Journal of Physical Chemistry C Supporting Information Submitted: May, 2014

CoP As An Acid-Stable Active Electrocatalyst For The Hydrogen-Evolution Reaction:

Electrochemical Synthesis, Interfacial Characterization And Performance Evaluation

FADL H. SAADI^{1,2}, AZHAR I. CARIM³, ERIK VERLAGE^{1,2},

JOHN C. HEMMINGER^{2,6}, NATHAN S. LEWIS^{2–5*} AND MANUEL P. SORIAGA^{2,7*}

¹Division of Engineering and Applied Sciences

²Joint Center for Artificial Photosynthesis

³Division of Chemistry and Chemical Engineering

⁴Beckman Institute

⁵Kavli Nanoscience Institute

California Institute of Technology

Pasadena, CA 91125

⁶Department of Chemistry

University of California

Irvine, CA 92697

⁷Department of Chemistry

Texas A&M University

College Station, TX 77843

*Corresponding authors. E-mail addresses: <u>m-soriaga@tamu.edu</u>, <u>nslewis@caltech.edu</u>

Physical Characterization

Grazing Incidence X-Ray Diffraction

Grazing incidence X-ray diffraction data was acquired with a Bruker D8 Discover diffractometer equipped with a Cu K α source and a VÅNTEC-500 2-dimensional detector. The X-rays were collimated through a 0.1 mm diameter capillary and incident at fixed grazing angle of 0.3° above the plane of the sample while the detector was swept to encompass the full 2 θ range.

Faradaic Efficiency Calculation

Gas collection: CoP (electrodeposited on Cu) and an iridium film were epoxied into two chambers of an airtight plastic chassis and separated by a Nafion membrane. Electrodes were operated in 0.50 M sulfuric acid electrolyte with a constant current of 10 mA. Hydrogen and oxygen were collected in two eudiometers and gas volume was measured at regular intervals, as shown in Figure S2. For more than 5 hours of operation, during which 162 Coulombs of charge passed between the electrodes, a faradaic efficiency of 100% was observed for both cathodic and anodic reactions with a 2:1 ratio of hydrogen to oxygen produced.

Atomic Force Microscopy

Atomic force micrographs were collected with a Bruker Dimension Icon microscope with a Nanoscope V controller in tapping operation.

Figure S1. Grazing incidence X-ray diffraction pattern of cobalt phosphide thin film. The absence of distinct reflections suggests a lack of crystallinity.

Figure S2. Faradaic efficiency of CoP cathode and Ir anode in a two-electrode configuration. Current density was held at 10 mA and gas products were collected in two eudiometers. Volume of H_2 (red) and O_2 (blue) was recorded over regular intervals, and overlaid with expected gas production over time.

Figure S3. High-resolution X-ray photoelectron spectra of (A) Co 2p region of the as-deposited thin film; (B) P 2p region of the as-deposited thin film; (C) Co 2p region after voltammetry; (D) P 2p region after voltammetry.

Figure S4. Scanning-electron micrographs of the films before (A) and after (B) voltammetry; Atomic force micrographs of the films before (C) and after (D) voltammetry.

	Со	С	0	Р
As-Deposited	15%	34%	49%	2%
After Voltammetry	12%	33%	43%	12%

Table S1. Table of atomic abundances derived from the quantitative analysis of XPS peaks for the as-deposited film and resultant material after voltammetry.

	Orthophosphate	Phosphide
As-Deposited	75%	25%
After Voltammetry	62%	38%

Table S2. Ratio of phosphorous oxidation states derived from the quantitative analysis of XPS peaks for the as-deposited film and resultant material after voltammetry.