for a better 

understanding of Gaussian Kernel Smoothers. The reader is referred to the paper of Ioannou and Rossetto 

(2015) for a detailed comparison of the three models.   

5.4 Which Combination of Statistical Model and Model Fitting Technique should I use? 

The present Guidelines account for the varying degree of understanding of statistics by the analysts as well as 

the objective needs of the data by proposing two Levels of complexity of the statistical model and model-

fitting procedures.  

As a first step, the analyst is advised to determine building classes and construct empirical vulnerability or 

fragility curves for these classes according to Level 1 approach using the available data. This step does not 
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distinguish between data obtained from a single event or multiple events, the use of different sample sizes or 

the presence of measurement errors in the data. Nonetheless, the analyst is advised to plot the cumulative 

proportion of buildings in each IM bin given the corresponding levels of intensity in order to have an idea of 

whether the data are clustered or more or less uniformly distributed in the available range of intensity 

measure levels. The Level 1 approach includes the construction of a GLM model, which relates the damage or 

loss with an intensity measure type. The GLM is fitted to the damage or loss and intensity data by maximising 

the likelihood function, L(.), as:  

   
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j j

j
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

 
    
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 
θ θ x θ  (5.2) 

where f(.) is the probability density distribution of the discrete (or continuous) response variable conditioned 

on an intensity measure type. This approach assumes that the GLM parameters, θ, are fixed but unknown. 

The analyst should then examine whether the selected systematic and random component capture the trend 

and the uncertainty in the data satisfactorily or if a better GLM with different assumptions regarding these 

two components can be identified.  

The proposed GLM model is acceptable if the following conditions are met: 

(1) If the data is collected from a single event,  

(2) negligible measurement error can be assumed in the response and explanatory variables  

(3) the proposed GLM is found to fit these data well following a goodness of fit check 

The user is warned that for empirical fragility assessment the selected random component is often unable to 

capture the larger uncertainty in the grouped data. In this case, the user should ensure that the model is 

modified in order to capture this larger uncertainty.. If the systematic or random component of a GLM do not 

provide a very good fit and there are more explanatory variables in the database (e.g., soil conditions or 

subgroups of building characteristics), the user is advised to add them to the systematic component in order 

to examine whether the fit is improved.   

The conditions which require the use of Level 2 procedures are presented below. The user is reminded that 

Level 2 approaches construct models which capture more sources of uncertainty and for this reason they 

appear to be more complex. However, this does not mean that there this extra complexity is required for 

each database. The analyst is advised to critically compare these models to their simpler counterparts 

constructed by the Level 1 approaches in order to justify the need for this complexity.   

Level 2 approaches are necessary if: 

 There is a measurement error in the response variable. 

 There is a measurement error in the ground motion intensity levels.  

 The available sample size is small (e.g. <100 buildings). 

For these three conditions, the fitting of a GLM is advised through a Bayesian analysis. This procedure has the 

advantage of estimating the vulnerability or fragility curves by updating existing curves for similar building 

classes with the available data. Bayesian analysis estimates the posterior distribution of the model 

parameters, f(θ|y,x), from Bayes’ theorem: 
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where f(θ) is the prior distribution of the model parameters accounting for existing prior knowledge.  
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Level 2 approaches are also necessary if data collected from multiple events are available. It should be noted 

that the models proposed here are novel to the field and the analyst is urged to consult existing literature, 

e.g., Gelman and Hill (2007) or Zuur et al. (2009). The philosophy behind the Level 2 approach proposed here 

is that data for each event produce a different fragility curve and that the events available in the database 

are randomly selected from a very large population of events. So GLM models, termed generalised linear 

mixed models, are used in order to account for this random effect of the earthquake.     

Level 2 approaches should also be used if the sample size is large (>100 buildings) and the fragility curves 

cross (this leads to meaningless results in the construction of the probability matrices). For these cases, the 

analyst is advised to fit GAM or GKS models.  

Finally, GAM or GKS models can be used if the data have a non-strictly monotonic trend, which cannot be 

captured by the GLM models. However, the use of the non-parametric models in this case requires densely 

distributed data points in the available IM range (>100 data points) in order to justify that this trend is 

significant. The analyst can consult the plot of the cumulative proportions of buildings for each IM in order to 

decide whether the distribution of the data is sufficiently dense.  

In what follows, a collection of procedures for statistical model fitting corresponding to different levels of 

analyst’s experience is presented. This includes established ‘R’ packages which can be used directly for the 

construction of simple and mixed models and the assessment of their goodness of fit. Guidance for more 

advanced, i.e., Bayesian, methods is also provided for the construction of complex models. 
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6 Fitting Generalised Linear Models (GLM) 

6.1 Introduction 

Generalised linear models (GLM), in the context of vulnerability or fragility assessment, consist of three main 

components (Nelder and Wedderburn, 1972): 

 The random component, f(Y|IM=im): A continuous or discrete probability density function (of the 

exponential family) that expresses the variability in the response variable given ground motion 

intensity levels. In the case of economic loss, the conditional probability can be expressed by three, 

positively skewed, continuous distributions, namely: gamma, inverse Gaussian and lognormal 

(McCullagh and Nelder, 1989). The three distributions can treat only variables having values greater 

than zero (Y>0). With regard to discrete damage (or human loss), the expression of the random 

component depends on the type of the data. For grouped damage data (low to medium quality), the 

binomial distribution is selected. The Bernoulli distribution, a special case of the binomial, is 

considered if building-by-building data (high quality) are available. 

 The systematic component, which relates the mean response variable to the selected intensity 

measure type. This component is expressed in terms of the linear predictor, η, in the form: 

0 1iη θ θ im   (6.1) 

where θ0, θ1i are the model parameters corresponding to the damage state or casualty state i and N 

is the total number of explanatory variables.  

 The link function: This is a monotonic and differentiable parametric function that relates the mean 

response variable with the linear predictor.  

   |g E Y X g     μ η  (6.2) 

where g(.) is the link function, such as the probit function mostly used for the expression of fragility 

curves.  

A detailed procedure for how to select the three GLM components and then estimate the fragility or 

vulnerability function parameters is provided in this Section. Within this context, the maximum likelihood 

and Bayesian statistical-model fitting techniques are considered and appropriate diagnostic tools are 

provided to assess the goodness-of-fit of the fitted model to the empirical data.   

6.2 Construction of a Parametric GLM (Level 1) 

Parametric generalised linear models have the generic form: 
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where f(y|im) is a probability density function (pdf) of the response variables given one or more explanatory 

variables;  is the dispersion parameter associated with the variance of the pdf; var(μ) is the variance 

function of μ. From Eq.(6.3), three main elements of the GLMs can be identified, namely: 

 



 34 

 the linear predictor.  

 the probability density function of the response variable conditioned on the explanatory variables. 

 the link function that relates the mean response to the linear predictor.  

6.2.1 Determination of the linear predictor 

The simplest linear predictor, η, can be constructed to have the form: 

 

0 1iη θ θ im   (6.4) 

 

The diagnostics, presented in §6.3.2, determine whether this model fits the empirical loss or damage data 

satisfactorily. If the model does not fit the data then the intensity measure is transformed, typically into its 

natural logarithm (i.e., log(IM)) or in some cases a higher order polynomial (e.g., IM2). Failure of these 

transformations to improve the fit of the parametric model might indicate that the nonlinear structure in the 

data cannot be depicted by a global parametric model. Therefore, a nonparametric model should be 

constructed (see §7.2).   

6.2.2 Determination of a probability density function for the response variable 

Table 6.1 summarises a set of continuous and discrete probability density functions (pdfs) that can be used to 

represent loss and damage, and shows the mean response variable as a function of the linear predictor and 

its variance. A brief description of these distributions and guidance on their selection is presented here. 

 

Table 6.1 Characteristics of the continuous probability density distribution functions of the response variable 

(McCullagh and Nelder, 1989). 
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The variability of economic loss for a given level of the linear predictor can be expressed by three, positively 

skewed, continuous distributions, namely: gamma, inverse Gaussian and lognormal (see Table 6.1). In the 

literature, Wesson et al., (2004) used the gamma distribution in the construction of their vulnerability 
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functions for economic loss. Nevertheless, analysts are advised to follow their intuition and use the 

diagnostics tools in §6.3.2 to determine whether their selected distribution is adequate. It is noted that if the 

loss is expressed in terms of repair over replacement ratio, which is bounded in [0,1], then a beta regression 

might be used. This model is new in the field and it is not covered in these Guidelines. The analyst is referred 

to the package ’betareg’ in R (2013) for more information.  

Table 6.1 shows that the mean loss, expressed as a function of the linear predictor, is identical for the 

gamma, inverse Gaussian and lognormal distributions. Differences are noted in the variance of loss. In 

particular, the variance is proportional to the squared or cubed mean if a gamma or inverse Gaussian 

distribution is selected, respectively. By contrast, the variance of the natural logarithm of loss is assumed 

constant for all levels of the linear predictor. Both the gamma and lognormal distributions assume that the 

coefficient of variation for the various levels of the linear predictor is constant.  

The selection of discrete probability density functions for damage or human loss is determined by the type of 

empirical data used: 

 The Bernoulli distribution, a special case of the binomial, should be adopted if building-by-building 

data (high quality) are available. 

 The binomial distribution should be adopted if grouped data are available (low to medium quality).  

It should be noted that the mean of both distributions is essentially the probability that a level of damage is 

reached or exceeded given a level of ground motion intensity, and that the dispersion parameter is unity, 

1φ . 

6.2.3 Selection of a link function 

A link function is a strictly monotonic and differentiable function that relates the mean response variable 

with the linear predictor. The analyst is advised to examine the fit of all appropriate link functions presented 

in Table 6.2 and to follow the diagnostic procedures presented in §6.3.2 in order to identify which link 

function results in the best fit of the statistical model to the empirical data.  

Table 6.2 Appropriate link functions for each distribution of the exponential family. 

pdf Link function,  η = 

 identity inverse log ‘1/mu^2’ logit probit complementary log-log  

 μ 1/μ log(μ) 1/μ2 log[1/(μ-1-1)] Φ-1(μ) -log[-log(1-μ)] 

Inverse Gaussian ° ° ° °    

Gamma ° ° °     

Lognormal  ° ° °     

Bernoulli/Binomial   °  ° ° ° 

6.3 Fitting a Parametric GLM: The Maximum Likelihood Method (Level 1) 

6.3.1 Estimation of the GLM parameters 

The parameters of the GLM’s systematic component (e.g., θ0 and θ1) are considered to have a given true 

value which is unknown. Their values are estimated by maximising the likelihood function (see Eq.(5.2)). The 

estimation is carried out numerically through an iterative reweighted least squares algorithm (Nelder and 

Wedderburn, 1972). 
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The summary of the outcomes of the parametric statistical fitting method in ‘R’ includes the asymptotic (i.e., 

approximate) standard errors of the model parameters. The levels of these errors depend on the number of 

available observations. This means that they can be reduced if more observations become available. The 

effect of the available number of observations on the confidence of the systematic component should be 

assessed as presented in Figure 6.1. These intervals are estimated by considering that the values of the linear 

predictor, η, are normally distributed for each level of intensity. Therefore, the e.g., 90% confidence interval 

of a mean curve can be approximately estimated by adding ± 2* standard error to the mean fitted linear 

predictor, η. The required intervals are then estimated by transforming the aforementioned values of the 

linear predictor into the vulnerability or fragility curves through the link function. The smaller the number of 

existing observations leads to wider constructed confidence intervals. Nonetheless, these intervals are 

approximate and assume that the parameters as well as the linear predictor are normally distributed. 

Appendices B-D illustrate the shape of these intervals for fragility as well as direct vulnerability curves.   

If the analyst desires an alternative, numerical, evaluation of the width of the confidence intervals, the 

bootstrap technique (Chandler and Scott, 2013, pp 117-118) should be adopted (see Figure 6.2). This 

technique is based on multiple realisations of the following 4 steps: 

1. A GLM is determined by selecting a pdf from Table 6.1, a link function from Table 6.2 and the linear 

predictor from Eq.(6.4). The model’s parameters (i.e. θ0, θ1) are estimated.  

2. New values of the response Y are generated for the available intensity measure levels. To do this, 

the response for the given intensity measure levels follow the fitted GLM.  

3. A GLM with the same pdf and link function is fitted to the generated data points and the procedure 

is repeated a large number of times (e.g., 1000 times).  

4. The obtained response values for each intensity measure level are then ranked, and the specified 

prediction intervals are obtained.  

With regard to the empirical fragility assessment, the binomial distribution captures uncertainty significantly 

smaller than the variability in the grouped data. This over-dispersion can be addressed by the use of the 

quasibinomial distribution (see McCullagh and Nelder, 1989). The use of this distribution leads to identical 

mean fragility curves with the binomial distribution but the confidence intevrals are in this case wider, 

following closer the uncertainty in the data points.  

Alternatively, the user can use a bootstrap analysis (Chandler and Scott, 2013, pp 117-118) to construct the 

confidence intervals (also see Figure 6.3). This technique is very similar to the one mentioned above with the 

only difference being the determination of the new data points: 

1. A GLM is determined by selecting a pdf from Table 6.1, a link function from Table 6.2 and the linear 

predictor from Eq.(6.4). The model’s parameters (i.e. θ0, θ1) are estimated.  

2. New values of the response Y are generated for the available data points by sampling them with 

replacement. This means that each data point can be repeated from no times to multiple times for 

every iteration. 

3. A GLM with the same pdf and link function is fitted to the generated data points and the procedure 

is repeated a large number of times (e.g., 1000 times).  

4. The obtained response values for each intensity measure level are then ranked, and the specified 

prediction intervals are obtained.  

 The user is advised to use the second bootstrap technique, based on the sampling from the raw data with 

replacement in order to appropriately capture the uncertainty in them.   
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Figure 6.1 Generalised linear models for correlating the loss or damage with an intensity measure (See appendices B-D 

for an illustration of these intervals). 

 

### Generalised linear model for loss data (Y>0). 

fit<-glm(Loss~IM, family=Gamma(link=c(ʹidentityʹ,ʹinverseʹ,ʹlogʹ)) 

fit<-glm(Loss~IM, family= inverse.gaussian (link=c(ʹidentityʹ,ʹinverseʹ,ʹlogʹ,ʹ1/mu^2ʹ)) 

fit<-glm(log(Loss)~IM, family=gaussian(link=c(ʹidentityʹ,ʹinverseʹ,ʹlogʹ)) 

 

### Generalised linear model assuming that the building-specific damage data follow a Bernoulli distribution. 

fit<-glm(Y~IM, family=binomial(c(ʹlogitʹ, ʹprobitʹ, ʹlogʹ, ʹcloglogʹ),data=Data)   

 

### Generalised linear model assuming that the grouped damage data follow a binomial distribution. 

fit<-glm(D~IM, family=binomial(c(ʹlogitʹ, ʹprobitʹ, ʹlogʹ, ʹcloglogʹ))   

 

fit<-glm(D~IM, family=quasibinomial(c(ʹlogitʹ, ʹprobitʹ, ʹlogʹ, ʹcloglogʹ))      

   

summary(fit)  # provides a summary of the outcomes of the analysis, including the values of the regression 

parameters and the dispersion. 

## Construction of approximate confidence intervals of the systematic component assuming a binomial distribution 

with a logit link ##function.  

fit.pred<- predict(fit,type=ʹlinkʹ, se.fit=TRUE)    # the standard error and the mean values of the linear predictor is 

provided 

f.upper<-1/(exp(fit.pred$fitted.values-2*fit.pred$se.fit)+1)  # the 90% confidence interval. 

f.lower<-1/(exp(fit.pred$fitted.values+2*fit.pred$se.fit)+1)  # the  5% confidence interval. 
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Figure 6.2 Bootstrap technique resampling from the GLM model.  

 

####### Bootstrap grouped damage data, ignoring the over-dispersion.  

DATA<-data.frame(IM=IM.observed,DS=Collapse.Observed,Tot=TotalBuildingsinBins) 

N<-1000 # number of iterations 

Nim<-100 # the number of new intensity measure levels for which the confidence intervals are estimated.  

newdata<-data.frame(IM=seq(min(DATA$IM,max(DATA$IM),length=Nim)) 

fit<-glm(DS~log(IM),family=binomial(ʹprobitʹ),data=DATA) 

fit.pred<-predict(fit,type="response") 

frg<-array(NA,c(N,Nim)) 

ord.FC<- array(NA,c(N,Nim)) 

mean.FC<- array(NA, Nim) 

for(i in 1:N){ 

  newDATA<- data.frame(IM=IM.observed,DS= rbinom(Nim, size=DATA$Total, 

prob=fit.pred),Tot=TotalBuildingsinBins) 

 # sample from the binomial distribution.  

  fitBoot <- glm(cbind(DS,Total-DS)~log(IM), family=binomial("probit"),data=newDATA) 

  frg[i,]<-predict(fitBoot,newdata=newdata,type="response")  

} 

for (j in 1:Nim){ 

  ord.FC[,j]<-sort( frg[,j]) 

} 

for (j in 1:Nim){ 

  mean.FC[j]<-mean(ord.FC[,j]) 

} 

Up<-N*95/100; Lw<-N*5 /100;  # 95% and 5% confidence intervals  

Up.FC<- ord.FC[Up,] # Fragility curves for the 95%. 

Lw.FC<- ord.FC[Lw,] # Fragility curves for the 5%. 
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Figure 6.3 Bootstrap technique resampling from the raw data.  

6.3.2 Diagnostics – checking the goodness of fit 

Having estimated the unknown parameters for the selected model (see Figure 6.1), the goodness of fit of this 

model should be assessed. A number of significance tests and graphical assessment procedures are available 

and could be used. However, the present guidelines recommend the use of a few graphical procedures, 

which assess the adequacy of the mean and variance function to describe the data, and highlight ways in 

which the model can be improved.  

 

The proposed diagnostic tools which assess the adequacy of the mean and variance function are based on 

the study of Pearson residuals, which are equivalent to the raw residuals of the least squares regression 

analysis: 

 var /

j
Pj

j

y μ
r

μ w


  (6.5) 

where rPj is the Pearson residual for the data point j; wj is a weight for the continuous distributions of the 

response variable, which wj =1 if the distribution of the response variable is continuous and wj = nj (nj is the 

number of buildings in bin j) when this distribution is binomial.  

Standardised Pearson residuals rPsj are calculated as per Eq.(6.6) (see Figure 6.3 for the ‘R’ code used for this 

calculation) and are adopted in the diagnostics presented in the following sections. 

####### Bootstrap accounting for over-dispersion for grouped damage data.  

DATA<-data.frame(IM=IM.observed,DS=Collapse.Observed,Tot=TotalBuildingsinBins) 

N<-1000 # number of iterations 

Nim<-100 # the number of new intensity measure levels for which the confidence intervals are estimated.  

newdata<-data.frame(IM=seq(min(DATA$IM,max(DATA$IM),length=Nim)) 

fit<-glm(DS~log(IM),family=binomial(ʹprobitʹ),data=DATA) 

frg<-array(NA,c(N,Nim)) 

ord.FC<- array(NA,c(N,Nim)) 

mean.FC<- array(NA, Nim) 

for(i in 1:N){ 

  newDATA<-DATA[sample(length(DATA[,1]),replace=T),]  # sample with replacement 

  fitBoot <- glm(cbind(DS,Total-DS)~log(IM), family=binomial("probit"),data=newDATA) 

  frg[i,]<-predict(fitBoot,newdata=newdata,type="response") 

} 

for (j in 1:Nim){ 

  ord.FC[,j]<-sort( frg[,j]) 

} 

for (j in 1:Nim){ 

  mean.FC[j]<-mean(ord.FC[,j]) 

} 

Up<-N*95/100; Lw<-N*5 /100;  # 95% and 5% confidence intervals  

Up.FC<- ord.FC[Up,] # Fragility curves for the 95%. 

Lw.FC<- ord.FC[Lw,] # Fragility curves for the 5%. 

 

 

 



 40 

 1

Pj
Psj

j

r
r

φ h



 (6.6) 

where hj is the leverage, i.e. the diagonal value j of the hat matrix, this value indicates to what extent the 

predicted value for an observation is determined by the observed value for that observation. The 

standardised Pearson residuals follow a normal distribution with mean equal to 0 and variance equal toφ. For 

the damage categorical data which are typically assumed to follow a binomial distribution, standardised 

Pearson residuals follow a normal distribution with mean equal to 0 and variance equal to 1.   

The procedures proposed for the assessment of the goodness of fit of the constructed generalised linear 

models are described in §6.3.2.1-§6.3.2.2. Figure 6.5 presents the procedure in terms of a flowchart. This 

rather mechanistic approach adopted for the description of the diagnostics is meant to highlight commonly 

adopted strategies that can be followed in order to construct a model that represents the available data. The 

suggested tools are not exhaustive, and the needs of some databases may require the tools to be applied in a 

different order than the one presented in Figure 6.5. 

 

 

Figure 6.4 Calculating the Pearson residuals in ‘R’.  

 

 

### Pearson residuals. 

res<-residuals(fit,type=ʹpearsonʹ)           # Pearson residuals. 

#and 

res<-glm.diag$rp                                   # Standardised Pearson residuals.  

#alternatively 

res<-rstandard(fit) 
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Figure 6.5 Flowchart of the parametric regression analysis for the construction of direct vulnerability curves and 

individual fragility curves for a given measure of ground motion intensity. 

Identification of the optimal model: 

Diagnostic    for assessing the goodness of fit of the parametric model: 
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6.3.2.1 Assessing the adequacy of the mean function 

The adequacy of the mean function can be assessed by examining whether the Pearson residuals have mean 

zero. This can be tested by plotting the residuals against the linear predictor (see Figure 6.6). The trend of the 

mean residuals is then identified by fitting a nonparametric mean curve. If the trend is approximately 

horizontal around zero, the linear predictor appears to be a good fit.  

 

 

Figure 6.6 Plots of Pearson residuals against linear predictor (See Appendices B-D for illustrations of these plots). 

 

The presence of a pattern in the plot of the Pearson residuals versus the linear predictor (e.g., the smoothed 

mean curve is parabolic) is an indication that there is: 

i. A nonlinear contribution of an individual explanatory variable. To check this, the Pearson residuals 

should be plotted against IM (see Figure 6.7). The study of the patterns of the nonparametric mean 

curve in these latter graphs can identify potential means of improvement, e.g., the use of a higher 

order for the intensity measure IM, e.g., IM2, or the natural logarithm of this variable, e.g., log(IM).  

 

 

Figure 6.7 Plot of residuals against each explanatory variable. 

 

ii. Influential points. The poor fit of the selected model may be caused by the presence of influential 

points, i.e., points whose removal causes significant difference in the fit of the mean vulnerability 

and fragility curve. Influential points appear to be either unexpectedly distant from the average 

response (termed outliers) or from the average of intensity measure levels (termed points of high 

leverage). The outliers indicate unexpected loss or damage suffered by one or more buildings. This 

might arise due to a processing error or due to some special conditions that lead these buildings to 

be particularly susceptible to high levels of loss/damage. The points of high leverage typically are 

the result of the sparseness of data for high levels of intensity.  

 

Outliers can be identified by checking for abnormally large residuals in the plots of the standardised 

Pearson residuals against the linear predictor (Figure 6.6). 

 

Influential points can also be detected (see Figure 6.8) by examining the influence of deleting each 

data point in the set of model parameters. This is achieved by plotting the Cook’s distance against 

the index of observations. Cook’s distance is estimated as: 

  

### Plots of residuals against linear predictor. 

f<-predict(fit, type=ʹlinkʹ); plot(f, res);            # Plot of the residuals against the linear predictor. 

lines(lowess(f, res), col='red',lty=1,lwd=2)   # smooth mean curve. 

abline(0,lty=2);   identify(fitted(fit), res)         # Identify potential outliers. 

### Plot of residuals against each explanatory variable. 

plot(IM, res)                                                         # Plot of the residuals against the explanatory variable. 

lines(lowess(IM, res), col=ʹredʹ,lty=1,lwd=2) 

abline(0,lty=2)                                                       # An auxiliary horizontal curve with y=0. 
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where ˆ
jY  is the prediction from the GLM for observation j;  

ˆ
j i

Y is the prediction for observation j from a 

refitted model which omits observation i; CD is Cook ‘distance.  

 

 

Figure 6.8 Graphical assessment for outliers and influential data points (The reader is referred to Appendix D for an 

illustration of these plots). 

 

Data points identified as potentially influential via the aforementioned procedures can then be 

removed and the same statistical model fitted to the remaining data points. The new fit is compared 

to the old fit. If the difference is large, then these points are truly influential and should be reported.  

 

Note: Influential points or outliers, especially if there are more than one, can be removed ONLY if the 

analyst can justify that these points are not representative of the population, e.g., they are grouped 

damaged data based on a small sample of buildings (<20). If the removal of the influential points 

cannot be justified, parametric robust regression analysis should be adopted instead (see §6.3.5).    

 

iii. An inadequate link function. The suitability of the link function can be investigated by the use of the 
Akaike Information Criterion (see §6.3.3) values for each model (see Figure 6.9).  

 

 

Figure 6.9 Assessing the link function (The reader is referred to Appendix B for an illustration for this sensitivity 

analysis). 

 

If the damage or loss data appear not to increase strictly monotonically and neither the transformation of the 

explanatory variables nor the presence of influential points can explain the trend, a nonparametric model 

should be fitted to the data according to the provisions outlined in §7 and §8.  

 

## Index plot of Cook’s distance 

plot(fit, which=4) 

or 

plot(cooks.distance(fit)); identify(cooks.distance(fit)) 

  

## an example of the use of AIC. 

Fit1<-glm(D~IM, family=binomial(ʹlogitʹ)  

Fit2<-glm(D~IM, family=binomial(ʹprobitʹ)  

Fit3<-glm(D~IM, family=binomial(ʹlogʹ)  

Fit4<-glm(D~IM, family=binomial(ʹcloglogʹ)  

 

AIC(Fit1); AIC(Fit2); AIC(Fit3); AIC(Fit4); 

 

# The link function which fits the data best corresponds to the model with the smallest AIC.  
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6.3.2.2 Assessing the adequacy of the variance function 

The ability of the selected variance function to capture the variability in the damage or loss data can be 

assessed by examining whether the variance of the residuals is constant (homoscedasticity check). The 

homoscedasticity of the residuals can be assessed by studying plots of the standardised Pearson residuals 

against the linear predictor (see Figure 6.5). If the scatter of these residuals appear to increase or decrease 

systematically with an increase in the linear predictor, then the residual variance cannot be considered 

constant, which means that the variance function is inadequate.  

The homoscedasticity of the standardised Pearson residuals can be alternatively be assessed by a scale-

location plot, i.e., the square root of the absolute values of the standardised residuals are plotted against the 

linear predictor (see Figure 6.10). A nonparametric mean curve is fit to the values of the y-axis. If the curve is 

horizontal, the homoscedasticity assumption holds. By contrast, a strong correlation between the two 

variables indicates that the assumption is violated.   

 

 

Figure 6.10 Scale-location plot. 

 

Heteroskedasticity of the residuals indicates that the variance of the selected distribution is unable to 

capture the variability in the data. An inadequate variance function could be caused by a number of reasons:  

 

i. Inappropriate link function (see §6.3.2.1.iii). 

 

ii. Influential points (see §6.3.2.1. ii).  

Note: Outliers can also be identified in the scale location plot (Figure 6.9). 

 

iii. An inappropriate probability density distribution of the response variable (for loss data). The 

distribution of loss which fits the data best can be identified by a sensitivity analysis using the AIC 

values of the models.  

 

iv. Over-dispersion (for grouped data). The variance of the standardised Pearson residuals of damage 

data is unity if the damage data follow a binomial distribution. However, a large number of residuals 

outside the 99% confidence interval [-3,3] in Figure 6.6 or non-constant scatter of the residuals 

indicate that the data do not follow a binomial distribution. Over-dispersion can be taken into 

account in the construction of the confidence intervals following the procedure outlines in §6.3.1 

(See Appendix B and C). 

 

v. Missing explanatory variables. Whether important explanatory variables are missing can be assessed 

by adding explanatory variables, (e.g., soil conditions, building typology), and assessing their 

significance by a likelihood ratio test, which compares the more elaborate model with the simpler 

one (Figure 6.11). 

  

### Scale-Location plot 

library(boot); plot(predict(fit, type=ʹresponseʹ), sqrt(abs (res) ))                            # the scale-location plot 

lines(lowess(predict(fit, type=ʹresponseʹ), sqrt(abs (res),col='red',lty=1,lwd=2)  # a nonparametric mean curve 

identify(predict(fit, type=ʹresponseʹ), sqrt(abs (res))                                             # identify potential outliers. 
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Figure 6.11 Likelihood ratio test for nested models. 

 

If multiple explanatory variables are included, interactions can exist between these variables, e.g., 

the soil conditions affect the levels of intensity. This interaction should be accounted for in the 

model and their significance should also be tested by comparing the difference between the models 

with and without the interaction (see Figure 6.12).  

 

 

Figure 6.12 Likelihood ratio test assessing for the significance of interactions. 

 

Note: The incorporation of additional significant variables associated with the seismic characteristics 

indicates that the ground motion intensity measure is insufficient. In these cases, the analyst should 

perhaps use a different intensity measure following the provisions of §4.  

Note: The building subclasses can be modelled by a dummy variable (class=C1, C2, C3, ... ,CnClass). 

Note: In some cases, especially if the curves appear to be almost horizontal the analyst is advised to 

examine whether the explanatory variable is significant to detect the trend in the data or it is not 

significantly different than a horizontal curve which cannot depict ay trend in the data. In this case, 

they are advised to use the likelihood ratio test outlines in Figure 6.11.  

6.3.3 Identification of the optimal model 

The diagnostics described in §6.3.2 highlight the goodness of fit (i.e., plots of residuals without patterns) of 

each chosen model to the data. Where more than one model has been tried for a given IM and is found to 

## Examine whether the selected intensity measure type is a significant explanatory variable. We compare 

##the model with the intensity measure type (fit) against the simpler model having only an intercept. 

 

### Likelihood-ratio-test of the hypothesis: ‘The extended model is not different to the reduced model’. 

anova(fit,test= ʹChisqʹ) 

 

##If p<0.05 then there is strong evidence that the hypothesis is rejected, therefore the selected intensity 

##measure type is an important explanatory variable.  

 

## Accounting for more explanatory variables, e.g. soil conditions, in the model. 

fit.ext<-glm(D~IM+S, family=binomial(ʹprobitʹ) 

 

## Likelihood-ratio-test of the hypothesis: ‘The extended model is not different to the reduced model’. 

anova(fit,fit.ext,test= ʹChisqʹ) 

 

If p<0.05 then there is strong evidence that the hypothesis is rejected, therefore the added variables are 

significant.  

 

## Accounting for possible interactions in the model. 

fit.int<-glm(D~IM+S+IM*S, family=binomial(ʹprobitʹ)) 

 

## Likelihood-ratio-test of the hypothesis: ‘The model with the interaction is not different to the simpler 

##model’. 

anova(fit.ext,fit.int) 

 

##If p<0.05 then there is strong evidence that the hypothesis is rejected, therefore the interactions are 

##important.  
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satisfy the goodness of fit tests, the analyst should select one to carry forward in the risk assessment by 

adopting either of the following procedures: 

 

 Select the simpler model. For example, if the choice is between a gamma model with squared 

explanatory variable and a linear predictor using an inverse Gaussian distribution, then the second 

should be adopted.    

 Use the AIC introduced by Akaike (1974) to determine which model provides the optimal fit to the 

data. The general function of the AIC is: 

 

2log( ) 2(number of parameters)AIC likelihood    (6.8) 

 

The value of AIC is provided in the summary of the outcomes of the regression analysis. The 

regression model which provides the optimal fit to the data is the model with the smallest AIC value. 

 

6.3.4 Construction of prediction intervals 

Prediction intervals account for both the uncertainty in the mean estimate of the direct vulnerability curve (

- ˆ
j jμ μ ), presented by the confidence intervals (see §6.3.1), as well as the uncertainty of the mean curve 

predicting the observed data ( - ˆ
j jY μ ).   

If an acceptable parametric vulnerability model is constructed following the procedures outlined above, its 

prediction intervals for the available intensity measure levels can be estimated by the bootstrap technique. 

The bootstrap technique can be found in Chandler and Scott (2013, pp 117-118). 

It is important to note that the prediction of the response variable is valid only for the range of the available 

values of predictors (i.e., range of IM values). Predictions for values of the explanatory variables outside this 

range should be avoided.  

6.3.5 Robust regression 

Robust regression analysis should be used in cases where influential points have been identified by the 

diagnostics (§6.3.2) but cannot be removed. This method essentially reduces the influence of the influential 

points on the mean curve. The ‘R’ code for carrying out robust regression is presented in Figure 6.13. 

 

 

Figure 6.13  Robust regression. 

6.3.6 Generalised linear mixed models (GLMM) for data from multiple events 

Generalised linear mixed models should be used when data from multiple earthquakes are present. For these 

models, earthquake is considered an explanatory variable. However, we are not interested in the effect of 

the individual events, e.g., 1978 Thessaloniki, on the vulnerability or fragility curves. Instead, mixed models 

### Robust regression 

library(robust) 

Rfit<-glmRob(D~IM, family=binomial). 

### Diagnostics 

plot(Rfit, which.plot=2) # deviance residuals vs fitted values 
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consider that the available earthquakes are randomly selected from a large population of seismic events and 

they model the random effect of earthquake to the construction of these curves.  

The construction and fit of the mixed models is presented in Figure 6.14. These models can be compared 

with their GLM counterparts through the use of the AIC.  

 

Figure 6.14 Generalised linear mixed models. 

6.4 Fitting a Parametric GLM: The Bayesian Approach (Level 2) 

Bayesian statistical model fitting approaches require a strong statistical background. The main difference 

with the maximum likelihood approach (see §6.3) is that the GLM parameters are considered as random 

variables whose distribution is determined by the available data as well as any prior knowledge, obtained 

from existing vulnerability or fragility curves of similar building classes. Bayesian approaches are useful for 

the estimation of the GLM parameters for small sample sizes (i.e. 30 < NT < 100) as well as the parameters of 

increased complexity GLMs which account for measurement error in response or intensity measure levels as 

well as the random effects introduced by the use of databases from multiple earthquakes. Appendix E 

illustrates a simple application of this approach.  

6.4.1 Estimation of the GLM parameters 

Bayesian analysis estimates the posterior distribution of the model parameters, instead of their point 

estimate (as is done in the maximum likelihood approach). The posterior distribution of these parameters is 

proportional to the likelihood function and to their prior distribution: 

         
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| , ; , | ,
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j j

j
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
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The denominator in the expression of Bayes theorem (see Eq.(5.3)) is a normalising constant component, and 

its determination is not required for the Bayesian model fitting analysis. Discrete approximations of the 

posterior distribution are obtained by using the Gibbs sampling method (for more info see Kruschke, 2011). 

According to this method, the values of the posterior distribution are generated by sampling from the 

conditional probabilities of the variables present in the right hand side of Eq.(6.9). This is achieved by a 

Markov Chain Monte Carlo (MCMC) algorithm, based on the construction of one or more chains of sampled 

values, where a realisation j depends on the previous realisation j-1. Initial values for the model parameters 

need to be provided (preferably close to the values of the posterior distribution), and a large number of 

iterations should be allowed for to obtain convergence.  

library(glmmML) 

 

### Generalised linear model assuming that the building-specific damage data follow a Bernoulli distribution 

fit_mix<-glmmML(Y~IM, family=binomial, cluster=event, data=Data) 

 

library(glmmPQL) 

 

### Generalised linear model assuming that the building-specific damage data follow a Bernoulli distribution 

fit_mix<-glmmPQL(Y~IM, family=binomial, random=~event, data=Data) 

 

summary(fit_mix)   
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An example of the Bayesian regression procedure, as performed in R, is provided in Figure 6.15. It should be 

noted, that in this example a weakly informative prior distribution has been used. For large numbers of 

observations, the standard error obtained is very close to the asymptotic values obtained by the maximum 

likelihood approach in §6.3.1.   
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Figure 6.15 Bayesian model fitting analysis. 

### Construction of the posterior distribution of the parameters of a logit model: 

library(R2OpenBUGS) 

library(BRugs) 

 

## Construction of the model 

BayesModeldef <- function() { 

   

  for (i in 1:nData) {                 # Likelihood Function 

   y[i] ~ dbin( p[i],m[i] )                                       

   logit(p[i]) <-  th0.star + th1*(x[i]-mean(x[])) # Standardising the predictor around the mean in order to reduce the 

## aucorrelation between the parameters and ensure faster 

##convergence.   

    }                                         # Prior probabilities 

  th0<-th0.star-th1*mean(x[]) 

  th0.star ~ dnorm( 0 , 1.0E-12 )  

  th1 ~ dnorm( 0 , 1.0E-12 )      #   The variability of the prior distribution of the parameters is modelled in terms of the                                                                

#    precision=1/variance 

write.model(BayesModeldef,"BayesModel.txt") 

modelCheck( "BayesModel.txt" ) 

 

## Observed Grouped Data  

nData<-length(D$IM) 

nPredictors<-(1) 

zy<-D$DSi 

zx<-D$IM 

tot<-(D$DSi+D$NoDSi) 

 

## Initial values for the four chains. Note that the values differ significantly for each chain.  

BayesInits <- list(list(th0.star= rnorm(1,0,12) ,th1=rnorm(1,0,12) )) 

 

##Get the data in BUGS: 

BayesModelData <-list(x=zx,m=tot,y=zy,nData=n) 

 

## Run OpenBugs 

a <- bugs(data=BayesModelData, 

                   n.chains=1,                                                       # 1 Marcov chain. 

                    inits=BayesInits,                                              #  Initial values for each chain. 

                     n.burnin=500,                                                     # 500 burn-in points.  

                      n.iter=5000,                                                   # Total number of iterations.  

                       parameters.to.save=c("th0","th1","mu"),      # parameters for which the mean values and inference is 

##required. 

                        model.file="BayesModel.txt", 

                         n.thin=1,             # Thinning, i.e., save the value of the posterior distributions every 100th iterations for 

##each chain.   

                          debug=TRUE) 

 

plot(a) 
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6.4.1.1 Assessing the performance of the numerical algorithm used in the Bayesian procedure  

The performance of the Markov Chain Monte Carlo algorithm should be examined in order to establish the 

convergence of the numerical procedure and the absence of autocorrelation in the chains. The sensitivity of 

the procedure to the prior distribution should also be examined.   

 

i. The validity of the results of a Bayesian procedure depends on the convergence of its numerical 

procedure. The convergence can be assessed by plotting the value of the GLM parameters against 

their corresponding iterations (see Figure 6.16). The convergence is typically highly dependent on 

the initial values, which are not always close to the values of the posterior distribution. Therefore, 

the convergence rate can be improved by reducing the sensitivity to the initial values through 

assuming a burn-in period, i.e., through determining the number of initial samples in each chain 

which should be ignored (see Figure 6.15). The sensitivity to the initial values of the parameters can 

be examined by considering 3 or 4 chains with widely different initial values.  

ii. The MCMC algorithm produces samples of the posterior distribution of the model parameters that 

depend on previous values. Autocorrelation is caused when the model parameters are highly 

correlated. This raises the question on whether autocorrelation in each chain, leads to 

unrepresentative estimates of the posterior distribution. This can be assessed by the autocorrelation 

plots (see Figure 6.16). High autocorrelation is present if a number of successive positive or negative 

values are noted in adjoining lags. The influence of autocorrelation can be typically reduced by the 

re-parameterisation of the GLM. An example of this technique can be found in Figure 6.15.   

iii. The shape of the posterior distribution of the regression parameters often depends on the 

characteristics of the prior distribution. The effect of the prior distribution on the results can be 

assessed by comparing this distribution with the posterior. If the two appear to be very close, the 

data are not very informative. In these cases, the selection of the prior is important and the analyst 

should explain the rationale behind the selection of this distribution. Ideally, a prior distribution 

should adequately reflect the belief the analyst has on the values of the parameters. This distribution 

can be non-informative (very large uncertainty) if the analyst has no prior knowledge and 

informative (if the analyst has some prior knowledge). The shape of the selected distribution can also 

affect the results. For example, the selection of a uniform prior assumes that the probability of 

selecting values outside the predetermined range is zero. This could have a profound impact on the 

posterior distribution in certain cases. In addition, the use of prior distribution which allow for 

negative values although the parameter is expected to be positive is also problematic.  
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Figure 6.16 Bayesian model fitting approach diagnostics (see Appendix E for an illustration of these diagnostics). 

6.4.1.2 Assessing the goodness of fit of the model 

Apart from the above diagnostics presented for assessing the MCMC algorithm, the analyst is advised to 

examine the whether the fit is acceptable. This can be assessed by plotting the observed response against 

the predicted and compare their trend compared to the 45 degree line. If the plotted data appear to be 

randomly distributed and reasonably close to the 45 degree line, the model is acceptable.     

6.4.2 Identification of the optimal model 

The proposed parametric model fitting techniques may result in more than one adequate model for a given 

IM. In this case, the analyst should select one, by using the Bayesian factor (BF) to compare the models:  
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where MA, MB is the model A and B respectively.  

6.4.3 Construction of prediction intervals 

The predictive probability of the fitted curve for new data can be estimated as: 

     | , ; ,Nf y y im L y im f im θ  (6.11) 

where yN a set of new response data.   

6.4.4 Combining multiple databases of post-earthquake survey data 

The Bayesian approach can be used for combining multiple databases of post-earthquake survey data, e.g. 

databases E1, E2, E3 etc. Assuming that the observations in these databases are independent, multiple 

Bayesian model fitting analyses can be performed in order to obtain the final vulnerability and fragility 

relationship. This is done through the following steps: 

 

Step 1:  Direct vulnerability and fragility curves are constructed using Database E1 assuming appropriate prior 

distributions of the parameters. Non-informative distributions should be selected if the analyst has 

no prior knowledge and information otherwise.  

Step 2: New direct vulnerability and fragility curves are constructed by using the distributions of the model 

parameters obtained in Step 1 as prior distribution in this step and updating them using the 

observed data from Database E2.  

Step  3:  The procedure is repeated for all available databases. 

### Bayesian Regression Diagnostics. 

 

## Testing the convergence. 

par(mar=c(4,3,2,2)) 

plot(as.mcmc.list(a),smooth=FALSE) 

 

## Testing the autocorrelation. 

plot(acfplot(as.mcmc.list(a))) 
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Within this process it is advised that the largest database be used for Step 1. Small databases with non- 

informative prior distributions may result in problems with the convergence of the MCMC algorithm.  

6.4.5 Modelling measurement error 

Measurement error in response (see §3.3.2.4) and explanatory variables (see §4.4.2) can potentially affect 

the shape of the mean vulnerability and fragility curves as well as their confidence intervals. If they are 

significant, the analyst is advised to account for these errors in the construction of GLMs and compare the 

obtained vulnerability or fragility curves with their corresponding obtained without explicitly account for the 

measurement error. Brief guidelines are provided here regarding the modelling of the misclassification error 

in the damage assessment and the measurement error in the intensity measure levels.  

6.4.5.1 Modelling misclassification error in empirical damage data 

The misclassification error in damage (see §3.3.2.4) is nontrivial if the damage observations derive from 

assessments made using remote sensing techniques. Misclassification errors can also be found, (although no 

study has to date attempted their quantification), in databases deriving from rapid surveys due to the speed 

with which the surveys are conducted or misunderstanding of the survey form. The method presented below 

for modelling this error in the fragility assessment assumes that this error is non-differential, i.e., 

independent from the ground motion intensity.  

The proposed procedure is based on expressing the observed damage in a binary form, Y (see Eq.(5.1)). The 

analyst is expected to have an idea about the size of the error, e.g., by comparing the contaminated database 

with independent accurate surveys and to have assessed the performance of the former through the 

estimation of its specificity (i.e., the probability that the observed response is 1 given that the ‘true’ response 

is 1) and sensitivity (i.e., the probability that the observed response is 0 given that ‘true’ response is 0), as per 

Eq.(6.11). The misclassification error in the observations can then be written as: 
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The values of the probabilities in Eq.(6.12) are considered known and they can be incorporated in the 

likelihood function as: 
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where the mean μ is obtained from: 
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 (6.14) 

and where the probability P(zj=1|imj): 

  0 11|j j jg P z im θ θ im   
  

 (6.15) 

Assuming statistically independent observations and negligible measurement error in intensity measure 

levels, a Bayesian procedure can be used to estimate the inference for the regression parameters. The 

analyst is referred to the work of McInturff et al. (2004).  
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6.4.5.2 Modelling the measurement error in intensity measure levels 

The measurement error in intensity measure levels, as described in §4.4.2, typically occurs in cases where, (in 

the absence of ground motion records), the intensity is determined through ground motion prediction 

equations. This error is considered non-differential, i.e., the error does not depend on the response variable, 

and is incorporated in the construction of vulnerability and fragility curves through a Bayesian approach. A 

classic model is selected to express the measurement error where the observed intensity level, IM, is 

estimated as a function of the ‘true’ IM  in the form: 

     ln ln , ,T TIM IM σ ε f M R S σ ε     (6.16) 

where σT is the standard deviation of the GMPE and ε follows a normal distribution N(0,1). The new model is 

obtained by expanding the simple model, presented in Figure 6.16, in order to account for the error model 

as: 
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where y the response variable; x is the ground motion intensity; θ=[θ0, θ1, ...] is the vector of regression 

parameters; ξ is a vector of parameters which describe the relationship of the true and observed IM; π is the 

vector of the parameters of the prior distribution of the observed IM. Therefore, the posterior distribution is 

estimated by the MCMC algorithm which models the following joint distribution (see Richardson and Gilks, 

1993): 
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(6.17) 

6.4.6 Modelling the random effect from multiple earthquakes 

Instead of using the generalised linear mixed models from the ‘R’ package (see §6.3.6), the analyst could 

construct mixed models using a Bayesian framework. The latter approach is more flexible as it can be 

expanded to incorporate the measurement error in the response or the intensity measure. This procedure is 

novel and the user is referred to the tutorials in OpenBugs (Lunn et al., 2009) for more information. 

 



 54 

7 Fitting Generalised Additive Models (Level 2) 

7.1 Introduction 

Generalised additive models (GAM) are recommended in §5 for use when the trend in damage or loss data is 

not-strictly monotonically increasing with the ground motion intensity. These models are an extension of the 

GLMs (Hastie and Tibshirani, 1986), outlined in §6, the difference being that the assumption of linearity is 

relaxed.  

Similar to GLMs, generalised additive models are constructed by: 

 Selecting the probability distribution function of the response variable conditioned on the 

explanatory variables, following similar procedures to GLM (see §6).   

 Determining the systematic component, which can be written as:  
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    (7.1) 

where s0, sj(.) are smoothing functions. Guidance is provided below for the determination of the 

parametric form and the degree of smoothness of these functions required for the estimation of the 

shape of the generalised additive models. The smoothing functions are expressed in the form: 
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where q is the total number of the smoothing parameters; bij(.) is a basis function and βij is an 

unknown parameter. The basis function is expressed here in terms of a spline, due to its ability to 

account for dependencies in the damage or loss observations (Wood, 2006). The splines are made of 

sections of a function (typically 3rd degree polynomial) and are joined together at specified points, 

termed knots, in order to form a continuous regression curve. The parameters βij, which are 

different in each section, are estimated from a penalised likelihood method (lp(.)), as: 
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 
β β β J  (7.3) 

where λj is a non-negative parameters which adjusts the degree of smoothing, J is a roughness 

penalty component (for further information read Hastie and Tibshirani, 1990).  

In what follows, the analyst is provided with guidance regarding the determination of the random and 

systematic component of the GAM, the estimation of its parameters and diagnostic tools to assess its 

goodness of fitted as depicted in Figure 7.1. The provided guidance is based on the ‘mgcv’ package (Wood, 

2014). An example application is provided in Appendix F. 
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Figure 7.1 Flowchart of the GAM regression analysis for the construction of direct vulnerability curves and individual 

fragility curves for a given measure of ground motion intensity.   
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7.2 Construction of a Generalised Additive Model, GAM  

7.2.1 Determination of the systematic component 

Similar to GLMs, the simplest form of the systematic component, η, of GAMs is a function of the intensity 

measure IM, expressed in the form:   
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where bj(IM) is the smoothing basis function, expressed in terms of a cubic regression spline, favoured in the 

literature (e.g., Wood, 2006). These curves consist of piecewise 3rd degree polynomials which are joined at 

points termed knots. The dimension k of the basis function determines the number of knots, (and thus the 

number of piecewise curves fitted to the data points). This effectively determines the number of parameters 

required to fit the constructed GAM. In general, the smaller the number of knots selected by the analyst, the 

smoother the resulting curve. However, the analyst is advised to examine the impact of k on the fit. If the 

number of parameters is very close to the number of observations, selected model is over-fitted.  

7.2.2 Selection of a probability distribution for the response variable 

The probability distributions of loss or damage presented in §6.2.2 can also be used in the case of the 

generalised additive models. 

7.2.3 Selection of link function 

The link functions presented in §6.2.3 are also suitable for the GAM models, and the reader is referred to this 

section.    

7.3 Estimation of the Parameters in the Nonparametric Model  

The estimation of the model parameters, θj, depends on the prior estimation of the smoothing parameter, λ. 

7.3.1 Estimation of the smoothing parameter, λ 

The value of the smoothing parameter, λ, is important for the determination of the GAMs. For λ→∞, the 

likelihood function (Eq.(7.3)) is maximised within the roughness penalty component equal to zero (Green, 

1987). Therefore the additive model is effectively turned into a GLM model, which is unable to capture the 

non-strictly monotonic trends in the data. By contrast, λ→0 results in curves which are very wiggly indicating 

perhaps over-fitted models. The optimum value of this parameter is estimated by data-dependent 

procedures which are included in the adopted R package (see Figure 7.2). The selected procedure depends 

on the distribution of the response given levels of intensity is known of not. If distribution has known 

dispersion (i.e. for the binomial or Bernoulli distribution) then the procedure of un-biased risk estimator is 

adopted. Alternatively, the cross-validation or generalised cross-validation procedure should be selected. The 

user is referred to Wood (2006) for more information regarding the two procedures.  

7.3.2 Estimation of the parameters of the GAM 

Having determined the smoothing parameter λ, the nonparametric mean vulnerability curve and fragility 

curve (for each damage state) are constructed by the numerical estimation of the unknown model 

parameters, θj, of Eq.(7.1). This is done by maximising the penalised likelihood function using a penalized 

iterative least squares algorithm (see Figure 7.2).  

The confidence intervals around the systematic component can be estimated from the standard errors (see 

Figure 7.2) provided by ‘R’ (R Development Team, 2008).  
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Figure 7.2 Penalised maximum likelihood determination of GAM models and their confidence intervals (Wood, 2006). 

 

7.3.3 Assessing the goodness of fit of the GAM 

Similar to the case for generalised linear models, the assessment of the goodness of fit of the generalised 

additive models is performed here through, mainly, graphical diagnostics tools. The diagnostics tools are 

mostly, but not exclusively, based on the study of the Pearson residuals (Eq.(6.5) see Figure 7.3), which 

should have zero mean and constant standard deviation if the selected GAM model is a good description of 

the available data. Figure 7.1 presents (a rather mechanistic) flowchart of the procedure that can be adopted 

in order to assess the fit of the selected generalised additive model. Recommendations regarding the 

assessment of the mean and variance function of the fitted model follow.  

 

 

Figure 7.3 Calculating the Pearson residuals in ‘R’ (see Appendix F for an illustration of these residuals). 

 

7.3.3.1 Assessing adequacy of the mean function 

The goodness of fit of the mean function can be assessed by: 

i. Examining the robustness of the model to the procedure adopted for the determination of λ and the 

dimension k. The robustness of the smoothness selection procedure should be examined (see Figure 

7.4). A sensitivity analysis is performed by selecting different procedures depending on whether the 

### Penalised maximum likelihood determination of GAMs, using a cubic regression spline. 

library(mgcv) 

 

fit<-gam(Loss~s(IM,bs=ʹcrʹ), family=Gamma(link=c(ʹidentityʹ,ʹinverseʹ,ʹlogʹ),method= ʹGCV.Cpʹ) 

fit<-gam(Loss~ s(IM,bs=ʹcrʹ), family= inverse.gaussian (link=c(ʹidentityʹ,ʹinverseʹ,ʹlogʹ,ʹ1/mu^2ʹ),method= ʹGCV.Cpʹ) 

fit<-gam(log(Loss)~ s(IM,bs=ʹcrʹ), family=gaussian(link=c(ʹidentityʹ,ʹinverseʹ,ʹlogʹ),method= ʹGCV.Cpʹ) 

 

### Generalised additive model assuming that the building-specific damage data follow a Bernoulli distribution. 

fit<-gam(Y~ s(IM,bs=ʹcrʹ), family=binomial(c(ʹlogitʹ, ʹprobitʹ, ʹlogʹ, ʹcloglogʹ), method= ʹUBREʹ)   

 

### Generalised additive model assuming that the grouped damage data follow a binomial distribution. 

fit<-gam(D~ s(IM,bs=ʹcrʹ), family=binomial(c(ʹlogitʹ, ʹprobitʹ, ʹlogʹ, ʹcloglogʹ),method= ʹUBREʹ)      

 

summary(fit)  # provides a summary of the outcomes of the analysis. 

 

## Construction of Bayesian confidence intervals of the mean regression curve.  

fit.pred<- predict(fit,type=ʹlinkʹ, se.fit=TRUE)    # the standard error and the mean values of the linear predictor is 

provided if the 

                                                                     # logic link function is selected.  

f.upper<-1/(exp(fit.pred$fitted.values-2*fit.pred$se.fit)+1)  # the 90% confidence interval. 

f.lower<-1/(exp(fit.pred$fitted.values+2*fit.pred$se.fit)+1)  # the  5% confidence interval. 

 

 

### Pearson residuals. 

library(mgcv) 

res<-residuals(fit,type=c(ʹpearsonʹ))           # Pearson residuals. 
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dispersion in unknown or known. The model is considered robust to smoothness selection if the 

changes in the effective degree of freedom, which is a function of the smoothing parameter λ, are 

small.   

 

 

Figure 7.4 Checking the robustness of model to smoothness selection procedure.  

 

In order to check the robustness of the number of knots k, the GAM model is re-fit by considering a 

larger (e.g., twice as large) value for k. The model is considered robust if the changes in the results 

are small, (see Figure 7.5.).   

 

 

Figure 7.5 Checking the robustness of model to the number of knots. 

 

Note: The number of regression parameters, k, should not be as large as the number of observations 

in order to avoid over-fitting.  

ii. Examining whether the residuals have mean zero. This can be tested by plotting the residuals 

against the systematic component, η (see Figure 7.6). However, this plot may not be as informative 

as for the assessment of the generalised linear models, given that GAM generally follow the trend in 

the data.  

iii. Plotting the observed data points against their corresponding fitted values. If the points are evenly 

spread and close to the diagonal trend, without highlighting a pattern or influential points (see 

§6.3.2), the model can be considered satisfactory (see Figure 7.6). Note: If the points appear to be 

non-randomly scattered, then more explanatory variables needs to be added to the model. 

 

Figure 7.6 Plot of the observed data points against their corresponding fitted values. 

 

Unsatisfactory mean functions can be attributed to: 

i. The presence of influential points. If potential influential points are identified in the residuals in 
Figure 7.3, the analyst should remove them and repeat the model fitting procedure. If the two 
curves (i.e., with and without the potentially influential points) appear to deviate significantly, then 
the points are indeed influential. The analyst may remove them only if there is enough information 
to justify this action. If no such information exists, robust regression analysis should be used (see 
§7.3.5).  

ii. Inadequate link function. A sensitivity analysis using different functions (see Table 6.2) should be 
performed in order to identify a potentially better GAM model.  

iii. Missing explanatory variables. In general, adding more explanatory variables, e.g., soil conditions, 

building typology, improves the fit of a model. Whether this improvement is significant is assessed 

### Robustness of model to smoothness selection procedure.  

fit<-gam(Loss~s(IM),family=Gamma(link=log),method= ʹGCV.Cpʹ) 

 

### Checking the robustness of model to the number of knots.  

fit<-gam(y~s(IM, k=c(10,20) ,family=Gamma(link=log), method= ʹGCV.Cpʹ) 

### Plot of observed data against the corresponding fitted values.  

plot(fitted(fit), y) 

lines(c(0,max(y)),c(0,max(y)))      # diagonal curve 
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by preforming a likelihood ratio test, which compares the more elaborate model with the simpler 

one (see Figure 7.7). 

  

 

Figure 7.7 Chi-square test for comparing a nested GAM models. 

 

If more than one explanatory variable are included, interactions between these variables should be 

considered (e.g., the soil conditions affect the levels of intensity). This interaction should be 

accounted for in the model and their significance should also be tested by comparing the difference 

between the models with and without the interaction (see Figure 7.8). Note: The incorporation of 

additional significant explanatory variables associated with the seismic characteristics indicates that 

the ground motion intensity measure is insufficient. In these cases, the analyst should perhaps use a 

different intensity measure following the provisions of Chapter 4.  

 

 

Figure 7.8 Likelihood ratio test assessing for the significance of interactions. 

7.3.3.2 Assessing adequacy of the variance function 

The ability of the selected variance function to capture the variability in the damage or loss data can be 

assessed by examining whether the variance of the residuals is constant (i.e., homoscedasticity assumption). 

The homoscedasticity of the residuals can be assessed by the study of the plots of the residuals against the 

systematic component (see Figure 7.3). If the scatter of the residuals appears to increase or decrease 

systematically with an increase of the linear predictor, then the residual variance cannot be considered 

constant. In addition, if for grouped damage data a large number of residuals lies outside the 99% confidence 

interval [-3,3] in Figure 7.3 and/or there is a non-constant scatter of the residuals, then the data may not 

follow a binomial distribution. 

The aforementioned undesirable cases indicate that the variance of the selected distribution is unable to 

capture the variability in the data. An inadequate variance function could be caused by a number of reasons:  

 

i. Influential points (see § 7.3.3.1.v).  

ii. Inappropriate link function (see § 7.3.3.1.vi). 

iii. Missing explanatory variables (see § 7.3.3.1.vii).  

iv. Inappropriate probability density distribution of the response variable (for loss data). The distribution 

of loss which fits the data best can be identified by a sensitivity analysis where the three 

distributions are selected and the goodness of fit of each model is assessed. 

## ANOVA test of hypothesis: ‘The GAM model, fit_nl, is not significantly different than the GLM, fit.’ 

anova(fit_nl, fit, test=ʹChisqʹ) 

 

#If p<0.05 then there is strong evidence that the hypothesis is rejected, therefore the GAM model fits the 

#data better than its GLM counterpart. 

 

## Accounting for possible interactions in the model. 

fit.int<-gam(D~s(IM)+S+IM*S, family=binomial(ʹprobitʹ)) 

 

## Testing the hypothesis: ‘The model with the interaction is not different to the reduced model’. 

anova(fit_int, fit, test=ʹChisq ʹ) 

 

If p<0.05 then there is strong evidence that the hypothesis is rejected, therefore the interaction is important.  
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v. Over-dispersion (for grouped damage data). This can be attributed either to the presence of too 

many response values with yj=zero values, or to potential spatial dependencies among the buildings 

(see the discussion in §6.3.2.2). The latter can be taken into account by the use of mixed models, 

presented in §7.6. 

vi. Heteroskedasticity (for a continuous response variable). This can be improved through the use of 

mixed models, presented in §7.3.6.  

 

If the aforementioned strategies fail to produce a satisfactory variance function, then the use of a “kernel 

smoothing procedure”, which does not depend on a specific variance function, is recommended (see §8).   

7.3.4 Identification of the optimal model 

The diagnostics of §7.3.3 may highlight a good fit (i.e., plots of residuals without patterns) of more than one 

GAM model for a given intensity measure type. Similarly to the procedures proposed for the generalised 

linear models, the analyst should select the model which: 

 Has the smallest AIC (see §6.3.3).  

 

The importance of the nonlinearity captured by the optimal GAM model compared with a corresponding 

linear GLM model should also be examined by (see Figure 7.9): 

 Comparing the AICs of the GLM and GAM models fit. The model with the lower value of AIC is 

considered the best.   

 If the GAM model includes the GLM (i.e. both models have the same link function and the same 

distribution of the response for given IMLs), a Chi-square test is performed, which tests the 

hypothesis that the GAM model is not significantly different than the GLM. If p<0.05, there is 

sufficient evidence to reject the hypothesis. Therefore, in this case, the GAM fits the data best. 

 

 

Figure 7.9 Comparing a GLM and GAM models fit to the same database. 

7.3.5 Robust Regression 

If the diagnostics in §7.3.3 identify the presence of outliers that cannot be removed, robust regression should 

be performed. Available procedures for robust regression on empirical damage and loss data are limited. An 

algorithm for robust regression for discrete damage data recently published by Alimadad and Sabidian-

Barrera (2011) can be found in the package ‘rgam’ (Sabidian-Barrera et al., 2014). However, the application 

of this algorithm produces only a mean fit. The residuals based on this method are plotted against the fitted 

values in order to establish the improvement of the fit.  

7.3.6 Generalised additive mixed models, GAMM 

Similar to GLMs, the random effect of an earthquake in the data collected from multiple events is taken into 

account by the construction of generalised additive mixed models (GAMMs). The analyst is warned that 

these methodologies, especially for modelling the spatial correlation, are not well established and therefore 

## AIC 

AIC(fit_nl,fit) 

 

##Chi-square test of hypothesis: ‘The nonlinear GAM model, fit_nl, is not significantly different than the linear model, 

##fit.’ 

anova(fit_nl, fit, test=ʹChisq ʹ) 

 

If p<0.05 then there is strong evidence that the hypothesis is rejected, therefore the nonlinearity captured by the 

GAM model is important.  
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should be used with care. It is also reminded that the construction of mixed models is one of the strategies 

dictated by the poor diagnostics of the variance function: i.e., over-dispersion of residuals for discrete 

response variables and heteroskedasticity for economic loss. Figure 7.10 provides the ‘R’ code for fitting a 

mixed model assuming that ‘event’ is a random effect. The plots of residuals presented in Figure 7.3 should 

also be used here in order to establish the level of improvement obtained by fitting the mixed model to the 

data.   

 

Figure 7.10 Construction and diagnostics of GAMMs. 

If more than one GAMM model provides a good fit to the data, the optimum can be identified as the one 

having the smallest AIC. The overall improvement in the description of data of the selected model is also 

assessed by comparing its AIC with that obtained from the GAM model that does not account for the random 

effect of the earthquake. 

The construction of prediction intervals for mixed models can be achieved by using a Bayesian analysis.  

The analyst should also examine the presence of spatial correlation following the diagnostics outlined in 

§6.3.6. The proposed ‘R’ package is capable of modelling a spatial structure. This, however, is a subject of 

current research and the analyst is referred to the examples illustrated by Zuur et al (2009) for more 

information.     

7.3.7 The Bayesian approach 

Similar to the recommendations for GLMs, a Bayesian analysis is necessary in order to fit the complex GAMs 

which accounts for the measurement errors in the response and explanatory variables as well as model 

mixed effects. 

 

 ## Estimating the parameters of the GAMM model expressed by Eq.(5.6). 

library(mgcv) 

fit_mix<-gamm(D~IM, random=list(event=~1), family=binomial) 

 

## AIC for models comparison 

AIC(fit_mix$lme) 
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8 Fitting Gaussian Kernel Smoothers (Level 2) 

Gaussian Kernel Smoothers (GKS) can be used in order to capture a non-strictly monotonic trend in the data. 

These models are more flexible than GAMs as they do not require an assumption regarding their random or 

systematic component. They could be used for the modelling of the measurement error in the intensity 

measure levels, although this is still an area of active research. An introduction to the models and the 

procedures used to construct the non-parametric fragility/direct vulnerability curves can be found in the 

GEM report by Noh, (2011). 
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9 Transformation of Fragility Curves into Vulnerability for Specific 

Measures of Intensity  

Indirect vulnerability assessment requires the transformation of fragility curves into vulnerability through the 

total probability theorem: 

     
1

| | |

n

i i

i

P L l IM P L l ds p ds IM



    (9.1) 

where n the number of damage states, p(dsi |IM) is the probability of a building sustaining a damage state dsi 

given intensity IM; P(L>l | dsi) is the probability that loss, L, exceeds a value l given a damage state given dsi, 

termed complementary cumulative distribution of the loss given dsi; P(L>l | IM) is the complementary 

cumulative distribution of loss given a level of intensity IM. 

The transformation expressed by Eq.(9.1) requires the construction of damage probability matrices from the 

fragility curves for specific levels of ground motion intensity: 
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For a given IM, this matrix represents the distance between two successive fragility curves, as presented in 

Figure 9.1. 

 

Figure 9.1: Illustration of a) a column of a DPM for given intensity measure level im, b) fragility curves corresponding 

to n=3 damage states for the same building class.  

 

In what follows, methods of varying complexity are presented in order to estimate the loss for given intensity 

measure levels from Eq.(9.1). Choice of which method to use depends on the quality of available information 

regarding the damage-to-loss functions as well as the analyst’s requirements.   

 Method 1: can be adopted if the loss given levels of damage is a random variable with known mean 

and variance. In this case, the mean and variance of the loss for given intensity measure levels can 

be obtained through the following closed form solutions:  
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(9.4) 

 

Method 1 results in the estimation of hte first two moments, namely: the mean and the variance of 

the loss for given intensity measure levels.  

 Method 2: can be used if the conditional distribution of loss, P(L>l | dsi), is known and the mean 

fragility curves are considered. In this case, the nonparametric distribution of the vulnerability can 

be numerically estimated from Eq.(9.1) through a Monte Carlo procedure as proposed by Porter et 

al. (2001), and shown in Figure 9.2. According to this procedure, for each iteration: 

 

Step 1.  A number u ~ [0,1] is randomly generated from a uniform distribution. 

Step 2.  The corresponding damage state is obtained: dsi=F-1(DS| im). 

Step 3.  Then, a number y is randomly generated from the distribution of loss given the 

corresponding damage state ( l = F-1(L|DS= dsi)). 

Step 4.  Steps 1-3 are repeated a large number of times, e.g., 10,000.  

 

Method 2 estimates the mean, variance as well as the shape of probability distribution of the loss for 

given intensity measure levels.  

 

In some cases, the width of the confidence intervals around hte mean fragility curves may be notably 

wide. For these cases, the analyst is advised to propagate this uncertainty to the loss for given 

intensity measure level. This can be achieved by an advanced Monte Carlo procedure (for more 

details see Ioannou and Chrysanthopoulos). This procedure leads to a family of probability 

distributions for the loss conditioned on a intensity level instead of a single probability distributions 

estimated by Method 2.  



 65 

 

Figure 9.2 Algorithm for the estimation of the distribution of loss given a level of intensity from parametric fragility 

curves, using lognormal distributed damage-to-loss functions. 

 

### Estimating the distribution of the loss given a level of intensity. 

## Assuming that a logistic regression presented in Figure was successfully fitted to the data.  

 

ds<-numeric(i)     # vector of damage states 

u<-numeric(i)       # random variable in (0,1) 

F<-numeric(i)       # fragility curves  

L<-numeric(i)       # loss variable 

lmu<-numeric(i)   # lognormal mean of the lognormal distribution of the loss given a damage state.  

lsgm<-numeric(i) # lognormal standard deviation of the lognormal distribution of the loss given a damage 

state. 

xnew=im              # A specific level of intensity 

dat<-data.frame(x=xnew) 

Nit=10,000   # number of iterations 

N=3 # number of fragility curves 

## Fragility curves 

F[1]=predict(fit1,newdata=dat,type='response');F[2]=predict(fit2,newdata=dat,type='response');F[3]=predi

ct(fit3,newdata=dat,type='response') 

u<-runif(Nit, min=0, max=1) # random generation of Nit values u in (0,1) 

for (i in 1:Nit) { 

  if (u[i]>F[1]){ 

  ds[i]=0 

    } 

else { 

  ds[i]=1 

   } 

for (j in 1:N) {   # N the total number of damage states 

 if (u[i]<F[j]){ 

 ds[i]=j 

    } 

  } 

 

if (ds[i]==0) { 

  L[i]=0.0 

  } 

else{ 

  k=ds[i] 

  y<-rlnorm(1,meanlog=0,sdlog=1) 

  L[i]= lmu[k]+y* lsgm[k]  

} 

} 

print(L) 
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10 Identification of the Optimum Vulnerability Curve 

The present guidelines urge the analyst to try a number of ground motion intensity measures. Therefore, in 

some cases, vulnerability and fragility curves corresponding to more than one measure may be found 

acceptable, i.e., meet the criteria outlined in the goodness of fit sections presented in §6 and §7. The analyst 

should then identify the optimum curve. Ideally, this can be achieved by integrating the vulnerability and 

fragility curve with the hazard and selecting the intensity measure which results in the smallest overall 

uncertainty. Given the difficulty of this procedure, which is under research, the analyst is advised to compare 

the statistical models with different IMs and select the model corresponding to the IM that best fits the data. 

The fit of models containing the same number of parameters, e.g., two GLMs, can be compared through 

assessment of their AIC values (see §6.3.3). 
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11 Validation 

The procedures presented so far are not capable of assessing the predictive capacity of the optimum fragility 

or vulnerability curve. The analyst is advised to validate the constructed vulnerability and fragility curves 

using independent new observations obtained either from the same event or from events corresponding to 

similar tectonic environments and building inventory. These observations should be of high quality (see §3.2) 

not less than 30, with levels of intensity in the range of the constructed curves. In the absence of new data, 

the analyst can comment on the predictive capacity of the model by using cross-validation techniques.  

Validation of a fragility or vulnerability curve using new data is performed by plotting the new data together 

with the mean vulnerability and fragility curve and their 90% prediction intervals. The predictive capacity of 

the model is established if the new data fall between these intervals.  

In cross validation techniques, data points from the existing database are separated into two groups: one 

group is used to construct the vulnerability or fragility curve and the one is used for the validation of this 

curve. The size of each group depends on the number of the available observations as well as on the purpose 

of validation. If the analyst wants to validate the prediction of the model in a single location, then the “leave-

one-out” approach is perhaps the best. In this approach, the analyst excludes a single point and fits the 

selected statistical model to the remaining data. Then, the analyst estimates what is considered a good 

measure of prediction, e.g., the square prediction error, and repeats the procedure for a number of points. 

By contrast, if the validation of several locations is required, then a 50-50 or 60-40 (depending on the total 

number of available points) split of the two groups is needed, and the aforementioned procedure is 

repeated. 
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12 Presentation of Constructed Vulnerability and Fragility Functions 

The presentation of vulnerability and fragility functions constructed according to the present guidelines 

should ensure their reproducibility and highlight their reliability. Thus, a comprehensive form (see Appendix 

A) is provided, which enables the analyst to summarise the characteristics of the constructed vulnerability 

and fragility functions, as well as establish their reliability by providing important information regarding the 

quality and quality of the empirical data used, the complexity of the statistical model and the statistical 

model fitting procedure adopted.  

The form consists of two parts:  

 Part 1 summarises the main characteristics of the fragility or vulnerability functions, the quality and 

quantity of the adopted empirical databases and the main characteristics of the intensity measure 

used.  

 In Part 2, the analyst is invited to justify the reliability of the constructed vulnerability and fragility 

functions by providing information on the adopted database(s) and briefly presenting the main 

assumptions and techniques adopted for preparing the observations and conducting the statistical 

modelling. An illustrative example is presented in Appendix A. 
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13 Final Comments 

This guideline document presents a framework for constructing vulnerability and fragility functions by fitting 

appropriate statistical models to databases of post-earthquake loss or damage observations. It provides a 

roadmap for undertaking statistical modelling of increasing complexity (when needed) to obtain vulnerability 

and fragility functions that provide a good fit to the empirical data. Diagnostic tools are provided to aid the 

analyst determine the goodness of fit of the statistical models to the data, however, it is highlighted that 

some level of interpretation and subjectivity enter this process. It is advised that multiple ground motion 

intensity measures be used as explanatory variables, and guidance is provided for the selection of an 

optimum vulnerability and fragility relationship amongst these. A procedure for validating the optimum 

relationship using new data is provided, as is a form for reporting the constructed vulnerability and fragility 

curves. Example applications are also provided in the Appendices that demonstrate a range of issues 

encountered when dealing with existing empirical damage and loss databases. The applications are limited in 

simple level 1 approaches which seem to result in models which fit the databases adequately. However, the 

user should not conclude that there is no place for complex methods in empirical fragility or vulnerability 

assessment. The need for complex methods is evident in cases where the assumptions such as negligible 

uncertainty in IM or high data quality need to be relaxed. More research is needed in order to highlight the 

advantages of complex methods.   

Throughout the report, sources of potential uncertainty are identified and discussed. Where possible, 

methods have been suggested to incorporate these uncertainties in the developed empirical fragility and 

vulnerability functions. Amongst these is an optional procedure for the incorporation of uncertainty in IM 

into the vulnerability and fragility relationships. It is acknowledged that the sources of uncertainty 

considered are not exhaustive, and procedures have not been suggested for dealing with, for example, for 

over-dispersion in the Bayesian analysis or construction of empirical functions using data affected by multiple 

hazards (e.g., liquefaction, ground shaking as well as secondary hazards such as landslides or fire). These are 

areas for further research. It is also acknowledged that the guidance on minimum number of data for a 

reliable fragility and vulnerability assessment is rather arbitrary and would also benefit from further 

research. 

 

 



  70 

REFERENCES 

 

Akaike, H. [1974] "A new look at the statistical model identification", Automatic Control, IEEE Transactions 

on, Vol. 19, No. 6, pp. 716-723. 

Alimadad A., Sabidian-Barrera M. [2011] "An outlier-robust fit for generalized additive models with 

applications to disease outbreak detection", Journal of the American Statistical Association, Vol. 106, No. 

494, pp. 719-731. 

Allen T. I., Wald D.J., Hotovec A.J., Lin K., Earle P.S., Marano K. [2008] ''An Atlas of ShakeMaps for selected 

global earthquakes '', Report, U.S. Department of the Interior, U.S.G.S. 

Arias A. [1970] ''A measure of earthquake intensity'', Seismic Design for Nuclear Power Plants'', Hansen R.J., 

MIT Press, Cambridge, Massachusetts. 

ATC-13 [1985] ''Earthquake damage evaluation data for California'', Report, Redwood City, Palo Alto, 

California. 

Babyak M.A. [2004] "What you see may not be what you get: a brief, nontechnical introduction to overfitting 

in regression-type models", Psycosomatic Medicine, Vol. 66, No. 3, pp. 411-421. 

Barlett J.E., Kortlik J.W., Higgins C.C. [2001] "Organizational research: determining appropriate sample size in 

survey research", Information Technology, Learning and Performance Journal Vol. 19, No. 1, pp. 43-50. 

Bommer J. J., Magenes G., Hancock J., Penazzo P. [2004] "The influence of strong-motion duration on the 

seismic response of masonry structures", Bulletin of Earthquake Engineering, Vol. 2, No. 1, pp. 1-26. 

Braga F., Dolce M., Liberatore D. [1982] ''Southern Italy November 23, 1980 earthquake: a statistical study of 

damaged buildings and an ensuing review of the M.S.K.-76 scale'', Report, Rome, Italy. 

Brzev S., C. Scawthorn, A.W. Charleson, L. Allen, M. Greene, K. Jaiswal, and V. Silva (2013), GEM Building 

Taxonomy Version 2.0, GEM Technical Report 2013-02 V1.0.0, 188 pp., GEM Foundation, Pavia, Italy, doi: 

10.13117/GEM.EXP-MOD.TR2013.02. 

CEQID [2013] Cambridge Earthquake Impact Database, Available from URL: 

http://www.ceqid.org/CEQID/Home.aspx. 

Chandler R., Scott M. [2011] ''Statistical methods for trend detection and analysis in the environmental 

science'', John Wiley & Sons, London, UK. 

Colombi M., Borzi B., Crowley H., Onida M., Meroni F., Pinho R. [2008] "Deriving vulnerability curves using 

Italian earthquake damage data", Bulletin of Earthquake Engineering, Vol. 6, No. 3, pp. 485-504. 

D' Ayala D., Meslem A., Vamvatsikos D., Porter K., Rossetto T., Crowley H., Silva V.  [2014] ''Guidelines for 

analytical vulnerability assessment '', Report, GEM Foundation, Pavia, Italy, Available from URL: 

http://www.ceqid.org/CEQID/Home.aspx


 71 

http://www.nexus.globalquakemodel.org/gem-vulnerability/files/gem-vam--guidelines--2014-03-06--

final.pdf. 

Devalaud E., Cotton F., Akkar S., Scherbaum F., Danciu L., Beauval C., Drouet S, Douglas J., Basili R., 

Sandikkaya M.A., Segou M., Faccioli E., Theodoulidis N. [2012] "Towards a ground-motion logic tree for 

probabilistic seismic hazard assessment in Europe", Journal of Seismology, Vol. 16, No. 3, pp. 451-473. 

Dhu T., Jones T. [2002] ''Earthquake risk in Newcastle and Lake Macquarie.'' Geoscience Australia Record 

200/15, Geoscience Australia, Canberra.Dolce M., Kappos A., Masi A., Penelis G., Vona M. [2006] 

"Vulnerability assessment and earthquake damage scenarios of the building stock of Potenza (Southern 

Italy) using Italian and Greek methodologies", Engineering Structures, Vol. 28, No. 3, pp. 357-371. 

Douglas J., Cotton F., Abrahamson N.A., Akkar S., Boore D.M., D. A. C. [2013] ''Pre-selection of ground motion 

prediction equations'', Report, GEM, Pavia, Italy (http://www.nexus.globalquakemodel.org/gem-

gmpes/posts/gmpe-project-report-on-pre-selection-of-gmpes). 

Edwards M., Griffith M., Wehner M., Lam N., Corby N., Jakab M., Habili N. [2010] ''The Kalgoorie earthquake 

of the 20th April 2010'', Proceedings of Australian Earthquake Engineering Society Conference, Perth, 

Australia.Eleftheriadou A.K., Karabinis A.I. [2008] ''Damage probability matrices derived from earthquake 

statistical data'', Proceedings of 14th World Conference on Earthquake Engineering, Beijing, China.Faenza, 

L., A. Michelini [2010] "Regression analysis of MCS intensity and ground motion parameters in Italy and its 

application in ShakeMap", Geophysical Journal International, Vol. 180, No. 3, pp. 1138-1152. 

Gamba P., Crowley H., Keller N. [2012] ''Building a global exposure database within the framework of the 

collaborative Global Earthquake Model (GEM)'', Report, Pavia Foundation, Pavia, Italy. 

Garcia D., Wald D.J., Hearne M.G. [2012] "A global earthquake discrimination scheme to optimise ground-

motion prediction equation selection", Bulletin of Seismological Society of America, Vol. 102, No. 1, pp. 

185-203. 

Gelman A., Hill J. [2007] ''Data analysis using regression and multilevel/hierarchical models '', Cambridge 

University Press, Cambridge, UK. 

Graham, J.W. [2009] ''Missing data analysis: making it work in the real world'', Annual Review of Psychology, 

Vol.60, 549-576.  

Green, P. J. [1987] "Penalized Likelihood for General Semi-Parametric Regression Models", International 

Statistical Review / Revue Internationale de Statistique, Vol. 55, No. 3, pp. 245-259. 

Green S.B. [1991] "How many subjects does it take to do a regression analysis?", Multivariate Behavioral 

Research, Vol. 26, No. 3, pp. 499-510. 

Guadagnoli E., Wayne F.V. [1988] "Relation to sample size to the stability of component patterns", 

Pcychological Bulletin, Vol. 103, No. 2, pp. 265-275. 

Harrell F.E., Lee L.K., Matchar D.B., Reichert T.A. [1985] "Regression models for prognostic prediction: 

Advantages, problems and suggested solutions", Cancer Treatment Reports, Vol. 69, No. 10, pp. 1071-

1077. 



  72 

Harris R.J. [1975] ''A primer of multivariate statistics'', Academic Press, New York, USA. 

Hastie T., Tibshirani R. [1986] "Generalised additive models", Statistical Science, Vol. 1, No. 3, pp. 297-318. 

Hastie T., Tibshirani R. [1990] ''Generalized additive models'', Chapman and Hall, London, UK. 

Ioannou I., Cryssanthopoulos M.K. [2011] ''Probabilistic estimates of seismic loss through a two-stage Monte 

Carlo approach'', Proceedings of 11th International Conference on Applications of Statistics and 

Probability in Civil Engineering, Zurich, Swicherland. 

Ioannou, I., J. Douglas, T. Rossetto [2015] "Assessing the impact of ground-motion variability and uncertainty 

on empirical fragility curves", Soil Dynamics and Earthquake Engineering, Vol. 69, No. 0, pp. 83-92. 

Ioannou I., Rossetto T. [2014] "Application of statistical models for empirical fragility assessment of 

buildings." (Under review at Structural Safety)  

Ioannou I., Rossetto T., Grant D.N. [2012] ''Use of regression analysis for the construction of empirical 

fragility curves'', Proceedings of 15th World Conference on Earthquake Engineering, Lisbon, Portugal. 

Jaiswal K., Wald W. D., Perkins D, Aspinall W.P., Kiremidjian A.S. [2013] ''Estimating structural collapse 

fragility of generic building typologies using expert judgement'', Proceedings of 11th International 

Conference on Structural Safety & Reliability, New York, USA. 

Jayaram N., Baker J.W. [2010] "Efficient sampling and data reduction techniques for probabilistic seismic 

lifeline risk assessment", Earthquake Engineering & Structural Dynamics, Vol. 39, No. 10, pp. 1109-1131. 

Joyner W.B., Boore D.M. [1993] "Methods for regression analysis of strong-motion data", Bulletin of 

Seismological Society of America, Vol. 83, No. 2, pp. 469-487. 

Karababa F.S., Pomonis A. [2010] "Damage data analysis and vulnerability estimation following the August 

14, 2003 Lefkada Island, Greece, Earthquake", Bulletin of Earthquake Engineering, Vol. online.King S., 

Kiremidjian A., Sarabandi P., Pachakis D. [2005] ''Correlation of observed building performance with 

measured ground motion'', Report, Department of Civil and Environmental Engineering, Stanford 

University USA. 

Kruschke J.K. [2011] ''Doing bayesian data analysis A tutorial with R and BUGS'', Elsevier, Oxford, UK. 

Lesser V.M., Kalsbeek W.D. [1992] ''Non-sampling error in surveys'', John Wiley & Sons. 

Levy P.S., Lemeshow S. [2008] ''Sampling of Populations: Methods and Applications, 4th edition'', John Wiley 

& Sons, New Jersey, USA. 

Liel A.B., Lynch K.P. [2009] "Vulnerability of reinforced concrete frame buildings and their occupants in the 

2009 L'Aquila", Natural Hazards Review, Vol. In press.Little R.J.A., B. Rubin D. [2002] ''Statistical analysis 

with missing data'', Willy Intescience, New Jersey, USA. 

Lunn, D., D. Spiegelhalter, A. Thomas, N. Best [2009] "The BUGS project: Evolution, critique and future 

directions", Statistics in Medicine, Vol. 28, No. 25, pp. 3049-3067. 

Margaris B., Skarlatoudis A., Savvaidis A., Theodulidis N., Kalogeras I., Koutrakis S. [2011] ''Strong-Motion 

networks in Greece and their efficient use in the derivation of regional ground-motion predictive 

models'', Earthquake Data in Engineering Seismology'', G. P. Akkar S., Van Eck T.,, Springer, London, UK. 



 73 

McCullagh P., Nelder J. A. [1989] ''Generalized linear models'', Chapman and Hall, London, UK. 

McCullagh P., Nelder J.A. [1989] ''Generalised Linear Model'', Chapman & Hall/CRC. 

McInturff, P., W. O. Johnson, D. Cowling, I. A. Gardner [2004] "Modelling risk when binary outcomes are 

subject to error", Statistics in Medicine, Vol. 23, No. 7, pp. 1095-1109. 

Miller L.E., Kunce J.T. [1973] "Prediction and statistical overkill revisited", Measurement and Evaluation in 

Guidance, Vol. 6, No. 3, pp. 157-163. 

Nelder, J. A., R. W. M. Wedderburn [1972] "Generalized Linear Models", Journal of the Royal Statistical 

Society. Series A (General), Vol. 135, No. 3, pp. 370-384. 

Noh H.Y. [2011] ''Fragility function updating using Bayesian framework '', Report, GEM Foundation, Pavia, 

Italy, Available from URL: http://www.nexus.globalquakemodel.org/gem-

vulnerability/files/uncertainty/fragility-function-updating-using-bayesian-framewo.pdf. 

Noh H.Y. [2011b] ''Fragility function estimation using kernel smoothing'', Report, GEM Foundation, Pavia, 

Italy, Available from URL: http://www.nexus.globalquakemodel.org/gem-

vulnerability/files/uncertainty/fragilityusingkernelsmoothing-haeyoungnoh.pdf . 

Noh H. Y., Lignos D.G., Nair K., Kiremidjian A. [2011] "Development of fragility functions as a damage 

classification/prediction method for steel moment-resisting frames using a wavelet-based damage 

sensitive feature", Earthquake Engineering & Structural Dynamics, Vol. 10.1002/eqe.1151. 

Noh H-Y., Kiremidjian A.S., Lallemant D. [2012] ''Issues related to the development of empirical feragility 

functions'', Report, GEM Foundation, Pavia, Italy, Available from URL: 

http://www.nexus.globalquakemodel.org/gem-vulnerability/files/uncertainty/issues-in-empirical-

fragility-functions.pdfNoh H-Y., Kiremidjian A.S., Lallemant D. [2013] ''Development of empirical fragility 

functions using Gaussian Kernel smoothing methods '', Proceedings of 11th International Conference on 

Structural Safety & Reliability, New York, USA. 

Nunnally J.C., Bernstein I.H. [1994] ''Psychometric Theory '', McGraw-Hill, New York, USA. 

O’Rourke M.J., So P. [2000] "Seismic fragility curves for on-grade steel tanks", Earthquake Spectra, Vol. 16, 

No. 4, pp. 801-815. 

Pagani M., Monelli D., Weatherill G., Danciu L., Crowley H., Silva V., Henshaw P., Butler L., Nastasi M., Panzeri 

L., Simionato M. and Vigano D. [2014] “OpenQuake Engine: An open hazard (and risk) software for the 

Global Earthquake Model,” Seismological Research Letters, Vol. 85, No. 3, pp 692-702 

Pomonis A., So E. [2012] ''Guidelines for the collection of consequence data'', Report, GEM Foundation, 

Pavia, Italy, Available from URL:. 

Porter K.A., Farokhnia K., Cho I.H., Rossetto T., Ioannou I., Grant D., Jaiswal K., Wald D., D' Ayala D., Meslem 

A., So E., Kiremidjian A.S., Noh H-Y. [2012] ''Global vulnerability estimation methods for the global 

earthquake model'', Proceedings of 15th World Conference on Earthquake Engineering. 



  74 

Porter K., Farokhnia K., , Vamvatsikos D., Cho I. [2014] ''Analytical derivation of seismic vulnerability 

functions for highrise buildings'', Report, GEM Foundation, Pavia, Italy, Available from URL: 

http://www.nexus.globalquakemodel.org/gem-vulnerability/files/analytical-structural-vulnerability. 

Porter K.A., Kiremidjian A., LeGrue S. [2001] "Assembly-based vulnerability of buildings and its use in 

performance evaluation", Earthquake Spectra, Vol. 17, No. 2, pp. 291-312. 

R Development Core Team [2008] ''R: A language and environment for statistical computing'', Report, R 

Foundation for Statistical Computing, Vienna, Austria. 

Richardson S., Gilks W.R. [1993] "Conditional independence models for epidemiological studies with 

covariate measurement error", Statistics in Medicine, Vol. 12, No. 18, pp. 1703-1722. 

Rossetto T., D' Ayala D., Ioannou I., Meslem A. [2014] ''Evaluation of Existing Fragility Curves'', SYNER-G: 

Typology definition and fragility functions for physical elements at seismic risk'', K. C. Pitilakis, H.; Kaynia, 

A.M., Springer. 

Rossetto T., Elnashai A. [2003] "Derivation of vulnerability functions for European-type RC structures based 

on observational data", Engineering Structures, Vol. 25, No. 10, pp. 1241-1263. 

Rossetto T., Elnashai A. [2005] "A new analytical procedure for the derivation of displacement-based 

vulnerability curves for populations of RC structures", Engineering Structures, Vol. 27, No. 3, pp. 397-409. 

Rossetto T., Ioannou I., Grant D.N. [2013] ''Existing empirical fragility and vulnerability relationships: 

Compendium and guide for selection '', Report, GEM Foundation, Pavia, Italy, Available from URL: 

http://www.nexus.globalquakemodel.org/gem-vulnerability/posts/existing-empirical-vulnerability-

and-fragility-relationships-compendium-and-guide-for-selection. 

Rota M., Penna A., Strobbia C.L. [2008] "Processing Italian damage data to derive typological fragility curves", 

Soil Dynamics and Earthquake Engineering, Vol. 28, No. 10-11, pp. 933-947. 

Rynn J.M., Brennan E., Hughes P.R., Pedersen I.S., Stuart H.J. [1992] "The 1989 Newcastle, Australia, 

Earthquake: The facts and the misconceptions", Bulletin of New Zealand National Society of Earthquake 

Engineering, Vol. 25, No. 2, pp. 77-144.Sabidian Barrera M., Cubranic D., Alimadad A. [2014] ''Robust 

Generalized Additive Models'', Report, CRAN. 

Schafer J.L. [1999] "Multiple imputation: a primer", Statistical Methods in Medical Research, Vol. 8, pp. 3-15. 

Shinozuka M., Feng M.Q., Lee J., Naganuma T. [2000] "Statistical Analysis of Fragility Curves", Journal of 

Engineering Mechanics, Vol. 126, No. 12, pp. 1459-1467. 

Silva V., Crowley H., Pagani M., Monelli D., Pinho R. [2013] “Development of the OpenQuake engine, the 

Global Earthquake Model’s open-source software for seismic risk assessment” Natural Hazards, DOI: 

10.1007/s11069-013-0618-x. 

So E., Pomonis A. [2012] "Events in the GEM earthquake consequences database." GEM Technical Report 

2011 – 1, GEM Foundation, Pavia, Italy, Available from URL: 

http://www.nexus.globalquakemodel.org/gem-vulnerability/posts/existing-empirical-vulnerability-and-fragility-relationships-compendium-and-guide-for-selection
http://www.nexus.globalquakemodel.org/gem-vulnerability/posts/existing-empirical-vulnerability-and-fragility-relationships-compendium-and-guide-for-selection


 75 

Stafford, P.J. [2012] “Evaluation of structural performance in the immediate aftermath of an earthquake: a 

case study of the 2011 Christchurch earthquake,” International Journal of Forensic Engineering, Vol. 1, 

No. 1, pp. 58-77 

Stewart J.P., Douglas J., Javanbarg M., Abrahamson N.A., Bozorgnia Y., Boore D.M., Campbell K.W., Delavaud 

E., Erdik M., Stafford P.J. [2013a] "Selection of ground motion prediction equations for the global 

earthquake model", Earthquake Spectra, Vol. in press. 

Stewart J.P., Douglas J., Javanbarg M., Di Alessandro C., Bozorgnia Y., Abrahamson N.A., Boore D.M., 

Campbell K.W., Delavaud E., Erdik M. and Stafford P.J. [2013b] “PEER 2013/22 - GEM-PEER Task 3 Project: 

Selection of a Global Set of Ground Motion Prediction Equations”, Available from URL: 

http://www.globalquakemodel.org/resources/publications/technical-reports/selection-global-GMPEs/.  

Straub D., Der Kiureghian A. [2008] "Improved seismic fragility modeling from empirical data", Structural 

Safety, Vol. 30, No. 4, pp. 320-336. 

 

Trifunac, M. D., A. G. Brady [1975] "On the correlation of seismic intensity scales with the peaks of recorded 

strong ground motion", Bulletin of the Seismological Society of America, Vol. 65, No. 1, pp. 139-162. 

United Nations [1964] ''Recommendations for the Preparation of Sample Survey Reports (Provisional Issue)'', 

Report, Statistical Papers, Series C, ST/STAT/SER.C/1/Rev.2, New York, USA. 

United Nations [1982] ''National household survey capability programme. Non-sampling errors in household 

survyes: sources, assessment and control'', Report, Department of Technical Co-Operation for 

Development and Statistical Office, New York, USA. 

Wald D.J., Quitoriano V., Worden C.B., Hopper M., Dewey J.W. [2011] "USGS 'Did you feel it?' Internet-based 

Macroseismic intensity maps", Annals of Geophysics, Vol. 54, No. 6, pp. 688-709. 

Wald D. J.,Quitoriano V., Heaton T. H., Kanamori H. [1999] "Relationships between Peak Ground 

Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California", Earthquake Spectra, 

Vol. 15, No. 3, pp. 557-564. 

Wald, D. J., V. Quitoriano, T. H. Heaton, H. Kanamori, C. W. Scrivner, C. B. Worden [1999b] "TriNet 

“ShakeMaps”: Rapid Generation of Peak Ground Motion and Intensity Maps for Earthquakes in Southern 

California", Earthquake Spectra, Vol. 15, No. 3, pp. 537-555. 

Wand M.P., Jones M.C. [1995] ''Kernel Smoothing'', Chapman & Hall. 

Wesson R.L., Perkins D.M., Leyendecker E.V., Roth R.J., Petersen M.D. [2004] "Losses to single-family housing 

from ground motions in the 1994 Northridge, California, earthquake", Earthquake Spectra, Vol. 20, No. 3, 

pp. 1021-1045.Wood S. [2006] ''Generalized Additive Models: an introduction to R'', Chapman and 

Hall/CRC, USA. 

Wood S. [2014] ''Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation'', Report, 

CRAN. 



  76 

Worden C. B., Wald D. J., Allen T. I., Lin K., Garcia D., Cua G. [2010] "A Revised Ground-Motion and Intensity 

Interpolation Scheme for ShakeMap", Bulletin of the Seismological Society of America, Vol. 100, No. 6, pp. 

3083-3096. 

Zuur A.F., Ieno E.N., Walker N.J., Saveliev A.A., Smith G.M. [2009] ''Mixed effect models adn extensions in 

ecology with R'', Springer, New York, USA. 

 

 



 77 

 Form for Presenting and Evaluating New Empirical 
Vulnerability and Fragility Functions 

The form which should be used to present the results is presented in Table A.1.  

Table A.1 Presentation form. 

Vulnerability and Fragility Specification for [Building Class] 

[Name] 

Developer, Affiliation and 

Date: 
 

Statistical Package:   

Selected Building Class:  

Type of Assessment:   Direct Vulnerability   Indirect Vulnerability  Fragility   

Number of Buildings per Class:  

Sources of Data:  

Overall Rating of Quality of 

Data (per Source): 

 High   Moderate   Poor   Other(        )           

Definition of Loss Parameter:  

Intensity Measure (IM):  

Range of IM:  

Evaluation of IM:  Ground motion records ( Number )   GMPE  (  Ref  )   ShakeMap   Other(        )           

Mean Direct or Indirect Vulnerability Relationship 

Function of GLM:   

Parameter (θ0):  

Parameter (θj):  

Parameter (θN):  

Shape of Nonparametric 

Curve: 
(Attach table with (x,y) values and plot it in Figure A.5) 

Confidence and Prediction Intervals of the Vulnerability Relationship 

Confidence Intervals for Mean 

Curve: 
(Attach table with (x,y) values) 

Prediction Intervals for Model: (Attach table with (x,y) values) 

Direct or Indirect Vulnerability Assessment 

Statistical Model:  GLM    GAM    Kernel Smoother 

Model Fitting Procedure:  Maximum Likelihood   Robust Maximum Likelihood   Bayesian   Other(        )           

Type of Data:  A (building-by-building)    B (grouped data) 

Number of Data Points:  

Grouped Data: Definitions of  
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aggregated unit: 

Grouped Data: Min Number of 

Buildings | Data Point: 

 

Statistical  Assumptions:  Independence  of observations   Measurement error in IM   Measurement error 

in response    

Goodness of Fit Assessment  

(GLM or GAM): 

 Acceptable mean function    Acceptable variance function               

Procedure for the construction 

of: 

 

Confidence Intervals: 

Prediction Intervals: 

 

 

 Asymptotic    Bootstrap    Bayesian (______) 

 Asymptotic    Bootstrap    Bayesian (______) 

Indirect Vulnerability Assessment - Fragility Curves (FC) 

Damage Scale:   

Damage State (DS): ds1 … dsn … dsn 

Description of DS:      

Function of Parametric FC:      

Parameter ( λ ):      

Parameter ( 𝜻 ):      

Shape of Nonparametric FC:      

Confidence Intervals for mean 

FC: 
     

Statistical Model:      

Model Fitting Procedure:      

Data Type:  A (building-by-building)    B (grouped data) 

Number of Data Points:      

Grouped Data: Definition of 

the aggregation unit: 

 

Grouped Data: Min Number of 

Buildings / Data Point: 

     

Fitting Assumptions: 

Measurement Error in IM: 

Measurement Error in 

Response: 

Other(___________________):        

 

 

 

 

 

 

 

 

 

 

 

 

 

Goodness of Fit Assessment: 

                      Mean function: 

                     Variance function: 

 

 

 

 

 

 

 

 
 

 

Procedure:  

Confidence Intervals: 

 

 Asymptotic    

 Bootstrap    

 Bayesian 

 Asymptotic   

 Bootstrap  

 Bayesian    

 Asymptotic    

 Bootstrap 

 Bayesian    

 

Asymptotic  

 Bootstrap   

 Bayesian   

 

Asymptotic 

 Bootstrap 

 Bayesian     
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The form should include the following figures and tables: 

 Figure A.1 Pie chart showing the % of total number of buildings of the examined class per source. 

 Figure A.2 Histograms showing the number of buildings per damage state per source. 

 Figure A.3 Cumulative distribution of the proportion of the examined buildings in each data point 

against the corresponding intensity measure.  

 Figure A.4 Fragility curves with, e.g., 90%, confidence intervals. 

 Figure A.5 Vulnerability function for given intensity measure levels with confidence and prediction 

intervals (e.g., 90%). 

 

 

 

 

Indirect Vulnerability Assessment - Damage-to-Loss Functions 

Source of Damage to Loss 

Functions: 
 

Damage Scale:  

Damage State (DS): ds0 ds1 … dsi … dsn 

Shape of damage to loss 

function distribution: 
      

Parameter θ1 of the damage-

to loss distribution: 
      

Parameter  θ2 of the damage-

to loss distribution: 
      

Parameter θn of the damage-

to loss distribution: 
      

Procedure:   

Discussion: 

Data Quality Assessment:   

Data Form: 

Data Collection Technique: 

Data preparation (for each data source): 

Procedure: 

Assumptions: 

Systematic errors eliminations: 

Quality of each data source: 

Vulnerability Assessment Procedure:  

Statistical Model Fitting Technique: 

Data points:  

Goodness of fit:  
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Table A.2 Nonparametric confidence intervals for fragility curves  

Intensity  

 

DS1 DS2 DS3 DS4 DS4 

5%  95%  5%  95%  5%  95% 5%  95% 5%  95% 

   … ... … … … … … … 

           

… … …         

 

Table A.3 Nonparametric confidence and prediction intervals for the vulnerability curve(s).  

Loss  

(%) 

Intensity Measure Level 

5%  95%  

0.01 … … 

0.02   

…   
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 Fitting GLM to damage data from the 1980 Irpinia 
Earthquake, Italy  

Vulnerability Curve for Italian Field Stone Masonry Buildings with Wooden Floors.  

Developer and Date: I. Ioannou, UCL EPICentre, 01/04/12 

Statistical Package:  R (R Development Team, 2008) 

Selected Building Class: Field stone masonry buildings with wooden floors 

Type of Assessment:   Direct Vulnerability    Indirect Vulnerability  Fragility    

Number of Buildings per Class: 8,859 

Sources of Data: 
1980 Irpinia Earthquake (reported in Braga et al (1982) and obtained from CEQID 

(2013) ) 

Overall Rating of Quality of 

Data (per Source): 

 High   Moderate   Poor   Other(        )           

Definition of Loss Parameter: Repair divided by replacement cost  

Intensity Measure (IM): PGV in m/s 

Range of IM: (0.08-1.3) m/s 

Evaluation of IM:  Ground motion records ( Number )   GMPE  (  Ref  )   ShakeMap   Other(        )           

Mean Indirect Vulnerability Relationship 

Shape of Nonparametric Curve: Mean damage factor against PGV plotted in Figure B.7. 

Confidence Intervals of the Vulnerability Relationship 

Confidence Intervals: 
Mean damage factor plus one sigma against PGV presented in Figure B.7. The 

uncertainty in the estimation of the mean fragility curves is ignored.  

Indirect Vulnerability Assessment - Fragility Curves (FC) 

Damage Scale:  MSK-76 

Damage State (DS): ds1 ds2 ds3 ds4 ds5 

Description of DS: Insignificant Slight Moderate Severe Collapse 

Function of Parametric FC: Eq.(B.3) Eq.(B.3) Eq.(B.3) Eq.(B.3) Eq.(B.3) 

Parameter ( θ0 ): 1.97982 0.80121 0.19432 -0.67497 -0.8513 

Parameter ( θ1 ): 0.39727 0.45440 0.60559 0.47808 0.7458 

Confidence Intervals for FC:      

Statistical Model:     GLM    GLM    GLM     GLM    GLM 

Model fitting Procedure:  ML  ML  ML  ML  ML 

Data Type:  Building-by-Building    Grouped data 

Number of Data Points: 41 41 41 41 41 

Grouped Data: Definition of the 

aggregation unit: 

Municipality (42 km2 on average) 

Grouped Data: Min Number of 3 3 3    3     3 
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Buildings / Data Point: 

Model Assumptions: 

Measurement Error in IM: 

Measurement Error in 

Response: 

Other(___________________):        

 

- 

- 

- 

 

- 

- 

- 

 

- 

             - 

             - 

 

- 

           - 

           - 

 

- 

           - 

           - 

Goodness of Fit Assessment: 

                            Mean function: 

                       Variance function: 

 

 

No 

 

 

No 

 

 

No 

 

 

No 

 

 

No  

Procedure:  

Confidence Intervals: 

 

 Asymptotic    
  

 Asymptotic   

 

 Asymptotic     

 

 Asymptotic  

 

 

Asymptotic    

Indirect Vulnerability Assessment - Damage-to-Loss Functions 

Source of Damage to Loss 

Functions: 
Dolce et al (2006) Damage to Loss Functions 

Damage Scale:  

Damage State (DS): ds0 ds1 ds2 ds3 ds4 ds5 

Mean of damage-to-loss 

distribution (μ): 
0.005 0.035 0.145 0.305 0.800 0.950 

Standard deviation of damage-

to-loss distribution (σ): 
0.035 0.043 0.056 0.111 0.113 0.060 

Procedure:  
Damage to Loss functions obtained from observational data from different Italian 

building classes.  

Discussion: 

An indirect vulnerability assessment procedure is adopted here in order to estimate the economic losses caused by direct 

damage to the building class of field stone masonry with wooden floors. The procedure requires six steps. In the first 

three steps, a set of empirical fragility curves for the selected building class is identified from the damage data obtained 

from the 1980 Irpinia Earthquake, Italy. An existing set of Italian damage-to-loss functions are then used in order to 

transform the fragility curves to vulnerability functions for the range of the selected intensity measure.     

1st Step: Preparation of the damage data 

Data Quality Assessment:   

Grouped damage data, aggregated per building type into 41 damage distributions each corresponding to a different 

affected municipality, were obtained from CEQID (2013). The original completed survey forms were not available but 

the survey method is reported in the literature. The 1980 Irpinia Earthquake database was constructed by a one-stage 

cluster sampling method (Levy and Lemeshow, 2008); i.e., the total number of buildings from 41 municipalities (out of 

more than 600 affected by the event) in the Campania-Basilicata area were surveyed (Braga et al., 1982). With regard to 

non-sampling errors, the comments on the data collection found in CEQID (2013) raise concerns on whether the total 

number of buildings in each commune has been surveyed. For the needs of this application we assume that this error is 

negligible. Overall, the quality of the database is considered moderate due to the aggregated type of data.   

Data preparation per source: 

The building classes account for the material of the vertical as well as the lateral load resisting structural components. 

Fragility curves are constructed using the largest and most vulnerable building class in this database, which consists of 

8,859 field stone masonry buildings with wooden floors. The observed damage is classified into six discrete states, 

varying from no damage to collapse, according to MSK-76. This is the original damage classification used by Braga et al. 
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(1982) in collecting the data. Figure B.1 highlights the significant (~25%) percentage of buildings which suffered heavy 

damage or collapse.  

The construction of fragility curves using ‘R’ (R Development Team, 2008) requires the transformation of the grouped 

damage data into data points (xj,(yij,nj-yij)), where yij is the count of buildings which suffered DS≥dsi and nj-yij is the count 

of buildings which sustained DS<dsi for municipality j with intensity measure level xj. Thus, 41 data points are obtained for 

each of the five damage states dsi (i=1-5). The number of the buildings surveyed in each municipality varied widely from 3 

to 1205. Six data points are seen to be based on very small numbers of buildings (<20). These six points are also included 

in the analysis and the goodness of fit diagnostics will determine whether they should be removed.  

 

Figure B.1 Number of field stone masonry buildings with wooden floors that suffered damage in the 1980 Irpinia 

Earthquake. 

2nd Step: Selection and Estimation of the Intensity Measure  

Two intensity measure types, namely PGV and MMI, have been selected. Their levels are estimated by a ShakeMap for 

the earthquake and are also provided in the CEQID (2013). The intensity measure values are assumed to have a single 

constant value within each municipality. This is considered a reasonable assumption given the relatively small surface 

area of each municipality (on average 24km2). Nonetheless, the measurement error associated with these estimated 

intensity levels is not known, and therefore the measurement error in the intensity measure level estimated for each 

commune is ignored.  

 

 

 

 

 

 

 

 

Figure B.2 Cumulative distribution of the proportion of the examined buildings exceeding the selected intensity 

measure values.  

3rd Step: Selection of Statistical Model 

The distribution of the data points in the range of the intensity measure levels can be used to determine an acceptable 

statistical model. For this reason, the cumulative proportion of buildings (for the 41 data sets) and their corresponding 

intensity measure levels in shown Figure B.2a,b. These figures show that the majority of buildings are clustered in low-to-

intermediate intensity measure levels (i.e., pgv<0.5 m/s or MMI<8). Given the relatively small number of data points and 

especially their sparseness over the higher intensity measure levels, a non-parametric regression model is expected to 
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depict trends specific for this database (more details in Ioannou et al. 2012). Hence, in an attempt to capture the overall 

trend of the data points, a set of GLMs is selected according to the recommendations of §6.2.  
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The selected GLM models assume that the counts of buildings suffering a given damage state or above for a specific 

intensity measure level follow a binomial distribution, and that the mean of this distribution is related to the intensity 

measure through the three link functions (see Table 6.2): namely: logit (Eq.(B.1)), probit (Eq.(B.2) and Eq.(B.3)) and 

complementary log-log (Eq.(B.4)).    

4th Step: Statistical Analysis 

Estimation of the GLM model parameters 

Statistical model fitting is performed using ‘R’ (R Development Team, 2008). The parameters of this model are estimated 

numerically by maximising their likelihood function (see §6.3.1). The curves fit for the 5 damage states and two intensity 

measure types, for each link function are depicted in Figure B.3a,b. In Figure B.3a, the three models, expressed by 

Eq.(B.1), Eq.(B.2) and Eq.(B.4), appear to have negligible differences, indicating that the selection of link function is not 

important. By contrast, there is a notable difference in the fit of the model expressed by Eq.(B.3). This highlights the 

significant influence of the transformation of the intensity measure (i.e., from PGV to log(PGV)). We consider that the 

Eq.(B.3) provides a more realistic model as its systematic component provides probability estimates which tend to zero 

for as the intensity measure levels tend to zero. For MMI, all four models appear to have negligible differences indicating 

that the fit is not sensitive to the shape of the link function or the transformation of the explanatory variable.   

Goodness of fit checks: 

A set of graphical plots is used here to diagnose the ability of the selected statistical models to fit the available data. For 

PGV, the plots of the Pearson residuals for ds4, obtained for the probit models using Eq.(B.2) and Eq.(B.3), against the 

fitted values are plotted in Figures B.4a,b, respectively. In general, a statistical model can be considered acceptable if the 

Pearson residuals have zero mean and a constant variance equal to 1. The mean function, μ, as expressed by Eq.(B.3) 

appears to be a better fit of the data, as the smoothing curve is reasonably close to zero. By contrast, for all models there 

is a significant number of residuals which are outside the 99% confidence interval [-3,3] for both models, indicating that 

the variance of the Pearson residuals is greater than 1. This over-dispersion highlights that the assumption of the 

binomial distribution is grossly violated in the models.  
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Figure B.3 Fragility curves ( continuous: Eq.(B.1), dashed Eq.(B.2), longdash: Eq.(B.3), dotdash: Eq.(B.4)) corresponding 

to the 5 damage states expressed in terms of the five regression models for (a) PGV and (b) MMI. 

 

 

 

θ0+θ1PGV 

(a) 

θ0+θ1log(PGV) 

(b) 
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Figure B.4 Pearson residuals against the fitted values for fragility curves corresponding to ds4 for PGV using the probit 

link function expressed by (a) Eq.(B.2) and( b) Eq.(B.3). 

 

The observed over-dispersion could be addressed by: 

 Removing the influential points. Potential influential points are identified by plotting the Cook’s distance against 
the data point. Then, these points are removed and the plotted again. 

 

 

Figure B.5 Fragility curves (continuous lines) for (a) PGV and (b) MMI using Eq.(3) if the potential outliers are not 

removed (solid lines) and removed (dashed lines). 

 

Figure B.5 shows that the removal of the 3 points (not necessarily the same for all curves) with the higher Cook’s 

Distance does not lead to significant differences in the fragility curves.   

 

 Adding missing explanatory variables. However, this cannot be addressed given the lack of additional 
independent explanatory variables in the database.   
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Figure B.6 Fragility curves (continuous lines) for (a) PGV and (b) MMI using Eq.(3) and their corresponding 90% 

confidence intervals (dashed lines). 

Given our inability to improve the fit of the selected model by increasing its complexity, over-dispersion is addressed by 

the use of the quasi-binomial distribution (see §6.3.1). The use of this distribution leads to the same mean fragility curves 

but produces wider confidence intervals which reflect the uncertainty in the grouped data. Figure B.6a,b depicts the 

mean fragility curves as well as the 90% confidence intervals of the fragility curves corresponding to the five damage 

states for the two intensity measure types. It can be seen that the 90% intervals of the curves corresponding to ds3 and 

ds4 overlap for higher values of intensity measure levels that might have an impact on the propagation of the overall 

uncertainty to the vulnerability. It is ignored for the purposes of this application. The values for the upper and lower limit 

for the fragility curves corresponding to the 5 damage states can be seen in Table B.2. 

Table B.1 AIC values for the fitted statistical models. 

Model ds1 ds2 ds3 ds4 ds5 

PGV MMI PGV MMI PGV MMI PGV MMI PGV MMI 

Eq.(B.3) 480 481 1092 1101 1226 1245 962 983 607 613 
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The model expressed by Eq.(B.3) has been considered the be the most realistic model. Which of the two intensity 

measure types provide the best fit? According to the recommendations of section 10, the AIC for the models 

corresponding to the two IMs for ach damage states are compared. The AIC of the fragility curves for PGV is smaller than 

their counterparts for MMI, therefore the set of fragility curves for PGV is considered optimum (see Table B.1).     

5th Step: Selection of Appropriate Damage-to-Loss Functions 

The transformation of the fragility curves in vulnerability functions requires the selection of damage-to-loss functions. 

The mean and variance of the damage factor for 6 damage states proposed by Dolce et al. (2006) is selected here.  

 6th Step: Identify the optimum Vulnerability Curve  

The first two moments of the damage factor for the range of PGV are estimated using Eq.(9.3) and Eq.(9.4) having 

estimated the damage probability matrices from Eq.(6.2). The mean and mean plus one standard deviation vulnerability 

curves are plotted in Figure B.7. This figure depicts the substantial uncertainty that exists in the damage factor.   

 

Figure B.7 Mean and mean plus one standard deviation vulnerability curve for PGV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B.2 Nonparametric confidence intervals for the 5 fragility curves corresponding to the 41 data points.  
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IM P(DS≥ds1|IM) P(DS≥ds2|IM) P(DS≥ds3|IM) P(DS≥ds4|IM) P(DS≥ds5|IM) 

m/s2 95% 5% 95% 5% 95% 5% 95% 5% 95% 5% 

0.09 84.64% 91.61% 41.32% 13.88% 25.67% 25.67% 5.13% 11.98% 0.98% 3.43% 

0.09 84.75% 91.65% 41.49% 55.73% 13.99% 25.77% 5.19% 12.06% 0.99% 3.46% 

0.10 84.89% 91.69% 41.70% 55.85% 14.13% 25.90% 5.27% 12.16% 1.01% 3.50% 

0.10 85.01% 91.73% 41.88% 55.96% 14.25% 26.01% 5.34% 12.24% 1.03% 3.53% 

0.11 85.10% 91.76% 42.01% 56.04% 14.34% 26.09% 5.39% 12.30% 1.04% 3.55% 

0.13 85.73% 91.97% 43.01% 56.64% 15.03% 26.71% 5.77% 12.79% 1.13% 3.72% 

0.13 85.93% 92.04% 43.32% 56.83% 15.24% 26.90% 5.89% 12.94% 1.16% 3.77% 

0.14 86.12% 92.10% 43.62% 57.01% 15.46% 27.10% 6.02% 13.10% 1.19% 3.83% 

0.16 86.56% 92.26% 44.36% 57.46% 15.99% 27.57% 6.33% 13.47% 1.27% 3.96% 

0.17 86.84% 92.37% 44.84% 57.76% 16.34% 27.88% 6.53% 13.72% 1.32% 4.05% 

0.17 86.84% 92.37% 44.84% 57.76% 16.34% 27.88% 6.53% 13.72% 1.32% 4.05% 

0.17 87.00% 92.42% 45.10% 57.92% 16.53% 28.05% 6.65% 13.86% 1.35% 4.10% 

0.17 87.01% 92.43% 45.12% 57.93% 16.55% 28.07% 6.66% 13.88% 1.35% 4.11% 

0.18 87.23% 92.51% 45.50% 58.17% 16.83% 28.32% 6.83% 14.08% 1.39% 4.18% 

0.21 87.95% 92.81% 46.82% 59.00% 17.83% 29.20% 7.45% 14.81% 1.56% 4.45% 

0.21 87.96% 92.81% 46.83% 59.01% 17.85% 29.22% 7.45% 14.82% 1.56% 4.45% 

0.23 88.32% 92.96% 47.51% 59.45% 18.38% 29.69% 7.79% 15.21% 1.65% 4.60% 

0.23 88.42% 93.01% 47.70% 59.57% 18.53% 29.82% 7.88% 15.32% 1.67% 4.64% 

0.24 88.63% 93.10% 48.12% 59.85% 18.86% 30.12% 8.10% 15.57% 1.73% 4.73% 

0.24 88.66% 93.12% 48.18% 59.89% 18.92% 30.16% 8.13% 15.60% 1.74% 4.74% 

0.25 88.75% 93.16% 48.37% 60.01% 19.07% 30.29% 8.23% 15.72% 1.77% 4.78% 

0.25 88.80% 93.18% 48.45% 60.07% 19.14% 30.36% 8.28% 15.77% 1.78% 4.80% 

0.25 88.82% 93.19% 48.49% 60.09% 19.17% 30.39% 8.30% 15.79% 1.78% 4.81% 

0.27 89.32% 93.44% 49.54% 60.79% 20.04% 31.15% 8.87% 16.44% 1.94% 5.06% 

0.28 89.42% 93.49% 49.75% 60.94% 20.21% 31.31% 8.99% 16.58% 1.98% 5.11% 

0.32 90.17% 93.89% 51.41% 62.10% 21.66% 32.61% 9.98% 17.69% 2.26% 5.54% 

0.32 90.21% 93.92% 51.50% 62.17% 21.74% 32.68% 10.04% 17.75% 2.28% 5.56% 

0.36 90.96% 94.40% 53.37% 63.55% 23.45% 34.24% 11.27% 19.12% 2.65% 6.09% 

0.37 91.03% 94.45% 53.54% 63.69% 23.62% 34.40% 11.40% 19.25% 2.69% 6.15% 

0.37 91.03% 94.45% 53.54% 63.69% 23.62% 34.40% 11.40% 19.25% 2.69% 6.15% 

0.38 91.27% 94.62% 54.18% 64.19% 24.23% 34.97% 11.85% 19.76% 2.84% 6.35% 

0.39 91.36% 94.68% 54.42% 64.38% 24.47% 35.19% 12.03% 19.95% 2.89% 6.43% 

0.39 91.41% 94.73% 54.58% 64.50% 24.62% 35.33% 12.15% 20.08% 2.93% 6.48% 

0.39 91.43% 94.74% 54.61% 64.53% 24.66% 35.36% 12.17% 20.11% 2.94% 6.49% 

0.39 91.44% 94.75% 54.65% 64.56% 24.69% 35.39% 12.20% 20.14% 2.95% 6.50% 

0.44 92.06% 95.25% 56.46% 66.08% 26.53% 37.16% 13.64% 21.73% 3.42% 7.14% 

0.57 93.38% 96.55% 60.92% 70.40% 31.54% 42.41% 17.94% 26.60% 4.99% 9.20% 

0.74 94.69% 97.97% 66.13% 76.59% 38.29% 50.77% 24.59% 34.86% 7.86% 13.04% 

1.00 96.09% 99.20% 72.46% 84.93% 47.64% 64.27% 35.19% 49.90% 
13.45

% 
21.60% 

1.29 97.23% 99.76% 78.30% 91.77% 57.30% 77.99% 47.36% 67.48% 
21.19

% 
35.48% 

1.29 97.23% 99.76% 78.30% 91.77% 57.30% 77.99% 47.36% 67.48% 
21.19

% 
35.48% 
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Lessons  

The aggregation of damage data, even over reasonably small geographical units, may lead to significant loss of 

information. In the absence of more information which can increase the complexity of the model, the resulted over-

dispersion can be easily modelled by the generalised linear models.   
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 Fitting GLMs to damage data from two earthquakes 
affecting Christchurch, New Zealand, in 2010-2011  

Fragility Curves for New Zealand Unreinforced Masonry Buildings.  

Developer and Date: 
I. Ioannou, UCL EPICentre, J. Ingham, Auckland University, M. Griffith and L. Moon, 

University of Adelaide, 9/012/13 

Statistical Package:  R (R Development Team, 2008) 

Selected Building Class: Unreinforced masonry (URM)  

Type of Assessment:   Direct Vulnerability   Indirect Vulnerability  Fragility    

Number of Buildings per Class: 262 

Sources of Data: Survey for the needs of a PhD project 

Overall Rating of Quality of Data 

(per Source): 

 High   Moderate   Poor   Other(  Questionable      )           

Definition of Loss Parameter: - 

Intensity Measure (IM): PGA in g 

Range of IM: 1st event: (0.18-0.41)g, 2nd event: (0.09-1.0) g 

Evaluation of IM:  Ground motion records (  Number )   GMPE  (  Ref  )    ShakeMap   Other(        )           

Fragility Curves for September event  (FC) 

Damage Scale:  ATC-13 

Damage State (DS): ds1 ds2 ds3 ds4 ds5 

Description of DS: Insignificant Moderate Heavy Severe Destroyed 

Function of Statistical Model: Eq.(C.3) Eq.(C.3) Eq.(C.3) Eq.(C.3) Eq.(C.3) 

Parameter (  θ0  ): 4.49 - - - - 

Parameter ( θ1 ): 2.53 - - - - 

Confidence Intervals for mean 

FC: 
 x x x x 

Statistical  Model:     GLM    GLM    GLM     GLM    GLM 

Model Fitting Procedure:  ML  ML  ML  ML  ML 

Data Type:  Building-by-Building    Grouped data 

Number of Data Points: 11 11 11 11 11 

Grouped Data: Definition of the 

aggregation unit: 

Units with the same PGA level 

Grouped Data: Min Number of 

Buildings / Data Point: 

3 3 3    3     3 

Model Assumptions: 

Spatial Independence of Data 

Points: 

Measurement Error in IM: 

Measurement Error in Response: 

 

- 

- 

- 

 

- 

- 

- 

 

- 

- 

              - 

 

- 

- 

            - 

 

- 

- 

            - 
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Other(___________________):        - -               -             -             - 

Goodness of Fit Assessment: 

                               Mean function: 

                           Variance function: 

 

 

 

 

No 

No 

 

No 

No 

 

No 

No 

 

No 

No  

Procedure:  

Confidence Intervals: 

 

 Asymptotic    

  

 Asymptotic   

 

 Asymptotic     

 

 Asymptotic  

 

 Asymptotic    

Fragility Curves for February event  conditioned on insignificant damage from the September event (FC) 

Damage Scale:  ATC-13 (1985) 

Damage State (DS): ds1 ds2 ds3 ds4 ds5 

Description of DS: Insignificant Moderate Heavy Severe Destroyed 

Function of Statistical Model: Eq.(C.2) Eq.(C.2) Eq.(C.2) Eq.(C.2) Eq.(C.2) 

Parameter (θ0): - 1.06 0.21 - - 

Parameter (θ1): - 0.79 0.47 - - 

Confidence Intervals for mean 

FC: 
x   x x 

Statistical  Model:     GLM    GLM    GLM     GLM    GLM 

Model Fitting Procedure:  ML  ML  ML  ML  ML 

Data Type:  Building-by-Building    Grouped data 

Number of Data Points: 15 15 15 15 15 

Grouped Data: Definition of the 

aggregation unit: 

Units with the same PGA level 

Grouped Data: Min Number of 

Buildings / Data Point: 

- 1 2    1     1 

Model  Assumptions: 

Spatial Independence of Data 

Points: 

Measurement Error in IM: 

Measurement Error in Response: 

Other(___________________):        

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

              - 

              - 

 

- 

- 

            - 

            - 

 

- 

- 

            - 

            - 

Goodness of Fit Assessment: 

                                Mean function: 

                           Variance function: 

 

No 

No 

 

 

 

 

 

 

 

No 

No 

 

No 

No  

Procedure:  

Confidence Intervals: 

 

 Asymptotic    

  

  Asymptotic   

 

  Asymptotic     

 

 Asymptotic  

 

 Asymptotic    

Discussion: 

The empirical fragility assessment procedure is adopted here to assess the probability of a damage state being reached 

or exceeded given intensity levels from the four main events which affected Christchurch. The procedure requires three 

steps. In the first step, the quality of the database is discussed. In the second step, the quality of the excitation 

observation is assessed. The third step involves the identification of a statistical model which best fits the empirical data.   

1st Step: Preparation of the empirical damage data 

Data Quality Assessment:   

The Christchurch database includes data from 627 URM, mostly commercial, buildings, collected over 32 suburbs of 

Christchurch. These suburbs were affected by four successive earthquake events, i.e. September 2010, February 2011, 
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June 2011 and December 2011. The data has been collected by Auckland and Adelaide Universities. The sampling 

technique adopted is not clear. The damage has been classified into six damage states according to the ATC-13 damage 

scale (1985). Figure C.1 depicts the distribution of the buildings amongst each of the 6 damage states for the four 

earthquake events. It can be seen that for the first event, more than half of the buildings were not attributed a damage 

state. The percentage of missing data reduces for the February 2011 earthquake, but is substantial for the June and 

December 2011 events. This very high proportion of missing data is ignored in this illustrative example application. 

Implicit in this decision is the assumption that the missing data is randomly distributed across the surveyed area, and that 

by disregarding them we are simply reducing the sample size without introducing bias in the remaining sample. Due to 

the very small samples provided for the June and December 2011 earthquake events, the focus of this study is on 

constructing fragility curves using the data from the first two earthquakes.    

 

Figure C.1 Number of buildings suffered each of the six states of the observed damage for the four events. 

It should be noted that the damage data are grouped into bins corresponding to a given intensity measure level, 

irrespective of the suburb in which they are located. This results in 10 data points per damage state for September event. 

The fragility curves for the February event are constructed considering that the buildings may have already experienced 

some damage from the September event. Figure C.2 depicts the distribution of the damage experienced by buildings 

from the February event given the damage state experienced by the buildings by the September. Figure C.2 depicts that 

the biggest sample size corresponds to the buildings that were damaged insignificantly by the September event.   

 

 Figure C.2 Distribution of buildings affected by the February 2011 earthquake. 
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Overall, the quality of the adopted data is considered questionable and more research is required in order to establish its 

quality.  

Data preparation per source: 

The unreinforced masonry (URM) buildings considered in the database are mostly built using clay bricks. The data 

includes 7 sub-classes of the surveyed URMs based on their height and whether they stand independently or are joined 

to other buildings. Due to the small sample sizes for each sub-class, fragility curves are constructed for the generic URM 

class ignoring the sub-categories. The construction of the fragility curves requires the transformation of the grouped 

damage data found in the database into data points (xj,(yij,nj-yij)), where yij is the count of buildings that suffered DS≥dsi 

and nj-yij is the count of buildings that sustained DS<dsi for the bin j with intensity measure level xj, where j=1:11 for the 

September 2010 event and j=1:15 for the February 2011 earthquake.  

2nd Step: Selection and Estimation of the Intensity Measure  

Peak ground acceleration (PGA) is selected as the ground motion intensity type. The PGA values determining intensity 

level contours used for the damage data aggregation are obtained from accelerograms at the ground motion stations in 

the area. Given this, we consider the measurement error in PGA as negligible.  

 

 

Figure C.3 Number of buildings suffered each of the six states of the observed damage for the four events. 

 

3rd Step: Selection of the statistical  model 

Plots of the cumulative proportion of buildings for the 11 and 15 data points of the first and second earthquake events, 

against the intensity measure levels are shown in Figure C.4a,b. These figures show that for the September 2010 

earthquake, the majority of the buildings are clustered in the low-to-intermediate range of ground motion intensity 

levels, whilst a wide range of PGA values is covered by the February 2011 earthquake data (i.e., 0.09g-1.0g). In addition, 

most data appear to be concentrated in the bin with PGASept=0.3g or PGAFeb= 0.7g. 
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Figure C.4  Cumulative distribution of the proportion of the examined buildings in each data point against the 

corresponding intensity measure.  

 

GLM models are chosen for the analysis. These models assume that the damage conditioned by an intensity measure 

type follows a binomial distribution and the mean of this distribution is related with the PGA through the three link 

functions (see Table 6.2), namely: logit (Eq.(C.1)), probit (Eq.(C.2) and complementary log-log (Eq.(C.3)). The statistical 

models tested in this exercise are presented here:    
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(C.2) 

(C.3) 

 

 

4th Step: Statistical  Analysis 

Estimation of the statistical  parameters 

The fitting of the three statistical models is performed using ‘R’ (2008). The parameters of these models are estimated 

numerically by maximising their likelihood function (see section 6.3.1). The five fitted fragility curves for the URM 

building class based on the data collected following the September 2010 earthquake are depicted in Figure C.5. The 

curves corresponding to ds2-ds5 appear to be either flat or have a negative slope, indicating that perhaps the statistical 

sample is not capable to depict the trend in the data correctly. A likelihood ration test is adopted in order to assess 

whether PGA is a statistically significant explanatory variable. This test identifies that the PGA is an important explanatory 

variable only for ds1. By contrast, it indicates that there is not enough evidence to show that the presence of PGA leads to 

a model significantly better than a horizontal line. Therefore, the four fragility curves are not considered reliable. This can 

be attributed to the very small sample sizes especially for the three most extreme levels of damage, and raises questions 

on the validity of the assumptions made regarding the missing data.  
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Figure C.5 Fragility curves for the 5 ATC-13 damage states constructed from data for the September 2010 earthquake. 

 

Goodness of fit checks: 

A set of graphical plots is used here to diagnose the ability of the selected statistical model to fit the available empirical 

data. Plots of Pearson residuals for ds1, against the fitted values are shown in Figure C.4. In general, a statistical model 

can be considered acceptable if the Pearson residuals have zero mean and a constant variance equal to 1. This practically 

means that most residuals should be included in the [-3,3] interval and be randomly distributed. From Figure C.6, it is 

seen that the residuals appear to be in the expected interval. Their distribution does not appear to be random. However, 

the small number of available points cannot result in conclusive observations regarding their distribution. All three GLM 

model is therefore considered acceptable.    

 

Figure C.6 Pearson residuals against the fitted values for fragility curves corresponding to ds1 for Eq.(C.3). 

The AIC test shows that the model using the ‘cloglog’ link function is the optimum model.   

Table C.1 AIC values for the three models expressing the fragility curves corresponding to ds1. 

Model AIC 

Eq.(C.1) 32.34 

Eq.(C.2) 33.55 

Eq.(C.3) 31.18 
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The construction of fragility curves based on the damage data from the September 2010 event are based on the realistic 

consideration that the buildings were undamaged prior to the event. However, the fragility curves for buildings affected 

by the February event are constructed using the buildings which suffered insignificant (ds1) damage by the September 

event.  

The fragility curves from the 4 damage states are depicted in Figure C.7. A likelihood ratio test carried out on the fitted 

model shows that the PGA can be considered a significant improvement explanatory variable only for the ds1 and ds2. 

However, the small sample size (235) leads to confidence intervals which overlap at lower PGA values, indicating that the 

reliability of the curves is questionable.  

 

 

Figure C.7 Fragility curves for February event given that buildings were insignificantly (ds1) damaged in the September 

earthquake.  

 

Similar to the analysis of the data from the September event, Figure C.8 depicts the plots of the standardised Pearson 

residuals against the linear predictor. All three models might suffer from over-dispersion.  

 

Figure C.8 Pearson residuals against the fitted values for fragility curves corresponding to ds1 (left) and ds2 (right) for 

Eq.(C.2). 

 

The use of AIC (see Table C.2) identifies the model expressed by Eq.(C.2) as the best fit.  
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Table C.2 AIC values for the three models expressing the fragility curves corresponding to ds1 and ds2. 

Model 
AIC 

(ds1) 

AIC 

(ds2) 

Eq.C1 72.99 72.99 

Eq.C2 66.12 72.73 

Eq.C3 68.86 73.7 

 

Lessons:  

The empirical data adopted in this study is rare in that it reports damage to the same buildings following two earthquake 

events. A novel procedure is demonstrated for accounting for previous damage in the buildings in the construction of fragility 

curves for the second earthquake event. The questionable quality combined with small quantities of surveyed buildings results 

in fragility curves of questionable reliability. This highlights the importance of a thorough planning of the sampling technique. It 

is also observed that constructing fragility curves for each damage state following the proposed procedure might require 

different expressions of the link function for each fragility curve , other than the probit, which is overwhelmingly adopted in the 

literature.  
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 Fitting GLMs to Data from two Australian Earthquake 
Events 

Vulnerability Curves for Australian Unreinforced Masonry and Timber Buildings  

Developer, Affiliation and 

Date: 
T. Maqsood and M. Edwards, GeoScience Australia 10/12/13 

Statistical Package:  R (R Development Team, 2008) 

Selected Building Class: Brick (unreinforced masonry) buildings and timber buildings  

Type of Assessment:   Direct Vulnerability    Indirect Vulnerability  Fragility    

Number of Buildings per Class: 
  3,796 Brick + 5,330 Timber (Newcastle earthquake) and 400 brick (Kalgoorlie 

earthquake)  

Sources of Data: 
1989 Newcastle earthquake insurance loss data and 2010 Kalgoorlie earthquake 

field survey loss data 

Overall Rating of Quality of 

Data (Newcastle): 

 High   Moderate   Poor   Other(        )           

Overall Rating of Quality of 

Data (Kalgoorlie): 

 High   Moderate   Poor   Other(        )           

Definition of Loss Parameter: 
 Damage Factor: Ratio of repair cost to replacement cost or ratio of adjusted claims 

to adjusted cover 

Intensity Measure (IM): MMI 

Range of IM: V to VIII 

Evaluation of IM: 
 Ground motion records (  Number )   GMPE  (  Ref  )   ShakeMap   

Other(Isoseismal maps)           

Mean Vulnerability Relationship 

Shape of Nonparametric Curve: Mean damage factor against MMI plotted in Figure D.13. 

Confidence Intervals of the Vulnerability Relationship 

Confidence Intervals for Mean 

Vulnerability Curve: 
Mean damage factor plus minus one sigma against MMI presented in Figure D.13.  

Direct Vulnerability Assessment - Loss Functions 

Developer, Affiliation and Date: Tariq Maqsood and Mark Edwards, GeoScience Australia,  10/12/13 

Damage Scale: 
xDamage Factor (ratio of repair cost to replacement cost) against MMI plotted in 

Figure D.13. 

Procedure:  
Damage to Loss functions obtained from insurance data for URM buildings and 

Timber buildings.  

Discussion: 

A direct vulnerability assessment procedure is adopted here in order to estimate the economic loss caused by direct 

damage to masonry and timber buildings. Two datasets are prepared resulting from the 1989 Newcastle and 2010 

Kalgoorlie earthquakes. Both datasets have positive and negative aspects. The former provides insurance claim 

information for more than 9,000 buildings but without street addresses. The latter provides detailed building attributes 
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and damage information but only for 400 buildings. Also, the intensity range is quite limited for both datasets. Data is 

only available for three intensity levels (MMI VI to VIII) in the case of the Newcastle event and for two intensity levels 

(MMI V to VI) in the case of the Kalgoorlie event. Nevertheless, these two events provide the best available information 

for the study of earthquake vulnerability in Australia. 

1st Step: Preparation of the loss data 

1989 Newcastle earthquake data:   

A ML5.6 earthquake occurred in Newcastle on 28 December 1989 causing heavy damage and the loss of 13 lives (Dhu 

and Jones, 2002). Unfortunately, there are no strong motion recordings of the earthquake close to the heavily damaged 

areas. NRMA insurance (now the Insurance Australia Group, IAG) records are obtained from the Newcastle City Council 

to estimate the cost of damage to buildings due to the 1989 Newcastle earthquake. There are approximately 14,000 

NRMA claims in total that include for each claim, the suburb, the value insured, the pay-out and whether the claim was 

for a brick building, a timber building or the contents.  For the study region, NRMA data gives total building claims of 

approximately $86 million (1989 US dollars) and total insured value (buildings) of $8,981 million (1989 US dollars). 

However, this data is a biased sample of building loss as it does not include the buildings for which claims were not 

made.  Furthermore, there is uncertainty as to what percentage of the buildings in the study region was insured by 

NRMA, and what the underinsurance factor and excess fees were. 

To address these issues and prepare a damage database Geoscience Australia consulted the IAG. During the 

consultation, claim rates for brick and timber buildings were estimated for each shaking intensity level; and an 

underinsurance factor and a typical deductible value was also evaluated. Demand surge or post-event inflation, which 

can distort the claims, is believed to be minor and hence neglected for rest of the analysis. The Newcastle Earthquake 

occurred at a time of softening demand in the building industry and the Kalgoorlie Earthquake was not of a severity 

that could cause significant demand surge inflation. 

As the insurance claim data does not provide street addresses for each claim, the claims are aggregated at the suburb 

level (114 suburbs). By using the outcomes of a survey of more than 6,000 properties conducted by Geoscience 

Australia in Newcastle in 1999, an indicative age (pre-1945 and post-1945) is attributed to each suburb to differentiate 

the older building stock from the relatively new one. For each suburb the claims are sub-sampled based on building 

type (brick or timber) and age category (pre 1945 and post 1945) and the number of buildings and total cover in the 

suburb is expanded to a notional portfolio by using an agreed claim rate for each of the four categories and intensity 

levels. Then, adjustments are made for underinsurance and deductibles. In the final step to prepare the damage 

database, the Damage Factor (DI) is calculated as a ratio of adjusted claim to adjusted cover for each suburb.  

2010 Kalgoorlie earthquake data:   

The ML 5.0 earthquake shook Kalgoorlie and neighbouring areas on 20 April 2010. The resultant ground motion was 

found to vary markedly across the town (Edwards et al., 2010). Geoscience Australia conducted an initial 

reconnaissance and captured street-view imagery of 12,000 buildings within Kalgoorlie by using a vehicle mounted 

camera system. The subsequent foot survey collected detailed information from nearly 400 buildings in Kalgoorlie and 

Boulder. The shaking caused widespread damage to pre-World War One unreinforced masonry buildings. More modern 

masonry buildings also experienced some damage in the vicinity of Boulder. The Damage Factor for each surveyed 

building is calculated by firstly recording damage to different building elements and assigning a damage state in terms 

of None, Slight, Moderate, Extensive and Complete to match the HAZUS damage states. Secondly, a percentage 

damage is assigned to each element and lastly percentage loss for a building is determined as the sum over all building 

elements of: (% of building cost contributed by the element)x(%damage)x(%of element so damaged). The Kalgoorlie 

data provides just three data points for two suburbs at MMI V and VI. 

Data preparation: 

Figure D.1 presents the damage data for brick (unreinforced masonry) buildings and Figure D.5 shows the damage data 

for timber buildings for each suburb in the study region from Newcastle and Kalgoorlie events. The number of claims 

per suburb varies from a few to more than 400 per suburb. In order to develop vulnerability functions from a 

statistically significant database, suburbs with fewer than 20 claims are eliminated from the database. Figures D.2 and 
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D.6 show the damage data for brick and timber buildings respectively from suburbs with more than 20 entries. 

In order to differentiate between the vulnerability of older legacy buildings from relatively newer construction, the data 

is sub-divided, for brick and timber buildings, into two age categories, i.e., pre 1945 and post 1945, using the notional 

age of each suburb. Figure D.3 and D.4 illustrates the data for pre- and post-1945 brick buildings, respectively. Figure 

D.7 and D.8 show the data for pre- and post-1945 timber buildings, respectively. Overall, the quality of the Newcastle 

database is considered moderate due to the aggregated type of data. The quality of the Kalgoorlie database is believed 

to high due to building by building field surveys.   

2nd Step: Selection and Estimation of the Intensity Measure  

Even though the guideline requires a number of intensity measures to be selected, due to a lack of strong motion 

recordings, the only available intensity measure for this study is the Modified Mercalli Intensity (MMI). Rynn et al., 

(1992) have produced a local intensity map for the Newcastle and Lake Macquarie area with MMI range of VI to VIII.  

Each suburb is therefore assigned an MMI value from the intensity map. An averaged intensity is assigned where a 

suburb has two or more isoseismal contours according to the intensity map prepared by Rynn et al., (1992) and number 

of claims within the suburb. For the Kalgoorlie Earthquake, the MMI values derive from direct observation and 

interviews with residents. The estimated MMI in Kalgoorlie and Boulder were V and VI, respectively (Edwards et al., 

2010). 

3rd Step: Selection of GLM 

For this study, generalised linear models (GLM) are selected to develop vulnerability functions for brick and timber 

buildings. 

4th Step: Statistical Model Fitting Procedure  

Statistical model fitting is performed using ‘R’. The parameters of this model are estimated numerically by maximising 

their likelihood function (see §6.3.1). As mentioned in §5.3, the GLM consist of three main components i.e., a 

probability distribution, a linear predictor and a link function. For each of the four derived databases (pre/post 1945 

Brick and pre/post 1945 Timber), three distributions (Gamma, Inverse Gaussian and Lognormal) and three link 

functions (Identity, Log, and Inverse) were used to derive the vulnerability curves. Then, goodness of fit checks are 

carried out to select the optimum vulnerability curve. 

Goodness of fit checks: 

A set of graphical plots is used to diagnose the ability of the selected regression models to fit the available data. The 

plots of the Pearson residuals against the fitted values, scale location plot and influential data points are plotted in 

Figures D.9 to D.12. In general, a statistical model can be considered acceptable if the Pearson residuals have zero 

mean and constant variance equal to  . The smoothing curve in these Figures appears to be strongly influenced by 

certain residuals and deviate considerably from the expected zero value. This, however, can be attributed to the strong 

influence of very small number of residuals and is considered acceptable.   

 

Figure D.1 Damage Factor vs MMI for each suburb for brick (unreinforced masonry) buildings. 
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Figure D.2 Brick buildings: Damage Factor vs MMI for each suburb for with >20 claims. 

 

Figure D.3 Pre 1945 Brick buildings: Damage Factor vs MMI for each suburb with >20 claims.  

 

Figure D.4 Post 1945 Brick buildings: Damage Factor vs MMI for each suburb with >20 claims. 
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Figure D.5 Damage Factor vs MMI for each suburb for timber buildings. 

 

 

Figure D.6 Timber buildings: Damage Factor vs MMI for each suburb for with >20 claims. 

 

 

Figure D.7 Pre 1945 Timber buildings: Damage Factor vs MMI for each suburb with >20 claims. 
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Figure D.8 Post 1945 Timber buildings: Damage Factor vs MMI for each suburb with >20 claims. 

 

Figure D.9 (a) Pearson residuals against the fitted values, (b) Scale-location plot, (c) Plot of influential points for brick 

pre 1945 buildings. 

 

Figure D.10 (a) Pearson residuals against the fitted values, (b) Scale-location plot, (c) Plot of influential points for 

brick post 1945 buildings. 
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Figure D.11 (a) Pearson residuals against the fitted values, (b) Scale-location plot, (c) Plot of influential points for 

timber pre 1945 buildings. 

 

Figure D.12 (a) Pearson residuals against the fitted values, (b) Scale-location plot, (c) Plot of influential points for 

timber post 1945 buildings. 

Τhe diagnostics of brick pre 1945 building data showed that the Inverse Gaussian distribution with Log link function 

reasonably relates the loss with MMI (refer to Figures D.9). Figures D.10 presents the diagnostics resulting from the use 

of Gamma distribution with Identity link functions for brick post 1945 data. Similarly Figures D.11 show the diagnostics 

resulting from the use of Gamma distribution with Identity link functions for timber pre 1945 data. Figures D.12 

presents diagnostics resulting from the use of Gamma distribution with Log link functions for timber post 1945 data. 

5th Step: Identify the optimum vulnerability curve  

According to the recommendations of §6.3, the AIC for the different models representing various distributions (Normal, 

Gamma, Inverse Gaussian) and link functions (Identity, Inverse, Log) corresponding to the MMI are compared. The 
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model with smallest AIC value is considered to be the optimum according to the guidelines in §6.3.  

In this case of brick pre-1945 buildings the Inverse Gaussian distribution with the Log link function produces the 

smallest AIC value. For brick post-1945 buildings the model which best fits the data and has the smallest AIC value is 

the Gamma distribution with the Identity link function. For timber pre 1945 building data, the optimum model is the 

Gamma distribution with the Identity link function; and for timber post 1945 buildings it is Gamma distribution with the 

Log link function. The mean vulnerability curve as well as the mean plus one standard deviation are plotted in Figure 

D.13.  

  

(a) Brick pre 1945 (b) Brick post 1945 

  

(c) Timber pre 1945 (d) Timber post 1945 

Figure D.13 Mean vulnerability curve and mean plus minus one standard deviation for the range of MMI levels for (a) 

brick pre 1945, (b), brick post 1945, (c) timber pre 1945 and (d) timber post 1945.  

Lessons  

From an Australian perspective, it is concluded that the document provides detailed and comprehensive guidelines to 

prepare an empirical damage/loss database and to perform sophisticated regression analysis. However, at the same 

time it requires a large sample of observations to generate reasonable vulnerability functions, which may not be 

available. It can be seen from the results that sometimes even the best fit function fails to capture the observed trend 

at higher intensities due to limited data points. An attempt to fit the curve to observations at higher intensities led to a 

significant deviation at the lower intensity, a value which is more critical as even a small percentage difference for more 
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likely ground shaking intensities can result in significant change in annualised losses.  

The NRMA insurance data provides claim and cover information for more than 9,000 buildings in 114 suburbs impacted 

from the 1989 Newcastle earthquake. Geoscience Australia conducted a detailed survey of more than 5,000 buildings 

in Newcastle which captured detailed building attributes. Geoscience Australia also has access to the Newcastle City 

Council damage survey data which categorises building damage into red, amber, blue and green depending upon the 

severity of damage. The three databases have the potential to be utilised for detailed vulnerability assessment, 

however, it requires a common attribute such as street address to link the databases and augment the captured 

information. At present this link is missing which forced the building by building claim data to be aggregated at suburb 

level.  

The aggregation of data and the very small number of data points may have led to significant loss of information and 

caused an increased uncertainty in the model. However, there is potential to improve the details of the loss database 

and building categorisation based on structural system, wall material, age and number of storeys by utilising the above 

mentioned three databases. Thereafter, more refined vulnerability curves can be developed for more building types.   
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 Fitting GLMs to damage data from the 1978 Thessaloniki 
Earthquake, Greece, using Bayesian analysis 

Fragility Curve for Greek Masonry Buildings.  

Developer, Affiliation and 

Date: 
I. Ioannou, UCL EPICentre, 09/12/13 

Statistical Package:  R (R Development Team, 2008) 

Selected Building Class: Masonry  

Type of Assessment:   Direct Vulnerability    Indirect Vulnerability  Fragility    

Number of Buildings per Class: 28,559 

Sources of Data: Survey by local authorities with the aim of safety assessment. 

Overall Rating of Quality of 

Data (per Source): 

 High   Moderate   Poor   Other(       )           

Definition of Loss Parameter: - 

Intensity Measure (IM): PGA in g 

Range of IM: 0.05g-0.25g 

Evaluation of IM: 
 Ground motion records ( No )   GMPE  (  Margaris et al 2011 )   ShakeMap   

Other(        )           

Fragility Curves  

Damage Scale:  OASP (Green-Yellow-Red) 

Damage State (DS): Yellow Red  Yellow Red 

Description of DS:      

Function of Statistical Model: Eq.(E.2) Eq.(E.2)  Eq.(E.2) Eq.(E.2) 

Parameter ( θ0 ): 0.153 -0.433  0.172 -0.426 

Parameter ( θ1 ): 0.254  0.314  0.262 0.317 

Confidence Intervals for mean 

FC: 
     

Statistical  Model:     GLM    GLM      GLM    GLM 

Model Fitting Procedure:  ML  ML   Bayesian  Bayesian 

Data Type:  Building-by-Building    Grouped data 

Number of Data Points: 73 73  73 73 

Grouped Data: Definition of the 

aggregation unit: 

Municipality  

Grouped Data: Min Number of 

Buildings / Data Point: 

13 13  13 13 

Statistical  Assumptions: 

Spatial Independence of Data 

 

- 

 

- 
 

 

- 

 

- 



 109 

Points: 

Measurement Error in IM: 

Measurement Error in 

Response: 

Other(___________________):        

- 

- 

- 

- 

- 

- 

- 

                   - 

                   - 

- 

                 - 

                 - 

Goodness of Fit Assessment: 

                             Mean function: 

                        Variance function: 

 

 

 

 

No 

No 

  

No 

No 

 

No 

No  

Procedure:  

Confidence Intervals: 

 

 Asymptotic    

  

 Asymptotic   

 

 

 

 Bayesian 

 

 Bayesian 

Discussion: 

The empirical fragility assessment procedure is adopted here to assess the probability of a safety state being reached or 

exceeded given intensity levels from the safety assessment data of masonry buildings affected by the 1978 Thessaloniki 

earthquake. The procedure requires three steps. In the first step, the quality of the database is discussed. In the second 

step, the quality of the excitation observations is assessed. The third step involves the identification of a statistical model 

which fits the data best.   

1st Step: Preparation of the damage data 

Data Quality Assessment:   

The database was obtained by UCL EPICentre from the organization responsible for recording and repairing seismic 

damage in Northern Greece. The 1978 Thessaloniki database contains damage data of mainly reinforced concrete and 

masonry residential buildings located in 16 urban and 13 rural municipalities. The surveyed buildings are assigned one of 

three safety levels, namely: Green, Yellow and Red according to the provisions of Earthquake Planning and Protection 

Organization (1997). By comparing the total number of buildings, irrespective of their use or construction material, in 

each municipality with the number of buildings recorded in the 1981 census, a large non-coverage error has been 

identified for 7 urban municipalities and all 13 rural municipalities (i.e. ≤70% of the buildings in a municipality have been 

surveyed).  

With regard to the urban areas, the 9 municipalities with non-coverage error ≤30% are adopted for the construction of 

fragility curves. By contrast, the non-coverage error in the 13 rural municipality is reduced by estimating the total 

number of residential buildings as the average of the number of residential buildings in each rural municipality reported 

in the census of 1971 and 1991 (due to the absence of detailed information regarding the number of residential 

buildings in each municipality in the 1981 census). Implicit in this, is the assumption that all residential buildings in rural 

municipalities are of masonry construction. Given that the buildings were surveyed only at the owner’s request, it is also 

considered that non-surveyed buildings have suffered no damage, i.e. they are assigned the Green safety level. 

The improved database contains damage data regarding 28,559 (instead of the total 30,783) masonry buildings located 

in 73 urban and rural postcodes. The damage data used has been collected during two rounds of post-earthquake 

seismic safety assessment. We consider that the second round produced a more accurate assessment, and that the 

buildings that were not been surveyed twice were assigned the correct safety level in the first survey. This is perhaps an 

unrealistic assumption to address the misclassification error but it is adopted for illustrative purposes. 

Overall, the database is considered of moderate quality.     

For the prior distributions, the 2003 Lefkada database (CEQID, 2013) is used. This database contains data from 4,793 

masonry buildings aggregated in 39 municipalities. The damage is classified according to the six-state EMS-98 damage 

scale (dsi=0-5). Given that there were no collapsed buildings, the damage scale is reduced to five-states, ranging from no-

damage to heavy damage. The intensity is considered constant within each municipality. Its value is estimated from 

USGS ShakeMaps in terms of PGA (in g) and ranges from 0.009g to 0.023g. Contrary to the first database, the 2001 

census has been used to estimate the total number of buildings and the non-surveyed buildings have been considered 
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undamaged. Nonetheless, the damage is systematically overestimated, by an unknown degree, since it contains the 

overall damage accumulated after the main event as well as a strong aftershock.  

Fragility curves corresponding to four damage states (i.e. ds1-ds4) for three sub-classes of low-rise residential masonry 

buildings are constructed by fitting cumulative lognormal distribution functions using an ordinal probit regression 

analysis. The three subclasses include buildings built a. before 1919, b. between 1919 and 1945 and c. after 1945 

according to the classification of Karababa and Pomonis (2010). These four states are harmonized to the three safety 

levels adopted in this study according to the recommendations of Rossetto and Elnashai (2003). Therefore, the fragility 

curves corresponding to Yellow and Red safety levels are approximately equivalent to:  

   

   
3

4

| |

| |

True j True j

True j True j

P DS Yellow im P DS ds im

P DS Red im P DS ds im

  

  

                                                                   (E.1) 

2nd Step: Selection and estimation of the Intensity Measure  

The intensity measure type selected is PGA and its value is evaluated at the centre of each municipality using the GMPE 

proposed by Margaris et al. (2011). This introduces a measurement error in the intensity measure levels, but this error is 

ignored for this application.  

Figure E.1 depicts that the majority of the data are urban and correspond to a narrow range of PGAs between 0.07.-

0.09g.   

 

Figure E.1 Cumulative distribution of the proportion of the examined buildings in each data point against the 

corresponding intensity measure.  

3rd Step: Selection of the statistical  model 

Maximum likelihood approach  

A probit model is fit to the safety assessment (see Eq.(E.2)) data.    
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(E.2) 

 

The fragility curve for the yellow and red safety levels as well as their corresponding 90% confidence intervals are 

constructed by fitting the model expressed by Eq.(E.2) using a maximum likelihood approach.  

Bayesian approach  
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A Bayesian approach is also adopted in order to estimate the model parameters accounting for prior knowledge 

regarding their distribution based on the 2003 Lefkada database. Figure E.2 depicts the algorithm adopted in R. It should 

be noted that the linear predictor of the adopted GLM is centred around the mean of the natural logarithm of IM: 

 
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(E.3) 

This is a common practice introduced for faster convergence of the Markov chains.  

The next step involves the determination of the prior distribution for the two parameters: 

 θ1 (th1): This is expected to be positive (negative values of the slope of the fragility curves means that the 
probability of damage decreases with the increase of intensity measure levels). For this reason this parameter 
is assigned a gamma distribution, with parameters b and c.  

 θ0
* (th0.star): is a normal distribution described by its mean and the precision (1/standard deviation ^2).  

The parameters of the two distributions are determined by fitting the models expressed by Eq.(E.3) to the 2003 Lefkada 

data. The fragility curve corresponding to “red” for LBSM2 is dismissed due to negative values of the slope, indicating 

that the damage decreases with an increase in intensity measure level, which is not expected. The mean and variance of 

the five values of θ1 and θ0
* determine the parameters of the distributions of these two parameters.   

Table E.1 Parameters of models fitting to 2003 Lefkada data and the resulting parameters of the prior distributions. 

Class Safety Level θ*0 θ1 

LBSM1 Yellow -1.04250 1.16192 

Red -1.85695 2.02338 

LBSM2 Yellow -1.05792 0.56047 

Red -1.79286 -0.82059 

LBSM3+4 Yellow -1.29482 0.63767 

Red -2.21538 0.80459 

Priors - Yellow 

mean  -1.13 0.79 

St.Dev.  0.141 0.327 

Gamma parameters for θ1  b c 

5.78 7.34 

Priors - Red 

mean  -2.04 1.41 

St.Dev.  0.253 0.862 

Gamma parameters for θ1 b c 

2.69 1.90 
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Figure E.2 Bayesian analysis in R. 

 

 

 

OrdinalProbitLn<-function() { 

   

  for(i in 1:nBinsIM){ 

     

    DS.true[i] ~ dbin(FC.true[i],N[i]) 

 

    probit(FC.true[i])<- th0.star + th1*(log(IM.true[i])-lnIM.mean) 

       

    } 

  th1~dgamma(b,c) 

  th0.star~dnorm(mutheta0.star,prec.theta0) 

  th0<-th0.star - th1*lnIM.mean   

} 

 

write.model(OrdinalProbitLn,"OrdinalProbitLn.txt") 

modelCheck("OrdinalProbitLn.txt") 

 

##Get the data in BUGS: 

 

lnIM.mean<-mean(log(IM.Observed)) 

 

# Yellow 

 

BayesModelData <-list(nBinsIM=length(IM.Observed),DS.true=N.YellowOrAbove, 

                      IM.true=IM.Observed,lnIM.mean=lnIM.mean, 

                      mutheta0.star=-1.13,prec.theta0=(1/0.141)^2, 

                      b=5.78,c=7.34, 

                      N=N.buildings) 

 

bugs.data(BayesModelData,data.file="DataBUGS.txt") 

 

BayesInits <-  list(list(th0.star=-1.0,th1=1.0), 

                    list(th0.star=-2.0,th1=2.0), 

                    list(th0.star= 1.0,th1=0.5)) 

 

Yellow<- bugs(data="DataBUGS.txt",n.chains=3, 

             inits=BayesInits,n.burnin=5000,n.iter=10000,OpenBUGS.pgm=NULL, 

             parameters.to.save=c("th0","th1"), 

             model.file="OrdinalProbitLn.txt",n.thin=1,debug=TRUE) 

#### Red 

BayesInits <-  list(list(th0.star=-1.0,th1=1.0), 

                    list(th0.star=-2.5,th1=2.0), 

                    list(th0.star=-5.5,th1=0.5)) 

 

BayesModelData <-list(nBinsIM=length(IM.Observed),DS.true=N.Red, 

                      IM.true=IM.Observed,lnIM.mean=lnIM.mean, 

                      mutheta0.star=-2.04,prec.theta0=(1/0.253)^2, 

                      b=2.70,c=1.90, 

                      N=N.buildings) 

 

bugs.data(BayesModelData,data.file="DataBUGS.txt") 

 

Red<- bugs(data="DataBUGS.txt",n.chains=3, 

             inits=BayesInits,n.burnin=5000,n.iter=10000,OpenBUGS.pgm=NULL, 

             parameters.to.save=c("th0","th1"), 
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Figure E.3 Diagnostics for Yellow (The mix of the three chains appears to be adequate). 

4th Step: Statistical  Analysis 

Estimation of the statistical  parameters 

The model expressed by Eq.(E.3) is fitted to the data by a Bayesian analysis using OpenBugs (Lunn et al., 2009) and R (R 

Development Team. 2008). A total of 10,000 runs are adopted and the results from the first 5,000 runs are ignored.  The 

performance of the algorithm is examined in Figure E.3-4. Figure E.3 depicts the values of the GLM parameters and the 

deviation against the corresponding iterations. The shape of the graph indicates that all three chains converged. The 

autocorrelation in the sampled parameter values is tested in Figure E.4. High autocorrelation can be depicted if there are 

successive negative or positive values. Figure E.4 illustrates that with the exception of the deviance of a chain 

autocorrelation is not an issue.  

 

Figure E.4 Diagnostics for Yellow. 
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The obtained fragility curves are depicted in Figure E.5. The mean curves appear to overlap with the ones produced by 

the maximum likelihood method. This indicates that the presence of a large number of buildings dominates the results 

and that the prior knowledge regarding the distribution of the GLM’s parameters does not influence the results. Small 

differences in the 90% intervals produced by the two procedures can be noted, but can be considered negligible. The 

narrow confidence intervals reflect the large sample size especially in the urban area of Thessaloniki. It should be noted 

that the over-dispersion in the grouped data is not taken into account in this application and is the subject of future 

work.   

 

Figure E.5 Fragility curves and corresponding confidence intervals estimated by the maximum likelihood approach and 
the Bayesian analysis (It should be noted that in both cases, the binomial distribution is wrongly assumed to capture 

the uncertainty in the data). 
 

Lessons:  

The use of Bayesian analysis will not necessarily lead to fragility curves that are different from those resulting from a 

maximum likelihood approach in cases where a large database is available.  The model should be expanded in order to 

capture the over-dispersion in the data. 

References: 

Lunn, D., D. Spiegelhalter, A. Thomas, N. Best [2009] "The BUGS project: Evolution, critique and future directions", 

Statistics in Medicine, Vol. 28, No. 25, pp. 3049-3067. 

R Development Core Team [2008] ''R: A language and environment for statistical computing'', Report, R Foundation for 

Statistical Computing, Vienna, Austria. 
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 Fitting GAMs to damage data from the 1980 Irpinia 
Earthquake, Italy 

Fragility Curve for Italian Field Stone Masonry Buildings with Wooden Floors.  

Developer, Affiliation and 

Date: 
I. Ioannou, UCL EPICentre, 01/04/12 

Statistical Package:  R (R Development Team, 2008) 

Selected Building Class: Field stone masonry buildings with wooden floors 

Type of Assessment:   Direct Vulnerability   Indirect Vulnerability  Fragility    

Number of Buildings per Class: 8,859 

Sources of Data: 1980 Irpinia (Braga et al (1982) from  CEQID (2013) ) 

Overall Rating of Quality of 

Data (per Source): 

 High   Moderate   Poor   Other(        )           

Definition of Loss Parameter: Repair over replacement cost  

Intensity Measure (IM): PGV in m/s 

Range of IM: (0.08-1.3) m/s 

Evaluation of IM:  Ground motion records ( Number )   GMPE  (  Ref  )   ShakeMap   Other(        )           

Indirect Vulnerability Assessment - Fragility Curves (FC) 

Damage Scale:  MSK-76 

Damage State (DS):   ds3 ds3  

Description of DS:   Moderate Moderate  

Function of Non-parametric FC:      

Function of Parametric FC:   Eq.(F.1)   

Parameter (  θ0  ):   0.19432   

Parameter ( θ1 ):   0.60559   

Confidence Intervals for mean 

model: 
  - -  

Statistical Model:      GLM    GAM  

Statistical Model Fitting 

Procedure: 

   ML  ML  

Data Type:  Building-by-Building    Grouped data 

Number of Data Points:   41 41  

Grouped Data: Definition of the 

aggregation unit: 

 

Grouped Data: Min Number of 

Buildings / Data Point: 

  3 3  

Model Assumptions:                  
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Measurement Error in IM: 

Measurement Error in 

Response: 

Other(___________________):        

             - 

              - 

              - 

- 

              - 

              - 

Goodness of Fit Assessment: 

                             Mean function: 

                         Variance function: 

   

 

No 

 

 

No 

 

Procedure:  

Confidence Intervals: 

 
 

 

 
  

Discussion: 

The empirical fragility assessment procedure is adopted here to estimate fragility curves for Italian stone masonry 

buildings with wooden floors. The adopted database has also been adoted in Appendix B where the use of GLM models 

has been illustrated. The aim of this application is to highlight issues with the use of the generalized additive models 

when the data are aggregated and sparse.     

1st Step: Preparation of the damage data 

Data Quality Assessment:   

Grouped damage data, aggregated per building type into 41 damage distributions each corresponding to a different 

affected municipality, were obtained from the CEQID (2013) . The original completed survey forms were not available 

but the survey method is reported in the literature. The 1980 Irpinia Earthquake database was constructed by a one-

stage cluster sampling method (Levy and Lemeshow, 2008); i.e., the total number of buildings from 41 municipalities 

(out of more than 600 affected by the event) in the Campania-Basilicata area were surveyed (Braga et al., 1982). With 

regard to non-sampling errors, the comments found in the CEQID (2013) raise concerns on whether the total 

number of buildings in each commune has been surveyed. For the needs of this application we assume that this error is 

negligible. Overall, the quality of the database is considered moderate due to the aggregated type of data.   

Data preparation per source: 

The building classes account for the material of the vertical as well as the lateral load resisting structural components. 

Fragility curves are constructed using the largest and most vulnerable building class in this database, which consists of 

8,859 field stone masonry buildings with wooden floors. The observed damage is classified into six discrete states, 

varying from no damage to collapse, according to MSK-76. This is the original damage classification used by Braga et al. 

(1982) in collecting the data. Figure F.1 highlights the significant (~25%) percentage of buildings which suffered heavy 

damage or collapse.  

 

Figure F.1 Number of field stone masonry buildings with wooden floors that suffered damage in the 1980 Irpinia 

earthquake. 

 

The construction of fragility curves using ‘R’ (R Development Team, 2008) requires the transformation of the grouped 
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damage data into data points (xj,(yij,nj-yij)), where yij is the count of buildings which suffered DS≥dsi and nj-yij is the 

count of buildings which sustained DS<dsi for municipality j with intensity measure level xj. Thus, 41 data points are 

obtained for each of the five damage states dsi (i=1-5). The number of the buildings surveyed in each municipality 

varied widely from 3 to 1205. Six data points are seen to be based on very small numbers of buildings (<20). These six 

points are also included in the analysis and the goodness of fit diagnostics will determine whether they should be 

removed.  

 

 

 

 

 

 

 

 

Figure F.2 Cumulative distribution of the proportion of the examined buildings exceeding the selected intensity 

measure values.  

2nd Step: Selection and Estimation of the Intensity Measure  

Two intensity measure types, namely PGV and MMI, have been selected. Their levels are estimated by a ShakeMap for 

the earthquake and are also provided in the CEQID (2013). The intensity measure values are assumed to have a single 

constant value within each municipality. This is considered a reasonable assumption given the relatively small surface 

area of each municipality (on average 24km2). Nonetheless, the measurement error associated with these estimated 

intensity levels is not known, and therefore the measurement error in the intensity measure level estimated for each 

commune is ignored. 

3rd Step: Selection of Statistical Model 

The distribution of the data points in the range of the intensity measure levels can be used to determine an acceptable 

statistical model. For this reason, the cumulative proportion of buildings (for the 41 data sets) and their corresponding 

intensity measure levels in shown Figure F.2. In Appendix B, the relatively small number of data points and especially 

their sparseness over the higher intensity measure levels, lead the analyst to decide that a non-parametric model 

would be inappropriate. In this application, we examine the validity of this decision. For this reason, the fit of a GLM 

model is compared here to the fit of a GAM model.  

The GLM model is expressed in the form: 

      0 1~ | , 1  where,   | log
j jj

n yyj
i

j

n
Y f y IM μ μ μ P DS ds IM θ θ IM

y

 
          
 

θ

 

(F.1) 

 

The GAM model uses the same link functionis expressed in the form: 

     
1

0

0

~ | , 1  where,   | Φ
j jj

k
n yyj

i j j
j j

n
Y f y IM μ μ μ P DS ds IM θ θ b IM

y






  
             

   
θ

 

(F.1) 

Three GAM models are fit to the data using the same link function and linear predictor as for the GLM: 

 GAM.5.1    : for 5 knots and gamma=1. 

 GAM.5.120: for 5 knots and gamma=120. 

 GAM.15.1  : for 15 knots and gamma=1. 
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4th Step: Statistical Model Fitting Procedure 

Estimation of the model parameters 

The model is fit to the damage data using ‘R’. Figure F.3 depicts the four curves. GAM.5.1 and GAM.15.1 are non-

monotonic curves. It can also be noted that the higher the number of knots the more wobbly the fragility curve. This 

has a positive effect on the over-dispersion as depicted by the residual plots in Figure F.4b,d, which shows that the 

residuals of the GAM.15.1 appear to vary between [-3,3].  

Does this mean that this model fits the data best? The answer is complicated. The fit might be indeed better but the 

predictive ability of the model is compromised as the curve is influenced by the rather sparkly distributed data. The 

trend depicted by GAM.15.1, however, is specific to the particular database and is unlikely to be the case if more data 

points are available.  

Does this mean that the GAM.5.1 provides a better trend of the data that the GLM as well as GAM.15.1? Again, the 

non-monotonic trend in the data is a result of the particular database. In other words, the decrease in the probability of 

damage for increasing intensity measure levels can be attributed to the particular arrangement of the few data points, 

instead of an indication that the increase of PGA for low intensity measure levels is expected to decrease the 

probability of damage. For this reason, the author does not think can be considered realistic.  

A non-strictly monotonic curve is fitted by the smoother curve of GAM.5.120. This appears to be intuitively better, 

however, it leads to a model that suffers from over-dispersion (see Figure 4c) and its trend is also highly influenced by 

the particular dataset and this challenges its ability to predict the probability of damage from new events. For these 

reason, the analysis believes that the GAM is any of the examined form is not better than its corresponding GLM for the 

proposed database.  

Lessons  

The use of generalised additive models is questionable for sparse aggregated data.    

References: 

Braga F., Dolce M., Liberatore D. [1982] ''Southern Italy November 23, 1980 earthquake: a statistical study of damaged 

buildings and an ensuing review of the M.S.K.-76 scale'', Report, Rome, Italy. 

Levy P.S., Lemeshow S. [2008] ''Sampling of populations: Methods and applications'', Wiley. 

R Development Core Team [2008] ''R: A language and environment for statistical computing'', Report, R Foundation for 

Statistical Computing, Vienna, Austria.    
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Figure F.3 Fragility curves corresponding to moderate damage constructed by GLM and GAMs.  

 

Figure F.4 Pearson residuals against the PGA for the GLM and GAMs.  
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 Fitting GKSs to damage data from the 1980 Irpinia 
Earthquake, Italy 

The analyst is referred to ICOSSAR13 paper by Noh et al. (2013) for an illustration of fitting Gaussian kernel 

smoothers to post-earthquake damage data. 
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