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DAMPED FOURIER SPECTRUM AND RESPONSE SPECTRA 

BY F. E. UDWADIA AND M. D. TRIFUNAC 

ABSTRACT 

This paper describes the physical relationships that exist between the Fourier 
transform and the response spectrum of a strong-motion accelerogram. By 
developing the new concept of the "Damped Fourier Spectrum" (D.F.S.), we show 
that the velocity and displacement of the damped oscillator can be represented by 
a linear combination of the real and imaginary parts of the D.F.S. and by the initial 
conditions. The D.F.S. represents a new way of "smoothing" the classical Fourier 
Transform by using a physically based filter. 

INTRODUCTION 

The computational economy afforded by the Fast Fourier Transform algorithm 
(Tukey, 1967) has made Fourier analysis the eondicio sine qua non in the processing of 
strong-motion data (e.g. Udwadia and Trifunac, 1973b; Trifunac, 1972). To take full 
advantage of this economy, it is now necessary to develop new methods that are capable 
of extracting the maximum possible information from the complex Fourier transform 
for use in vibration analysis. 

In this paper, we show that the Damped Fourier Spectrum bears the same relationship 
to the damped velocity spectrum, as the classical Fourier transform does to the undamped 
velocity spectrum (Kawasumi, 1956; Rubin, 1961; Hudson, 1962; Jennings, 1972). 

THE DAMPED FOURIER SPECTRUM 

The governing equation of relative response x(t) of a damped linear oscillator subjected 
to an absolute ground acceleration -~( t )  is 

+ 2~On~ + COn2X = ~(t), (1) 

where ~ is the percentage of critical damping and ~o, = (k/m) ½ is the natural frequency 
(Figure 1). 

Using the transformation 

we get 

y = x exp (o~,~t) (2) 

y-k- 09a2y = 2"(0 exp (~Odflt), (3) 

where ~o~ = ~o,(1 - ~2)½ is the damped natural frequency of the oscillator and fl = 4/(1 - ~ 2 ) ½  

Defining 

equation (3) becomes 

r/d*(O~d, t) = •(t) + ic%y(t), 

(dqd*/dt)- io~dr/a* = ~(t) exp (~Odflt) 

whose solution is 

r/a*(~%, t) = exp (io~dt)[Sto ~(z) exp (rndflZ- i~odz)dz +r/~o]" 

Here r/~o is the value of r/a* at t = 0. 
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To cast equation (6) into a form resembling the classical Fourier transform of 2(t), we 
take the integrand in equation (6) as a product of two functions g(t) and 2*(t), where 

= ~ - ~  F l t ) ;  - o o  < t =< to exp {[co.¢-ico.(1 2 1 

g(t) [0, otherwise 
(7a) 

f o r ~ > 0 a n d c o .  > 0 a n d  

~'~(t) 0 < t < T (7b) 
f*(t) = (0, otherwise. 

Here we are assuming that the forcing function f(t) is nonzero only between 0 and 
T while the response is evaluated at time to. 

(a) 

_ c___z_z = 

-= (b) 

FIG. 1. (a) A single-degree-of-freedom oscillator subjected to ground acceleration-2(t). (b) A mass 
spring-dashpot system and its equivalent as interpreted through the phase of the complex variable r/a. 

Using Parseval's theorem and the above definitions we have, 

I - e*(t)g(t)dt = 2n 
O9 oO 

where 

and 

Z(; 0 = ~_~ ~ ~*(t) exp ( -  i~t)dt 

G(2) = ~_~ oo g(t) exp (-i2t)dt .  

Using the definition of g(t) from equation (7a) 

tO G(2) = S-~ exp {[co.~-ico.(1-~2)~lt } exp ( - i 2 t ) d t  

exp { [co.~- i{co.(1 - ~2)} + 2}]to} 
co.~-i[co.(l-~2)÷+2] 
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Hence, 

I = 2 ~ l f ~  z(A)exp{[co"#-i{con(1-~z)*-'~}]t°}con~- i[con(1-4 2 ) '-2]~ d2 

1 foo Z(2) exp (iAto) 
- 2~ exp (CO.~to) exp ( -  iCOdto ) _ oo CO.~ - i[CO.(1 - ~2)~_ 2] ~x. (s) 

Using equation (6) 

But 

. 1 f oo Z(2) exp (i2to) d * 
r/d (COd, to) = ~ exp (COn~t°) J -o~ COn~-- i[co.(1 -- 42)7-- 2+r/do exp (iCOdto). 

r/d*(COd, t) = ~ + iCOdy = (2 + COniX + icodX) exp (COnit) = r/d exp (COnit) 

(9) 

where the damped complex response, r/d, is given by 

r/d = 2 + CO.ix + iCOdX. (10) 

Equation (9) then gives 

1 [" ® Z(2) exp (i2to) 
r/a(COd, to) = ~ J COn~_ i[con(1 2 -1 d2+r/ao exp [ico.(1 -~z)~to] exp (-conCto) 

_oo - ~  )~-,~] 
(11) 

= X*(COd, 4, to)+iY*(COd, 4, to)+r/do exp [iCOn(1--~z)~t0] exp (--COn~to) 

- Fd(COd, 4, to)+r/do exp [iCOn(1 --¢2)~to] exp (--CO.~to), (12) 

where X*(COd, 4, to) and Y*(COd, 4, to) are the real and imaginary parts of the "Damped 
Fourier Transform", Fd(COd, 4, to), defined by the integral in equation (11). At the 
frequencies COd" = (27rm/to), we get 

X(e)d", 4, to) (2rrm/to) -1  * " ] = Y (COd , 4, t o )+Xo  exp (--COn(to) 
X(COd m, 4, to) * m * m " ; X (COd , 4, t o ) - f l Y  (COd , 4, t o )+X o  exp (--COn~to) 

(13) 

Equation (13) states that the pseudo-velocity of a damped oscillator with zero initial 
conditions having a damped natural frequency of e~d" and the fraction of critical damp- 
ing, 4, is given by the imaginary part of the Damped Fourier Transform evaluated at the 
frequency COd". Similar interpretations on the basis of the real part of the Damped Fourier 
Spectrum are possible. It may be noted here that the above formulation is valid for any 4, 
however small, although not exactly equal to zero. When ~ = 0, G(2) as defined above 
does not exist, and the domain in which g(t) takes nonzero values needs to be redefined 
as the interval ( -  0% oo). At the same time, ~*(t) given by (7b) has to be redefined into the 
interval between 0 and t o. With these new definitions G ( - 2 )  becomes 2n~(CO,- 2), and I 
reduces to Z(CO,), so that equation (13) still holds. However, X*(COd" = CO,", 0, to) and 
Y*(COd" = COn", 0, to) now become the real and imaginary parts of the Fourier transform 
of ~*(t), which is nonzero between 0 and to. When X* - Y* - 0, we have the free vibra- 
tion problem of the damped oscillator indicating that the velocity and displacement of 
an oscillator at time t o (a complete multiple of 2n/COe" ) are, respectively, equal to the 
initial velocity and displacement multiplied by the factor exp (-COn(to). Next we show 
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that the phase q5 e of the damped complex response, t/u, is related to the partition of the 
oscillator's energy and to the phase of the Damped Fourier Transform. The phase of the 
complex variable t/e is given by 

tan ~be(t ) - co.(1 - ~ 2 ) ½ x  (14) 
2 + co,~x 

When the oscillator starts from rest, for frequencies COd m, 

g*(coe m, ~, to) 
tan $dm(to) -- , m -- tan 0e(COe", to) (15) 

X (cod , ~, to) 

where 0 is the phase of the Damped Fourier Transform of f*(t). From equation (14) we 
get 

k x  2 - k ( ~ x )  z 

tan2 q~e = m 2  z + c x 2  + k ( ~ x )  2 " (16) 

Here k is the force per unit displacement of the spring and c is the viscous damping of the 
dashpot. The numerator of equation (16) is related to the potential energy of an equivalent 
spring while the denominator is simply the total energy less the potential energy of the 
equivalent spring. The potential energy is reduced from the undamped case by a term 
k ( ~ x )  2. This reduction may then be looked upon as being the cause of a reduced naturM 
frequency in the damped system. The damping thus has the effect of reducing the apparent 
spring stiffness. Noting that k(~X) 2 = ( c 2 / 4 m ) x  2 -= ka x2,  we observe that the dashpot 
can be interpreted as acting as a negative spring of stiffness c2 /4m (Figure 1). We then 
propose that the mass-spring-dashpot system can be looked upon as being composed of 
three different elements: an equivalent spring (I), a spring related to the damping character- 
istics of the dashpot (II), and a velocity dependent dissipative element (III). Element I, 
which represents the equivalent spring, yields the frequency characteristics of the system 
while element III yields the dissipative qualities associated with any oscillation of the 
mass m. 

The response r/e then brings about a split-up of the energy which can be expressed 
through its phase angle as 

tan 2 t~ d = ( P . E . ) s p r i n g  - (P.E.),,damper spring" 
(K.E.)mass -I-- (D.E.)dashpot + (P.E.),,damper s p r i n g "  

When c2 /4m  ~ k ,  the equivalent spring in the system has zero stiffness (keq - 0), and an 
exponential decay sets in, thus leading to the concept of critical damping. For such an 
oscillator, the phase of the damped transform tends to zero. 

The complex number r/a can be looked upon as a vector whose magnitude equals x / E e  

while its phase angle is given by equation (14). Thus 

r/d = x/(Ee) exp (i4~a). (17) 

E d is a positive definite quantity and is given by 

Ea = .,~2 ..}_ (.On2X 2 .q_ 2COrteX 2 = 2(K.E. + P.E. + D.E.)/m, 

where K.E. represents the kinetic energy, P.E. the potential energy, and D.E. the damping 
energy. The rate of rotation of this vector is given by 

~ -  = co n 1+ . (18) 

For the free vibration case, dc~e/dt = co e, the damped natural frequency of vibration. 
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Just as the Fourier transform gives the response (q) of an undamped oscillator starting 
from rest at the end of the excitation, to (Udwadia and Trifunac, 1973a), so also the 
Damped Fourier Transform (X*+iY*)  yields the response of a damped oscillator (r/e) 
at time to. The Damped Fourier Spectrum can then be defined as Ir/d]m.x = 12+[3~odx+ 
i'odxl.,ax >= I +o' From equation (17) we have that 

= ~/(Ed)(COS q5 a -  fl sin qSa). 

Remembering that the damped velocity spectrum S,(o9,, ~) is Nm,x we get, 

4 ) -  I l .ax 1,7.1,,,o.. 
Equation (11) indicates that the damped Fourier spectral amplitude cannot be directly 

obtained from the Fourier spectral amplitudes by the use of a simple linear filtering 
operation performed on the Fourier spectrum. This damped spectral amplitude for any 
particular damping ¢ = 4o computed at the end of the excitation will serve as a lower 
bound on the damped (4 = ¢o) velocity spectrum for an oscillator with natural frequency 
~o, and percentage of critical damping, 4o- 

CALCULATION OF THE DAMPED FOURIER SPECTRUM (D.F.S.) 

The Damped Fourier Spectrum Fa(ogd, 4, to) is defined for 4 > 0 [refer to equation 
(11)] as 

1 ~ "  Z(2) exp (i2to) 
Fa(ooa, 4, to) = ~-~ J _  oo co,4-  i[~o,(1 _~2)~_2]  -~ d2. (19) 

In what follows it shall be assumed that t o = T. Physically, equation (19) implies that the 
response of a damped oscillator at any time to to a given excitation can be obtained if a 
knowledge of the response at time to (to that excitation) of undamped oscillators of all 
possible frequencies is known• Since the calculation of Z(2) is generally done using the 
Fast Fourier Transform (F.F.T.) its values are known only at 2 = (2~rn/to); n = O, 1,.... 
Hence Z(2) needs to be reconstructed for intermediate frequencies between these discrete 
values using the sampling theorem• 

Z(og) = £ Z(2rcm/to) exp (-io9to/2) exp (into) 
s in  [(~Oto/2) 

. . . .  [(COto/2)-nrc] 

Then 

= Z(2nrc/to) exp (-icoto/2 ) exp (inTr) sin [(~Oto/2)-mz] 
Fd ~ - ~o . . . .  [(~°to/2--nrc)] 

exp (iO~to) 
x do9 

[ o 9 . 4 -  i{co.(1 - ~2)~--- (D}] 

7- ~ 1  "= N [ 1 - exp { - [co,4 ~i~,(1 - 42) ~] to} 1 
~o .=-NZ(zTzn/t°) ~ °° .4- i{°9,(1-~2)~-2~rn/ to}  3" 

If further co, = (2~zm/to), 

• 2 1 ,=  u [ 1 -  exp { - 2 7 t m ( 4 - , ( 1 - 4  )~)}l 
r~(ooZ, 4, to) =.ZNZ(Z~nlto) L 2 ~ ~ : ~ ) ~  j .  (20) 

The interchange of summation with integration can be justified on the physical grounds 
that the signal is almost frequency-band limited. 
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Although the summation in equation (20) does not represent a simple convolution, it 
is done on a product of Z(2) and a sharply peaked function so that the actual summation 
may be truncated to a smaller number of frequency estimates around the frequency of 
interest. This is what one would actually expect, for at a given frequency the damped 
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"4  5 

Fourier amplitude spectrum ought to depend more closely on the Fourier spectral ampli- 
tude at that and neighboring frequencies. 

To illustrate the concept of the damped spectrum, a typical accelerogram was analyzed. 
It is shown in Figure 2. The spectrum curves corresponding to this acceleration time 
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history for various values of ~ are shown in Figure 3. The spectra have been obtained by 
taking 500 frequency estimates of the Fourier spectrum around the frequency of interest. 

The exponential decay of the damped oscillator leads to low responses at higher fre- 
quencies. The upper solid curve in Figure 3 is the Fourier amplitude spectrum, while the 
full circles indicate the damped spectrum estimates for a damping value of 0.01 per cent. 
We observe that these points lie below the spectrum curve, although they follow it closely. 
As seen from the figures, the effect of damping on the response as indicated by the damped 
spectral amplitudes is quite intense. For damping values as low as 1 per cent, the spectral 
amplitudes are reduced by about half to a third of those obtained from the undamped 
spectra. It may be noted that the spectral curves for various dampings occasionally cross 
each other and that the curves for higher ~ values show lesser undulations so that the 
introduction of damping in this way effects a physically meaningful smoothing. 

ON THE SMOOTHING OF FOURIER AMPLITUDE SPECTRA 

Various investigators (Holloway, 1958; Robinson and Treitel, 1964; Tukey, 1967) 
have looked at the problem of smoothing of spectra from the point of view of time series 
analyses. Most smoothing operators suggested are linear. They show no preference for 
any range of frequencies and are so manipulated as to keep the area under the smoothed 
curves identical to the area under the unsmoothed curves. As observed from the damped 
spectra, the operation represented by the integral in equation (19) could be referred to as 
a smoothing operation that yields smoother spectral curves (Figure 3). However, there are 
some marked differences between this operation and the smoothing operators that have 
been suggested by workers, in time series analysis. First, it is impossible to convert equation 
(19) into a classical convolution integral. The higher frequencies are modulated to a 
greater extent than lower frequencies. Second, the areas under the smoothed curves are 
not identical to those under the unsmoothed curves. These two results fall out naturally 
when we consider the fact that every point on the smoothed Fourier spectrum curve 
corresponds to the response of a damped oscillator which decays as exp ( -  to,it), so that 
the higher frequencies become attenuated to a greater extent. The dissipation of energy 
through the dashpot in the damped system causes the area under the smoothed and un- 
smoothed curves to be different. 

The physical nature of this effect can be best illustrated through a simple example as 
follows. Let £(t) -- 6(0, so that Z(A) = 1. Then, 

1 f Z(2) exp (i2t0) 
Fa = 2+CO,~X+imdx],= to = ~ ~ O),~--i[co,(1 --~2)~--2] d2 (21) 

Integrating we get 

Fa = exp [i~o,(1 - {/)~to] exp ( -  o~,{to) (22) 

levi : exp (23) 

But, [Z(~o,, to) [.is proportional to the energy of an undamped oscillator caused to 
oscillate by the delta function pulse. Also, [F(t~d, to) i is proportional to the energy of a 
damped oscillator. We observe that this energy, unlike in the undamped case, is a function 
of the frequency and the time duration to. In this case, the unsmoothed and the smoothed 
spectra would be represented as in Figure 4. The damped curves represent the response 
at time t = to of an oscillator of natural frequency co, and damping ~ to a delta function 
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applied at time t = 0. The nondimensional frequency clearly indicates that for a given 
damping value, the response at larger times (to) for smaller natural frequencies ((~,) will 
be the same as the response at shorter times at higher frequencies provided the product 
cn,t 0 is the same. As observed from Figure 4, at higher frequencies the damped oscillator 
shows a very short memory of past excitation. 

C O N C L U S I O N S  

The development of the new functional called the "Damped Fourier Transform" has 
enabled us to formulate the meaningful physical link between the Fourier transform of an 
accelerogram, recorded during the strong ground motion and the response of a viscously 
damped single-degree-of-freedom system excited by the same motion. This new result 
represents the logical extension of the relation previously known to exist only in the case 
of an undamped oscillator. 
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FIG. 4. Damped Fourier amplitude spectrum curves indicating the response I Fa [ of an oscillator of 
natural frequency oo, and percentage of critical damping, {, to a delta function input at time t = 0. 

The application of this functional (equation 19) to several accelerograms shows that it 
can be used'as a good estimate of the damped relative velocity spectrum up to about 
2 to 3 Hz. The estimate can no doubt be effectively improved by a proper choice of the 
time length of record chosen for analysis. At higher frequencies, however, the D.F.S. 
serves only as a lower bound to the damped relative velocity spectrum. The difference 
between the two increases with increasing frequency due to the frequency-dependent 
exponential decay of the damped oscillator response. The functional also serves as a 
physically meaningful spectral smoothing operator. 
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