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[1] A new method is introduced for the solution of problems of scattering by rough
surfaces in the high-frequency regime. It is shown that high-order summations of
expansions in inverse powers of the wave number can be used within an integral equation
framework to produce highly accurate results for surfaces and wavelengths of interest in
applications. Our algorithm is based on systematic use and manipulation of certain Taylor-
Fourier series representations and explicit asymptotic expansions of oscillatory integrals.
Results with machine precision accuracy are presented which were obtained from
computations involving expansions of order as high as 20. INDEX TERMS: 0669

Electromagnetics: Scattering and diffraction; 0659 Electromagnetics: Random media and rough surfaces; 0644

Electromagnetics: Numerical methods; 0689 Electromagnetics: Wave propagation (4275); KEYWORDS:

scattering, rough surface, high frequency, numerical methods, integral equations

1. Introduction

[2] Computations of electromagnetic scattering from
rough surfaces play important roles in a wide range of
applications, including remote sensing, surveillance, non-
destructive testing, etc. The problem of evaluating such
scattering returns is rather challenging, owing to the
multiple-scale nature of rough scatterers, whose spectra
may span awide range of length scales [Valenzuela, 1978].
[3] A number of techniques have been developed to

treat limiting cases of this problem. For example, the high-
frequency case, in which the wavelength l of the incident
radiation is much smaller than the characteristic surface
length scales, has been treated by means of low-order
asymptotic expansions, such as the Kirchhoff approxima-
tion. On the other hand, resonant problems where the
incident radiation wavelength is of the order of the rough-
ness scale have been treated by perturbation methods,
typically first- or second-order expansions in the height h
of the surface [Rice, 1951; Shmelev, 1972;Mitzner, 1964;
Voronovich, 1994]. However, when amultitude of scales is
present on the surface, none of these techniques is
adequate, and attempts to combine them in a so-called
two-scale approach have been made [Kuryanov, 1963;

McDaniel andGorman, 1983;Voronovich, 1994;Gil’Man
et al., 1996]. The results provided by thesemethods are not
always satisfactory, owing to the limitations imposed by
the low orders of approximation used in both the high-
frequency and the small-perturbation methods.
[4] A new approach to multiscale scattering, based on

use of expansions of very high order in both parameters l
and h, has been proposed recently [Bruno et al., 2000].
These combined methods, which are based on complex
variable theory and analytic continuation, require non-
trivial mathematical treatments; the resulting approaches,
however, do expand substantially on the range of applic-
ability over low-order methods and can be used in some
of the most challenging cases arising in applications.
Perturbation series of very high order in h have been
introduced and used elsewhere to treat resonant problems,
in which the wavelength of radiation is comparable to the
surface length scales [Bruno and Reitich, 1993a, 1993b,
1993c; Sei et al., 1999]. In this paper we focus on our
high-order perturbation series in the wavelength l,
which, as we shall show, exhibits excellent convergence
in the high-frequency, small-wavelength regime. The
combined (h, l) perturbation algorithms for multiscale
surfaces, which require as a main component the accurate
high-frequency solvers presented in this paper, are
described by Bruno et al. [2000].
[5] Our approach to the present high-frequency prob-

lem uses an integral equation formulation, whose solution
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n is sought and obtained in the form of an asymptotic
expansion

n x; kð Þ ¼ eiax�i b f xð Þ
Xþ1

n¼p

nn xð Þ
kn

; ð1Þ

with p = �1 for transverse magnetic (TM) polarization
and p = 0 for transverse electric (TE) polarization. This
expansion is similar in form to the geometrical optics
series [Lewis and Keller, 1964]

u x; y; kð Þ ¼ eikS x; yð Þ
Xþ1

n¼0

un x; yð Þ
kn

; ð2Þ

where S = S(x, y) is the unknown phase of the scattered
field. Note that the phase of the density n of equation (1) is
determined directly from the geometry and the incident
field and, unlike that in the geometrical optics field, it is
not an unknown of the problem. In particular, the present
approach does not require solution of an eikonal equation
[Vidale, 1988; VanTrier and Symes, 1991; Fatemi et al.,
1995; Benamou, 1999], and it bypasses the complex
nature of the field of rays, caustics, etc.
[6] The validity of the expansion (2) has been exten-

sively studied [Friedlander, 1946; Luneburg, 1944,
1949a, 1949b; Van Kampen, 1949]; in particular, it is
known that equation (2) needs to be modified in the
presence of singularities of the scattering surface. To
treat edges and wedges, for example, an expansion
containing powers of k�1/2 [Luneburg, 1949b; Van
Kampen, 1949; Keller, 1958; Lewis and Boersma,
1969; Lewis and Keller, 1964] must be used; caustics
and creeping waves also lead to similar modified expan-
sions [Kravtsov, 1964; Brown, 1966; Ludwig, 1966;
Lewis et al., 1967; Ahluwalia et al., 1968]. Proofs of
the asymptotic nature of expansion (2) were given in
cases where no such singularities occur [Miranker, 1957;
Bloom and Kazarinoff, 1976]. In practice, only expan-
sions (2) of very low orders (one or, at most, two) have
been used, owing in part to the substantial algebraic
complexity required by high-order expansions [Bouche
et al., 1997]. First-order versions of expansion (1), on
the other hand, were treated by Lee [1975], Chaloupka
and Meckelburg [1985], and Ansorge [1986, 1987].
[7] The region of validity of our asymptotic expres-

sion (1), on the other hand, corresponds to configura-
tions where no shadowing occurs. At shadowing, the
wave vector of the incident plane wave is tangent to the
surface at some point, which causes certain integrals to
diverge; see section 4. Thus a different kind of expan-
sion, in fractional powers of 1/k, should be used to treat
shadowing configurations: A first-order version of such
an expansion was discussed by Hong [1967]; see Fried-
lander and Keller [1955], Lewis and Keller [1964],

Brown [1966], and Duistermaat [1992] for the ray-
tracing counterpart.
[8] In this paper we show that high-order summations

of expansion (1) can indeed be used to produce highly
accurate results for surfaces and wavelengths of interest
in applications for both TE and TM polarizations; in
section 7, for example, we present results with machine
precision accuracy, which were obtained from compu-
tations involving expansions of order as high as 20. Our
algorithm is based on systematic use and manipulation
of certain Taylor-Fourier series representations, which
we discuss in section 5. Operations such as product,
composition, and inversion of Taylor-Fourier series lie
at the core of our algebraic treatment; as shown in
section 5, certain numerical subtleties associated with
these operations require a careful treatment for error
control.
[9] In order to streamline our discussion we first treat,

in sections 2–5, the complete formalism in the TE case;
the changes necessary for the TM case are then described
in section 6. In detail, in section 2 we present our basic
recursive formula for the evaluation of the coefficients
nn(x) of equation (1) for the TE case. These coefficients
depend on certain explicit asymptotic expansions of
integrals, which we present in sections 3 and 4. A
discussion of the Taylor-Fourier algebra then ensues in
section 5. As we said, the modifications necessary for the
TM case are discussed in section 6. A variety of
numerical results for both TE and TM polarizations,
finally, are presented in section 7.

2. High-Frequency Integral Equations:

TE Case

[10] The scattered field u = u(x, y) induced by an
incident plane wave impinging on the rough surface
y = f (x) under TE polarization is the solution of the
Helmholtz equation with a Dirichlet boundary condition.
As is known [Voronovich, 1994], the field u(x, y) can be
computed as an integral involving a surface density n(x,
k) and the Green’s function G(x, y, x0, y0) for the
Helmholtz equation

uðx; yÞ ¼
Z þ1

�1
nðx0; kÞ @G

@n0
½x; y; x0; f ðx0Þ	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½ f 0ðx0Þ	2

q
dx0;

ð3Þ

where n satisfies the boundary integral equation

nðx; kÞ
2

þ
Z þ1

�1

@G

@n0
½x; f ðxÞ; x0; f ðx0Þ	



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ f 0ðx0Þ	2

q
nðx0; kÞdx0 ¼ �eia x�i b f ðxÞ: ð4Þ
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In what follows we will use the relations

@G

@n0
½x; f ðxÞ; x0; f ðx0Þ	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ f 0ðx0Þ	2

q
¼ � i

4
hðkrÞgðx; x0Þ;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � xÞ2 þ ½ f ðx0Þ � f ðxÞ	2

q
; hðtÞ ¼ tH1

1 ðtÞ;

gðx; x0Þ ¼ f ðx0Þ � f ðxÞ � ðx0 � xÞf 0ðx0Þ
r2

; a ¼ k sinðqÞ;

b ¼ k cosðqÞ;

where H1
1 is the Hankel function, q is the incidence angle

measured counterclockwise from the vertical axis, and
k = 2p/l is the wave number.
[11] A useful form of the integral equation (4) results

as we factor out the rapidly oscillating phase function
eiax � ib f (x)

h
e�½ia x�i b f ðxÞ	nðx; kÞ

i
� i

2

Z þ1

�1
hðkrÞgðx; x0Þ


 e�½ia x�ib f ðxÞ	nðx0; kÞ
h i

dx0 ¼ �2; ð5Þ

which cancels the fast oscillations in all nonintegrated
terms and thus suggests use of an asymptotic expression
of the form

nðx; kÞ ¼ eia x�i b f ðxÞ
Xþ1

n¼0

nnðxÞ
kn

: ð6Þ

Substitution of the asymptotic expression (6) into
equation (5) then yields

Xþ1

n¼0

1

kn
nnðxÞ �

i

2
Inðx; kÞ

� �
¼ �2; ð7Þ

where

Inðx; kÞ ¼
Z þ1

�1
hðkrÞgðx; x0Þexpfiaðx0 � xÞ

� ib½ f ðx0Þ � f ðxÞ	gnnðx0Þdx0:

To solve equation (7), we use asymptotic expansions for
the integrals In(x, k), collect coefficients of each power of
1/k, and then determine, recursively, the coefficients
nn(x). In detail, we obtain in section 3 an expansion
which gives In(x, k) in terms of derivatives of nn(x)

Inðx; kÞ ¼ 1

k

Xþ1

q¼0

Inq ðxÞ
kq

Inq ðxÞ ¼
Xq
‘¼0

@‘nnðxÞ
@x‘

Bq�‘ðxÞ; ð8Þ

where the functions Bq�l(x) are determined from the
profile and incidence angle only. (We point out, however,
that our algebraic treatment yields an expression for Iq

n(x)

which, although equivalent to that of equation (8), is
different in form; see section 3 and equation (25).) From
equations (7) and (8) we then find a recursion which
gives nn(x) as a linear combination of derivatives of the
previous coefficients nn�1�q(x)

n0ðxÞ ¼ �2

nnðxÞ ¼
i

2

Xn�1

q¼0

In�1�q
q ðxÞ:

8><
>: ð9Þ

Use of the Taylor-Fourier algebra of section 5 allows us
to perform accurately the high-order differentiations
required by our high-order expansions; the needed
expansion (8) of the integral In, in turn, is the subject
of section 3.

3. Asymptotic Expansion of In(x, k)

[12] We first split the integral I n as a sum I n = I�
n + I+

n

where

In�ðx; kÞ ¼
Z x

�1
hðkrÞgðx; x0Þexpfiaðx0 � xÞ

� ib½ f ðx0Þ � f ðxÞ	gnnðx0Þdx0;

Inþðx; kÞ ¼
Z þ1

x

hðkrÞgðx; x0Þexpfiaðx0 � xÞ

� ib½ f ðx0Þ � f ðxÞ	gnnðx0Þdx0:

We evaluate in detail the asymptotic expansion for I+
n

(x, k); the corresponding expansion for I�
n then follows

analogously.
[13] Using t = x0 � x, we obtain

Inþðx; kÞ ¼
Z þ1

0

h½kfþðx; tÞ	gðx; xþ tÞexpfiat � ib


 ½ f ðxþ tÞ � f ðxÞ	gnnðxþ tÞdt; ð10Þ

where

fþðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ð f ðxþ tÞ � f ðxÞÞ2

q
:

For the treatment presented here, f (x) is assumed to
satisfy the condition

f0
þðx; tÞ ¼

@fþðx; tÞ
@t

> 0 t 
 0 ð11Þ

so that the map t 7!f+(x, t) is invertible. (This condition
is generally satisfied by rough surfaces considered in
practice: For a sinusoidal profile f (x) = a cos (x), for
example, the inequality (11) holds as long as a < 1).
Then setting

u ¼ fþðx; tÞ () t ¼ f�1
þ ðx; uÞ;
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equation (10) becomes

Inþðx; kÞ ¼
Z þ1

0

hðkuÞ
g½x; xþ f�1

þ ðx; uÞ	
f0
þ½x;f

�1
þ ðx; uÞ	

nn


 ½xþ f�1
þ ðx; uÞ	expðiaf�1

þ ðx; uÞ
� ibf f ½xþ f�1

þ ðx; uÞ	 � f ðxÞgÞdu:

Calling

Fn
þðx; uÞ ¼

g½x; xþf�1
þ ðx; uÞ	

f0
þ½x;f�1

þ ðx; uÞ	 nn½xþ f�1
þ ðx; uÞ	

yþðx; uÞ¼ f ½xþf�1
þ ðx; uÞ	� f ðxÞ


 �
cosðqÞ�f�1

þ ðx; uÞsinðqÞ;

8<
:

ð12Þ
I+
n(x, k) reduces to

Inþðx; kÞ ¼
Z þ1

0

Fn
þðx; uÞhðkuÞe�ik yþðx; uÞdu:

The unknown nn(x) is contained as a factor in the
function F+

n(x, u). Notation (12) is useful in that it helps
present the integrand as a product of two distinct factors:
a nonoscillatory component F+

n(x, u) and an oscillatory
component h kuð Þe�ikyþ x; uð Þ.
[14] In addition to equation (11) we assume that the

profile y = f (x) is an analytic function, so that the map
u 7! F+

n(x, u) is analytic as well. Using the Taylor series

Fn
þðx; uÞ ¼

Xþ1

m¼0

@mFn
þðx; 0Þ
@um

um

m!
¼
Xþ1

m¼0

pþn;mðxÞu
m; ð13Þ

the integral I+
n(x, k) takes the form

Inþðx; kÞ ¼
Xþ1

m¼0

pþn;mðxÞ
Z þ1

0

umhðkuÞe�ik yþðx; uÞdu

¼
Xþ1

m¼0

pþn;mðxÞ
kmþ1

Z þ1

0

vmhðvÞe�ik yþðx; v=kÞdv:

ð14Þ
Thus the 1/k expansion of I+

n results from the
corresponding expansions of the integrals

Aþðk;m; xÞ ¼
Z þ1

0

vmhðvÞe�ik yþðx; v=kÞdv: ð15Þ

These nonconvergent integrals must be reinterpreted by
means of analytic continuation, in a manner similar to
that used in the definition and manipulation of Mellin
transforms [Bleistein and Handelsman, 1986]. An
explicit expansion of A+(k, m, x) is given in section 3.1.

3.1. Expansion of the Integrals I+
n and I�

n

[15] Using the Taylor expansion of

yþ x; uð Þ ¼
Xþ1

m¼0

yþ
m xð Þ u

m

m!

in the variable u together with the identity y+(x, 0) = 0,
expansion of the function exp {�i [ky+(x, (v/k)�y1

+(x)v]}
leads to the expression

e�ikyþðx; v=kÞ ¼ e�iyþ
1
ðxÞv 1þ

Xþ1

n¼1

k�n
Xn
‘¼1

aþ‘;nðxÞ
‘!

vnþ‘

 !

ð16Þ

for certain (function) coefficients al,n
+ (x). Then, defining

Aþ
0 ð p; xÞ ¼

Z þ1

0

vphðvÞe�iyþ
1
ðxÞvdv; ð17Þ

Aþ
n ðm; xÞ ¼

Xn
‘¼0

aþ‘;nðxÞ
‘!

Aþ
0 ðmþ nþ ‘; xÞ; ð18Þ

we obtain

Aþðk;m; xÞ ¼ Aþ
0 ðm; xÞ þ

Xþ1

n¼1

Aþ
n ðm; xÞ
kn

ð19Þ

and the series

Inþðx; kÞ ¼
Xþ1

q¼0

Xq
‘¼0

pþn;q�‘ðxÞA
þ
‘ ðq� ‘; xÞ

 !
k�q�1 ð20Þ

for I+
n results.We see that this expansion is given in terms of

the integrals (17), which, like those of equation (15), are
nonconvergent and require analytic continuation. An
explicit expression for this integral as a function of p and
x is given in section 4.
[16] The case of I�

n(x, k) can be treated similarly: We
use t = x � x0 and the definitions

f�ðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ½ f ðx� tÞ � f ðxÞ	2

q
;

Fn
�ðx; uÞ ¼

g½x; x� f�1
� ðx; uÞ	

f0
�½x;f

�1
� ðx; uÞ	

nn½x� f�1
� ðx; uÞ	;

y�ðx; uÞ¼ f ½x�f�1
� ðx; uÞ	�f ðxÞ

� �
cosðqÞ�f�1

� ðx; uÞsinðqÞ:

Then, letting al,n
� (x) be the coefficients in the expansion

of e�ikvy� x;v=kð Þ

e�iky�ðx; v=kÞ ¼ e�iy�
1 ðxÞv 1þ

Xþ1

n¼1

k�n
Xn
‘¼1

a�‘;nðxÞ
‘!

vnþ‘

 !
;

calling

A�
0 ð p; xÞ ¼

Z þ1

0

vphðvÞe�iy�
1 ðxÞvdv;
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and defining the functions An
�(m, x) by

A�
n ðm; xÞ ¼

Xn
‘¼0

a�‘;nðxÞ
‘!

A�
0 ðmþ nþ ‘; xÞ; ð21Þ

we obtain the expansion for the integral I�
n:

In�ðx; kÞ ¼
Xþ1

q¼0

Xq
‘¼0

p�n;q�‘ðxÞA�
‘ ðq� ‘; xÞ

 !
k�q�1: ð22Þ

3.2. A Simplified Expression for the Integral In(x, k)

[17] The expansions for I+
n(x, k) and I�

n(x, k) can be
combined into an expression which depends only on the
functions pn,l

+ (x), al,n
+ (x), and

Sðq; xÞ ¼ Aþ
0 ðq; xÞ þ ð�1ÞqA�

0 ðq; xÞ: ð23Þ

Indeed, using the identity f�(x, t) = f+(x, �t), we find

y�
‘ ðxÞ ¼ ð�1Þ‘yþ

‘ ðxÞ; a�‘;nðxÞ ¼ ð�1Þ‘þn
aþ‘;nðxÞ;

p�n;‘ðxÞ ¼ ð�1Þ‘pþn;‘ðxÞ: ð24Þ

The 1/k-expansion of In(x, k) now follows from equations
(20), (22), and (24)

Inðx; kÞ ¼ Inþðx; kÞ þ In�ðx; kÞ

¼
Xþ1

q¼0

�Xq
‘¼0

pþn;q�‘ðxÞA
þ
‘ ðq� ‘; xÞ þ p�n;q�‘ðxÞ


 A�
‘ ðq� ‘; xÞ

�
k�q�1

¼
Xþ1

q¼0

Xq
‘¼0

pþn;q�‘ðxÞ
�
Aþ
‘ ðq� ‘; xÞ þ ð�1Þq�‘


 A�
‘ ðq� ‘; xÞ

�
k�q�1:

Using equations (18), (21), and (24), we thus obtain our
key formula

Inðx; kÞ ¼
Xþ1

q¼0

Inq ðxÞ
kqþ1

ð25Þ

Inq ðxÞ ¼
Xq
‘¼0

pþn;q�‘ðxÞ
X‘
j¼0

aþj;‘ðxÞ
‘!

Sðqþ j; xÞ
 !

:

[18] As we have seen, the function S(m, x) is defined
by divergent integrals; an explicit expression for this
function is given in section 4. The coefficients aj,m

+ and
pn,m
+ , in turn, are defined as products, quotients, com-

positions, and inverses of certain power series expan-
sions; accurate methods for such manipulations of
power series are given in section 5. Note that aj,l

+ (x)

and S(q + j, x) depend on the scattering profile and
incidence angle only; the coefficient pn,m

+ depends on
the geometry and the derivatives of the coefficient nn of
order � m.

4. Computation of S(q, x)

[19] Interestingly, a closed-form expression can be
given for the function S(q, x). Indeed, since y1

�(x) =
y1
+(x), we may write

S q; xð Þ ¼ Aþ
0 q; xð Þ þ �1ð ÞqA�

0 q; xð Þ

¼
Z þ1

0

vqh vð Þ e
�iyþ

1
xð Þv þ �1ð Þqeiy

þ
1

xð Þv
� �

dv;

or

Sðq; xÞ ¼
2

Z þ1

0

vqþ1H1
1 ðvÞcos½y

þ
1 ðxÞv	dv q even

�2i

Z þ1

0

vqþ1H1
1 ðvÞsin½y

þ
1 ðxÞv	dv q odd:

8>><
>>:

Using formulas (11.4.19) and (11.4.16) of Abramowitz
and Stegun [1964] together with the Taylor expansion of
sin (x) and cos (x), we then obtain the closed-form
expression

Sðq; xÞ ¼
2qþ2

Pþ1

k¼0

ð�1Þk ½2yþ
1
ðxÞ	2k

ð2kÞ!
G

2kþqþ3
2ð Þ

G
1�2k�q

2ð Þ q even

�i 2qþ2
Pþ1

k¼0

ð�1Þk ½2yþ
1
ðxÞ	2kþ1

ð2kþ1Þ!
G

2kþqþ4
2ð Þ

G
�2k�q

2ð Þ q odd:

8>><
>>:

ð26Þ

Thus S(q, x) is a series in powers of y1
+(x), whose

coefficients can be evaluated explicitly in terms of the G
function.
[20] It is easy to see that the radius of convergence of

the power series in equation (26) is 1 and that the series
actually diverges for y1

+ = 1. This condition has an
interesting physical interpretation; since

yþ
1 ðxÞ ¼

f 0ðxÞ cos ðqÞ � sin ðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðxÞ2

q ;

the condition y1
+(x) = 1 is equivalent to

f 0ðxÞ ¼ �cot ðqÞ

or, equivalently, some rays in the incident plane wave are
tangent to the scattering surface. Alternatively, using the
asymptotic expansion

H1
1 ðvÞ �

ffiffiffiffiffi
2

pv

r
exp i v� 3p

4

� �� �
;
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we see that the oscillatory term in A0
+(p, x) is ei 1�yþ

1
xð Þ½ 	v,

which becomes nonoscillatory for y1
+(x) = 1 and thus

causes the integral to diverge. Therefore, as mentioned in

the introduction, the present algorithm applies only to

configurations for which no shadowing occurs. Exten-

sions of these methods to configurations including

shadowing are forthcoming.
[21] In addition to the infinite series (26), the function

S admits a finite closed-form representation, namely,

Sðq;yÞ ¼ ð1� y2Þ�ðqþ3=2Þ
PqðyÞ;

where Pq(x) is a polynomial of degree equal to the
integer part of q/2. These polynomials can be computed
easily and efficiently through a Taylor expansion of the
product S(q, y) (1�y2)(q+3/2). For example, for the first
few values of q we have

Sð0;yÞ ¼ ð1� y2Þ�3=2 
 2;
Sð1;yÞ ¼ ð1� y2Þ�5=2ð�6Þ;

Sð2;yÞ ¼ ð1� y2Þ�7=2ð�6þ 24yÞ;

Sð3;yÞ ¼ ð1� y2Þ�9=2ð90þ 120yÞ;
Sð4;yÞ ¼ ð1� y2Þ�11=2ð90þ 1080yþ 720y2Þ;

Sð5;yÞ ¼ ð1� y2Þ�13=2ð�3150� 12; 600y� 5040y2Þ:

5. Computation of pn,q-l
+ and aj,l

+ :
Taylor-Fourier Algebra

[22] As indicated previously in section 3, the functions
pn,q�l
+ and aj,l

+ in equations (12), (13), and (16) can be
obtained through manipulations of Taylor�Fourier series,
which we define, quite simply, as Taylor series whose
coefficients are Fourier series. Thus a Taylor-Fourier
series f (x, t) is given by an expression of the form

f ðx; tÞ ¼
Xþ1

n¼0

fnðxÞtn fnðxÞ ¼
X1
‘¼�1

fn‘ e
i‘x: ð27Þ

The manipulations required by our methods include sum,
products, and composition, as well as algebraic and
functional inverses. These operations need to be
implemented with care, as we show in what follows.

Table 1. Values of the Derivatives of the Function S(x) at x = 0 for Various Orders of Differentiationa

Order Exact Value at 0

20 Modes 30 Modes 40 Modes

FFT Conv. FFT Conv. FFT Conv.

2 �7.376924249352232e-01 1.3e-12 5.4e-16 1.7e-11 2.7e-16 1.0e-11 2.7e-16
4 2.377008924791275e+00 6.8e-11 3.0e-14 4.2e-09 2.9e-15 9.8e-10 2.9e-15
6 �1.702966504696142e+01 5.5e-10 1.8e-12 4.6e-07 0.0e-00 1.7e-07 0.0e-00
8 2.184589621949499e+02 2.7e-08 5.8e-11 2.9e-05 2.3e-15 4.1e-05 2.3e-15
10 �4.361708943655447e+03 8.8e-07 1.2e-09 1.1e-03 6.9e-16 3.8e-03 6.9e-16
12 1.248619506829422e+05 1.4e-05 1.7e-08 3.1e-02 0.0e-00 2.2e-01 8.0e-16
14 �4.844671808314213e+06 1.4e-04 1.8e-07 6.5e-01 6.0e-15 8.7e+00 1.0e-15
16 2.445839768254340e+08 1.1e-03 1.5e-06 1.0e+01 1.3e-13 2.7e+02 1.6e-15
18 �1.557531553377787e+10 6.5e-03 9.4e-06 1.3e+02 1.9e-12 6.6e+03 0.0e-00
20 1.220898732494702e+12 3.1e-02 5.0e-05 1.4e+03 2.2e-11 1.3e+05 8.2e-16

aThe columns marked ‘‘20 modes,’’ ‘‘30 modes,’’ and ‘‘40 modes’’ list the relative errors of the derivatives computed by summing differentiated
Fourier series truncated at 20, 30, and 40 modes, respectively. Columns FFT and Conv. resulted from use of Fourier coefficients obtained through
FFTs and direct convolution, respectively. Read �7.376924249352232e-01 as �7.376924249352232 � 10�1.

Table 2. Results for the Profile of Figure 1a in TE Polarization With h = 0.025, l = 0.025, and Incidence Angle q = 30	a

Efficiency Scattered Energy Order 0 Order 1 Order 5 Order 11 Order 17

0 7.538669511479800e-04 3.8e-02 6.3e-05 1.1e-08 5.0e-12 2.4e-13
1 1.194293110668300e-01 2.0e-04 3.1e-06 4.9e-09 2.8e-13 2.2e-14
2 4.713900020760300e-03 1.5e-02 1.7e-05 2.7e-08 6.5e-13 3.3e-14
3 9.472951023686101e-02 2.4e-03 5.8e-05 1.7e-09 1.2e-13 4.0e-15
4 1.606247510782500e-01 1.2e-04 8.9e-05 2.8e-10 7.3e-14 8.6e-15
5 8.121747375826800e-02 1.5e-03 1.3e-04 2.3e-08 3.5e-14 7.9e-15
6 2.068175899532900e-02 2.7e-03 1.9e-04 1.2e-08 3.1e-13 4.4e-15
7 3.171379802403400e-03 3.9e-03 2.5e-04 3.5e-08 1.5e-13 5.3e-15

aThe run time was 10 s for the calculation of order 17.
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[23] Compositions and inverses of Taylor-Fourier ser-
ies require consideration of multiplication and addition,
so we discuss the latter two operations first. Additions
do not pose difficulties: Naturally, they result from
addition of coefficients. Multiplications and divisions
of Taylor-Fourier series, on the other hand, could, in
principle, be obtained by means of fast Fourier trans-
forms (FFTs) [Press et al., 1992]. Unfortunately, such
procedures are not appropriate in our context. Indeed,
as we show below, the very rapid decay of the Fourier
and Taylor coefficients arising in our calculations is not
well captured through convolutions obtained from
FFTs. Since an accurate representation of this decay
is essential in our method, which, based on high-order
differentiations of Fourier-Taylor series, greatly magni-
fies high-frequency components, an alternate approach
needs to be used.
[24] Before describing our accurate algorithms for

manipulation of Taylor-Fourier series, we present an
example illustrating the difficulties associated with use
of FFTs in this context. We thus consider the problem of
evaluating the subsequent derivatives of the function

SðxÞ ¼
X1
k¼�1

cosðkxÞ
ajkj

 !2

through multiplication and differentiation of Fourier
series. For comparison purposes we note that S actually
admits the closed form

SðxÞ ¼ 1þ 2
a cos ðxÞ � 1

a2 � 2a cos ðxÞ þ 1

� �2

; ð28Þ

the value a = 10 is used in the following tests.
[25] In Table 1 we present the errors resulting in the

evaluation of a sequence of derivatives of the function S
at x = 0 through two different methods: FFT and direct
summation of the convolution expression. (Here errors
were evaluated by comparison with the corresponding
values obtained from direct differentiation of expression
(28) by means of an algebraic manipulator.) We see that,
as mentioned above, use of Fourier series obtained from
FFTs leads to substantial accuracy losses. Indeed, FFTs
evaluate the small high-order Fourier coefficients of a
product through sums and differences of ‘‘large’’ func-
tion values, and thus they give rise to large relative errors
in the high-frequency components. These relative errors
are then magnified by the differentiation process, and all
accuracy is lost in high-order differentiations: Note the
increasing loss of accuracy that results from use of a
larger number of Fourier modes in the FFT procedure.
The direct convolution, on the other hand, does not suffer

Table 3. Results for the Profile of Figure 1a in TM Polarization With h = 0.025, l = 0.0251, and Incidence Angle q = 30	a

Efficiency Scattered Energy Order 0 Order 1 Order 5 Order 11 Order 17

0 1.148002904781718e-03 3.1e-02 3.4e-05 2.6e-09 7.2e-13 4.0e-13
1 1.196487185464779e-01 1.5e-04 1.1e-05 2.2e-11 1.8e-14 3.3e-14
2 3.930863630633380e-03 1.6e-02 2.9e-05 2.8e-10 1.5e-13 1.1e-13
3 9.729981709870275e-02 2.4e-03 2.3e-05 2.6e-10 4.3e-14 3.7e-14
4 1.603959300090739e-01 1.4e-04 4.0e-05 3.6e-10 1.9e-14 2.4e-14
5 7.991729015156721e-02 1.5e-03 6.5e-05 2.8e-10 1.3e-14 6.9e-15
6 2.011674295356339e-02 2.7e-04 9.8e-05 3.4e-10 4.0e-14 1.3e-14
7 3.052813099869383e-03 3.9e-03 1.4e-04 2.5e-09 4.4e-14 9.6e-14

aThe run time was 10 s for the calculation of order 17.

Table 4. Results for the Profile of Figure 1a in TM Polarization With h = 0.025, l = 0.025, and Incidence Angle q = 30	a

Efficiency Scattered Energy Order 0 Order 1 Order 5 Order 11 Order 17

0 6.978718873398379e-004 4.0e-02 4.8e-05 3.2e-09 4.0e-13 1.6e-15
1 1.193803726254851e-001 2.1e-04 1.1e-05 1.9e-11 1.3e-14 9.3e-16
2 4.854671479355886e-003 1.5e-02 2.5e-05 2.6e-10 3.9e-14 5.4e-16
3 9.427330239288337e-002 2.4e-03 2.3e-05 2.5e-10 6.8e-15 2.9e-16
4 1.606619051666006e-001 1.1e-04 3.9e-05 3.5e-10 4.3e-15 5.2e-16
5 8.146471443830940e-002 1.5e-03 6.4e-05 2.8e-10 4.3e-15 0.0e-16
6 2.079411505463193e-002 2.7e-04 9.6e-05 3.1e-10 2.2e-14 1.0e-15
7 3.195973191313253e-003 3.9e-03 1.4e-04 2.3e-09 1.4e-13 1.9e-15

aThe run time was 10 s for the calculation of order 17.
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from this difficulty. Indeed, direct convolutions evaluate
a particular Fourier coefficient an of a product of series
through sums of terms of the same order of magnitude as
an. The result is a series whose coefficients are fully
accurate in relative terms, so that subsequent differ-
entiations do not lead to accuracy losses. We point out
that full double precision accuracy can be obtained for
derivatives of orders 20 and higher provided that suffi-
ciently many modes are used in the method based on
direct convolutions.
[26] In addition to sums and multiplications our

approach requires use of algorithms for composition as
well as algebraic and functional inverses of Taylor-Four-
ier series. In view of the previous considerations a few
comments will suffice to provide a complete prescrip-
tion. Compositions result from iterated products and
sums of Fourier series, and thus they do not present
difficulties. As is known from the theory of formal power
series [Cartan, 1963], functional inverses of a Taylor-
Fourier series (27) with f0 = 0 results quite directly once
the algebraic inverse of the Fourier series f1(x) 6¼ 0 is
known. We may thus restrict our discussion to evaluation
of algebraic inverses of Fourier series.
[27] As in the case of the product of Fourier series, two

alternatives can be considered for the evaluation of
algebraic inverses. One of them involves point evalua-
tions and FFTs; in view of our previous comments it is
clear that such an approach would not lead to accurate

numerics. An alternative approach, akin to use of a direct
convolution in evaluation of products, requires solution
of a linear system of equations for the Fourier coeffi-
cients of the algebraic inverse. In view of the decay of
the Fourier coefficients of smooth functions, such linear
systems can be truncated and solved to produce the
coefficients of inverses with high accuracy.
[28] In sum, manipulations of Taylor-Fourier series

should not use point-value discretizations if accurate
values of functions and their derivatives are to be
obtained. The approach described in this section calls,
instead, for operations performed fully in Fourier space.
In practice we have found that the procedures described
here produce full double precision accuracies for all
operations between Taylor-Fourier series and their sub-
sequent high-order derivatives in very short computing
times.

6. High-Frequency Integral Equations:

TM Case

[29] In the transverse magnetic (TM) polarization the
scattered field u = u(x, y) induced by an incident plane
wave impinging on the rough surface y = f (x) is the
solution of the Helmholtz equation with a Neumann
boundary condition. The field u(x, y) can be computed
[Voronovich, 1994] as an integral involving a surface

Table 5. Results for the Profile of Figure 1b in TE Polarization With h = 0.01, l = 0.025, and q = 0	a

Efficiency Scattered Energy Order 0 Order 1 Order 5 Order 9 Order 11

0 1.983702874853860e-01 1.4e-03 6.7e-06 6.3e-10 1.8e-13 9.8e-16
1 2.125625186015414e-02 4.3e-03 7.3e-06 8.6e-10 4.6e-14 1.5e-14
2 5.109656298137152e-02 4.2e-03 5.3e-06 1.3e-09 3.5e-14 1.1e-14
3 1.350594564861170e-01 1.1e-03 3.0e-06 1.8e-10 5.1e-14 6.6e-15
4 1.670755436364386e-02 4.3e-03 928e-06 1.5e-09 1.8e-13 2.7e-15
5 1.041839113172000e-01 8.7e-04 1.1e-05 4.7e-10 3.8e-14 2.9e-15
6 3.029977474761340e-02 7.6e-04 1.1e-05 4.8e-10 1.0e-15 9.0e-15
7 2.828409217693459e-02 2.5e-03 3.2e-05 1.8e-09 3.5e-14 9.4e-15

aThe run time was 5 s for the order 11 calculation.

Table 6. Results for the Profile of Figure 1b in TM Polarization With h = 0.01, l = 0.025, and q = 0	a

Efficiency Scattered Energy Order 0 Order 1 Order 5 Order 9 Order 11

0 1.985778821348800e-01 1.3e-03 1.1e-05 5.6e-11 9.1e-15 5.0e-15
1 2.203189065423864e-02 4.3e-03 6.1e-06 8.5e-12 2.0e-14 2.2e-14
2 4.989624245086630e-02 4.2e-03 1.2e-05 1.3e-10 6.8e-15 8.3e-15
3 1.363942224141270e-01 1.1e-03 3.0e-06 6.6e-11 1.1e-14 6.7e-15
4 1.685456723960805e-02 4.3e-03 1.7e-05 1.5e-10 2.7e-14 1.5e-14
5 1.040033802018770e-01 8.9e-04 9.9e-07 8.4e-11 2.9e-15 2.0e-15
6 2.994981016528542e-02 7.8e-04 1.5e-06 1.9e-10 1.4e-15 1.0e-14
7 2.795532080716518e-02 2.5e-03 1.5e-05 1.2e-11 3.2e-15 1.1e-15

aThe run time was 4 s for the order 11 calculation.
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density n(x, k) and the Green’s function G(x, y, x0, y0) for
the Helmholtz equation

uðx; yÞ ¼
Z þ1

�1
nðx0; kÞG½x; y; x0; f ðx0Þ	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ f 0ðx0Þ	2

q
dx0;

ð29Þ
where n satisfies the boundary integral equation

� nðx; kÞ
2

þ
Z þ1

�1

@G

@n
½x; f ðxÞ; x0; f ðx0Þ	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ f 0ðx0Þ	2

q


 nðx0; kÞdx0 ¼ � @uinc

@n
½x; f ðxÞ	: ð30Þ

In what follows we will use the relations

uincðx; yÞ ¼ eia x�ib y;
@G

@n
½x; f ðxÞ; x0; f ðx0Þ	

¼ � i

4
hðkrÞgðx; x0Þ;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � xÞ2 þ ½ f ðx0Þ � f ðxÞ	2

q
; hðtÞ ¼ tH1

1 ðtÞ;

gðx; x0Þ ¼ f ðxÞ � f ðx0Þ � f 0ðxÞðx� x0Þ
r2

; a ¼ k sinðqÞ;

b ¼ k cos ðqÞ;

where H1
1 is the Hankel function, q is the incidence angle

measured counterclockwise from the vertical axis, and
k = 2p/l is the wave number. Since

@uinc

@n
½x; f ðxÞ	 ¼ � ia f 0ðxÞ þ ibffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ½ f 0ðxÞ	2
q eiax�ibf ðxÞ;

calling ~n x; kð Þ ¼ n x; kð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0 xð Þ½ 	2

q
, we can rewrite

equation (30) as follows:

~n x; kð Þ
2

�
Zþ1

�1

~n x0; kð Þ h krð Þg x; x0ð Þdx0

¼ ia f 0 xð Þ þ ib½ 	eiax�ib f xð Þ: ð31Þ

As in section 2, a useful form of the integral equation
(31) results as we factor out the rapidly oscillating phase
function eiax�ib f (x)

�
e�½iax�ibf ðxÞ	~nðx; kÞ

�
� i

2

Z þ1

�1
hðkrÞgðx; x0Þ


 ½e�½iax�ibf ðxÞ	~nðx0; kÞ	dx0 ¼ 2½iaf 0ðxÞ þ ib	; ð32Þ

which cancels the fast oscillations in all nonintegrated
terms. Using an expansion for the function ~n(x, k) similar

to equation (6)

~nðx; kÞ ¼ eiax�ibf ðxÞ
Xþ1

n¼�1

nnðxÞ
kn

ð33Þ

Table 7. Results for the Profile of Figure 1c in TE Polarization With h = 0.02, l = 0.04, and q = 0	a

Efficiency Scattered Energy Order 0 Order 1 Order 5 Order 11 Order 19

0 2.762105662320035e-01 1.9e-3 1.6e-5 7.4e-9 6.5e-14 2.4e-15
1 5.735818584364873e-02 3.1e-3 2.0e-5 1.9e-8 1.3e-12 6.0e-16
2 9.154897389472935e-02 3.7e-3 5.1e-6 8.2e-9 1.4e-12 6.7e-15
3 1.051875097051952e-01 4.6e-4 5.1e-6 1.6e-9 1.0e-12 9.2e-16
4 6.713521833646909e-02 1.7e-3 2.7e-5 1.4e-11 3.6e-12 2.1e-16
5 2.830374622545111e-02 3.9e-3 7.3e-5 1.4e-8 2.2e-13 6.7e-15
6 9.270117932865375e-03 5.9e-3 1.3e-4 3.2e-8 1.1e-11 3.0e-15
7 2.435385416440963e-03 7.9e-3 2.2e-4 8.4e-8 4.1e-12 1.8e-16

aThe run time was 27 s for the calculation of order 19.

Table 8. Results for the Profile of Figure 1c in TM Polarization With h = 0.02, l = 0.041, and q = 0	a

Efficiency Scattered Energy Order 0 Order 1 Order 5 Order 11 Order 19

0 1.291589358261453e-01 2.2e-03 1.6e-05 2.7e-10 2.1e-12 9.5e-14
1 1.662663939465338e-01 1.7e-03 5.1e-05 2.8e-10 1.6e-12 4.1e-14
2 3.920583564991646e-03 8.5e-03 5.3e-06 7.0e-09 1.3e-11 6.2e-13
3 1.878743087516774e-02 1.5e-02 2.7e-06 2.6e-09 6.9e-12 1.5e-13
4 7.416580102755271e-02 3.7e-03 2.8e-05 4.6e-09 6.7e-12 9.4e-15
5 7.840714643630796e-02 2.4e-04 2.0e-05 6.5e-09 6.6e-13 2.4e-14
6 5.345392880491968e-02 2.6e-03 1.6e-05 6.5e-09 9.6e-12 4.9e-14
7 2.611186407051911e-02 5.1e-03 6.8e-05 4.3e-09 8.6e-13 5.1e-14

aThe run time was 23 s for the calculation of order 19.
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in equation (32) then yields

Xþ1

n¼�1

1

kn
~nn xð Þ � i

2
In x; kð Þ

� �

¼ 2k i sin qð Þf 0 xð Þ þ i cos qð Þ½ 	; ð34Þ

where

Inðx; kÞ ¼
Z þ1

�1
hðkrÞgðx; x0Þexpfiaðx0 � xÞ

� ib½ f ðx0Þ � f ðxÞ	g~nnðx0Þdx0:

The solution of equation (34) requires asymptotic
expansions for the integrals In(x, k). These expansions
are obtained, as in the TE case, by the methods of
section 3. In particular, we obtain the following expres-
sions for the coefficients ~nn(x):

~n�1ðxÞ ¼ 2½i sin ðqÞ f 0ðxÞ þ i cos ðqÞ	
~nnðxÞ ¼ i

2

Pn
q¼0

In�q�1
q ðxÞ:

8<
: ð35Þ

7. Numerical Results

[30] Our numerical method proceeds to obtain the
integral densities n(x, k) through equation (6) in TE
polarization and equation (33) in TM polarization, with
coefficients nn and ~nn obtained from equations (9) and

(35), respectively, and with Iq
n given by equation (25).

The Taylor-Fourier expansions required in equation (12)

for the functions f+
�1 and g/f0+ are precomputed, as they

depend only on the profile f and they are independent of

wave numbers, incidence angles, etc. The precomputa-

tion time was 0.5 s for the profile of Figure 1a and

Figure 1b and 0.7 s for the profile of Figure 1c. (This and

all subsequent calculations were performed in a DEC

Alpha workstation (600 MHz).) Once the density has

been obtained, all field-related quantities can be eval-

uated easily from equation (3) in the TE case and

equation (29) in the TM case.
[31] In this section we present the results produced by

our algorithm for the energy radiated in the various
scattering directions. To do this, we use the periodic
Green’s function ~G of period d [Petit, 1980]

~Gðx; yÞ ¼ 1

2id

Xþ1

n¼�1

eia�nxþibny

1bn
; an ¼ aþ n

2p
d
;

bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

n

q
to obtain from equation (3) (TE) or from equation (29)
(TM) the Rayleigh series for the scattered field

uðx; yÞ ¼
Xþ1

n¼�1
Bne

ian xþi bn y:

Table 10. Results for the Profile of Figure 1a in TM Polarization With h = 0.025, l = 0.0011, and q = 70	a

Efficiency Scattered Energy Order 0 Order 1 Order 3 Order 7 Order 9

0 4.663322085313096e-03 2.9e-03 1.8e-05 1.4e-08 8.5e-14 9.9e-15
1 5.732453099268077e-03 2.4e-03 2.0e-05 1.5e-08 1.2e-14 1.0e-14
2 9.742422239435774e-03 1.4e-03 1.9e-05 1.5e-08 5.0e-14 2.7e-15
3 1.692802029774497e-03 5.8e-03 2.2e-05 1.7e-08 5.1e-16 2.9e-15
4 1.271613899298100e-02 5.4e-04 1.9e-05 1.7e-08 4.9e-14 2.5e-15
5 9.550848574956618e-05 2.7e-02 3.1e-05 2.7e-08 1.7e-13 8.7e-15
6 1.351161517190391e-02 2.2e-05 2.0e-05 1.9e-08 6.8e-14 5.3e-15
7 1.898341280339258e-04 2.0e-02 1.1e-05 9.9e-09 2.9e-13 7.6e-14

aThe run time was 19 s for the order 9 calculation.

Table 9. Results for the Profile of Figure 1a in TE Polarization With h = 0.025, l = 0.001, and q = 70	a

Efficiency Scattered Energy Order 0 Order 1 Order 3 Order 7 Order 9

0 9.405896918172547e-03 9.1e-06 2.3e-07 1.2e-10 1.7e-14 6.1e-16
1 4.691450406852652e-03 1.2e-05 1.1e-07 8.4e-11 2.3e-16 2.2e-16
2 4.977619850889408e-03 1.2e-05 1.3e-07 7.3e-11 7.5e-15 9.1e-17
3 8.970028199252082e-03 1.1e-05 2.1e-07 1.8e-10 5.5e-15 3.6e-16
4 1.591650541515982e-03 8.4e-06 4.2e-08 2.5e-11 5.2e-17 3.9e-16
5 1.151449525094811e-02 6.0e-06 2.7e-07 2.7e-10 3.8e-15 5.7e-17
6 1.509705192413105e-04 2.8e-06 4.9e-09 8.3e-13 1.2e-15 2.0e-16
7 1.232860573339191e-02 6.3e-07 2.9e-07 3.5e-10 4.2e-15 7.6e-16

aThe run time was 12 s for the order 9 calculation.
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Here, the coefficients Bn are ‘‘Rayleigh amplitudes,’’
which are given in TE polarization by

Bn ¼
1

2d

Z 0

d

�1 þ an

bn
f 0ðxÞ

� �
n x; kð Þe�ia�nx�ib�nf xð Þdx:

and in TM polarization by

Bn ¼
1

2idbn

Z d

0

~nðx; kÞe�ian x�ibn f ðxÞdx:

The required integrals were computed by means of the
trapezoidal rule, which for the periodic functions under
consideration is spectrally accurate and can be computed
very efficiently by means of the FFT.

[32] Our numerical results show values and errors
corresponding to the ‘‘scattering efficiencies’’ en [see
Petit, 1980], which are defined by

en ¼
bn
b
jBn j2

and which give the fraction of the energy which is
scattered in each one of the (finitely many) scattering
directions. To test the accuracy of our numerical
procedures, we compare our high-frequency (HF) results
to those of the method of variation boundaries (MVB)
[Bruno and Reitich, 1993a, 1993b, 1993c] in an ‘‘over-
lap’’ wavelength region, in which both algorithms are very
accurate; additional results, in regimes beyond those that
can be resolved by the boundary variation method, are
also presented. Note that the HF and MVB methods are
substantially different in nature: One is a high-order
expansion in 1/k whereas the other is a high-order
expansion in the height h of the profile. In Tables 2–10
we list relative errors for the computed values of scattered
energies in the various scattering directions. The figures
given in the columns denoted by orders 0–19 are the
relative errors for the values of the scattered energy
calculated from the high-frequency code to orders 0–19 in
the corresponding scattering direction. In all cases, errors
were evaluated through comparison with a highly accurate
reference solution; in Tables 2–8 the reference solution
was produced by means of the boundary variations code
mentioned above; in Tables 9 and 10 the reference
solution was obtained through a higher-order application
of our high-frequency algorithm (order 15). The first term
in the high-frequency expansion happens to coincide with
the classical Kirchhoff approximation. Note that the
Kirchhoff approximation can also be obtained as the
zeroth-order term of the Neumann series for equation (4).
We emphasize, however, that the high-frequency method
used in this paper is of a completely different nature
compared to that arising from use of Neumann series.
[33] Our first example, presented in Table 2, corre-

sponds to the profile in Figure 1a illuminated by a TE-
polarized plane wave with h = 0.025, l = 0.025, and an
incidence angle q = 30	. The run time was 10 s for the
calculation of order 17; we see that, as claimed, the
present approach produces results with full double pre-
cision accuracy in short computing times.
[34] The results for the profile in Figure 1a under TM

polarization are given in Table 3. Here we take h = 0.025
and l = 0.0251, with an incidence angle q = 30	. Our
choice of wavelength in the present TM case, which is
slightly different from the value l = 0.025 we used in
the TE case, was made to avoid the Wood anomaly
[Hutley, 1982] that occurs at the latter value, for which
the test boundary variation code fails. Our high-fre-
quency method, however, does not suffer from that
drawback, and results for the profile in Figure 1a with

a)

b)

c)

Figure 1. Various profiles considered in the text: (a)
f (x) = (h/2) cos (2px), (b) f (x) = (h/2)[cos (2px) + cos
(4px)], and (c) f (x) = (h/2)[�cos (2px) + 0.35 cos (4px)
� 0.035 cos (6px)].
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h = 0.025, l = 0.025, and an incidence angle q = 30	
are given in Table 4. The reference solution in this case
is the high-order high-frequency solution of order 21.
The convergence of our expansion in this case is similar
to the convergence observed in the previous case where
l/d = 0.0251. Again, full double precision accuracies are
reached in a 10 s calculation.
[35] Our method is not restricted to sinusoidal surfa-

ces, of course. In Table 5, for instance, we present
results corresponding to the profile of Figure 1b with
h = 0.01, l = 0.025, and q = 0	 in TE polarization. The
run time was 5 s for the order 11 calculation. Table 6
shows results for the same profile under TM polar-
ization with h = 0.01, l = 0.0251, and q = 0	. The run
time was 4 s for the order 11 calculation.
[36] We next consider the third-order ‘‘Stokes’’ wave

[Kinsman, 1965] shown in Figure 1c. The results
presented in Table 7 assumed the parameter values h =
0.02, l = 0.04, and q = 0	 and TE polarization. The run
time in this case was 27 s for the calculation of order
19. Table 8 shows the results for TM polarization and h
= 0.02, l = 0.041, and q = 0	. The run time was 23 s
for the order 19 calculation.
[37] Table 9 presents results for a low grazing angle

example for the profile of Figure 1a with h = 0.025, l =
0.001, and q = 70	 (20	 grazing) in TE polarization. As
mentioned above, for reference in this case we used the
high-frequency solution of order 15. The run time for the
order 9 calculation was 12 s. The results for the profile of
Figure 1a under TM polarization with h = 0.025, l =
0.0011, and q = 70	 are given in Table 10. The run time
was 19 s for the order 9 calculation.
[38] A final remark concerning the order of the Fourier

series used in the examples above is now in order. For
the examples given in Tables 2–8, no more than 30
Fourier modes were used. The number of Fourier modes
needed depends on the incidence angle, the height of the
profile, the order of the high-frequency expansion used,
and the accuracy required; in the cases considered in
Tables 9 and 10, for example, it was necessary to use 45
Fourier coefficients to achieve the accuracies reported.

8. Conclusions

[39] We have shown that high-order summations of
expansions of the type of equation (1) can be used to
produce highly accurate results for problems of scattering
by rough surfaces in the high-frequency regime in TE
and TM polarizations. Our algorithm is based on analytic
continuation of divergent integrals and careful algebraic
manipulation of Taylor-Fourier series representations.
Our results show accuracies which improve substantially
over those given by classical methods such as the
Kirchhoff approximation. As shown recently [Sei et al.,
1999], such accuracies are needed to capture important

aspects of rough surface scattering involving very low
scattering returns and occurrences of unusual polarization
ratios. Further, the results of Bruno and Reitich [1993a,
1993b, 1993c] clearly suggest that a multiscale perturba-
tion algorithm of the type proposed by Bruno et al.
[2000] should yield the required accuracies for multiscale
surfaces provided that an accurate high-frequency solver,
such as the one presented in this paper, is used. This
paper thus extends the range of applicability of classical
asymptotic methods, producing a versatile, highly accu-
rate, and efficient high-frequency numerical solver.
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