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Abstract

All members of the ketol-acid reductoisomerase (KARI) enzyme family characterized to 

date have been shown to prefer the nicotinamide adenine dinucleotide phosphate hydride 

(NADPH) cofactor to nicotinamide adenine dinucleotide hydride (NADH). However, 

KARIs with the reversed cofactor preference are desirable for industrial applications, 

including anaerobic fermentation to produce branched-chain amino acids. By applying 

insights gained from structural and engineering studies of this enzyme family to a 

comprehensive multiple sequence alignment of KARIs, we identified putative NADH-

utilizing KARIs and characterized eight whose catalytic efficiencies using NADH were 

equal to or greater than NADPH. These are the first naturally NADH-preferring KARIs 

reported and demonstrate that this property has evolved independently multiple times, 

using strategies unlike those used previously in the laboratory to engineer a KARI 

cofactor switch.  
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1 Introduction 
 
With burgeoning genomic databases and increasing ease of gene synthesis, metabolic 

engineers can now readily mine nature’s rich collection of enzymes. However, finding a 

sequence with specific desired properties can be difficult, particularly when only a few 

members of a protein family have been characterized and a detailed understanding of the 

structure-function relationship is lacking. The ketol-acid reductoisomerase (KARI, EC 

1.1.1.86, also known as acetohydroxyacid isomeroreductase (AHAIR)) enzymes have 

attracted much interest for production of amino acids and biofuels (Atsumi et al., 2008a; 

Bastian et al., 2011; Brinkmann-Chen et al., 2013; Hasegawa et al., 2012; Liu et al., 

2010). These oxidoreductases catalyze the second step in the branched chain amino-acid 

(BCAA) biosynthesis pathway (Chunduru et al., 1989), conversion of (S)-2-acetolactate 

(S2AL) to (R)-2,3-dihydroxyisovalerate (RDHIV) via a methyl shift coupled to a 

reduction with concomitant oxidation of a nicotinamide adenine dinucleotide cofactor. 

The BCAA pathway is present in many organisms but not in mammals. Because of this, 

microbial production of branched-chain amino acids for animal feed or human 

supplements is a multimillion-dollar business (Becker and Wittmann, 2012; Vogt et al., 

2014). The BCAA pathway has also been engineered to produce isobutanol, a potential 

source of renewable chemicals and fuels (Atsumi et al., 2008b). 

 

All wild-type KARIs characterized and described in the literature have displayed a strong 

preference for nicotinamide adenine dinucleotide phosphate (NADPH) over nicotinamide 

adenine dinucleotide (NADH) (Bastian et al., 2011). Because intracellular levels of 

NAD(H) are much higher than NADP(H), particularly under fermentative conditions, 



NADH-dependent oxidoreductases are strongly preferred in pathways for large-scale 

biocatalytic processes (Bastian et al., 2011). In the engineered isobutanol production 

pathway, replacement of the natural E. coli KARI (Ec_IlvC) and the alcohol 

dehydrogenase (ADH) with NADH-preferring engineered proteins increased the yield to 

nearly 100% of theoretical and improved titer and specific productivity  (Bastian et al., 

2011). 

 

In a previous study that aimed to develop a general recipe for engineering KARIs with 

reversed cofactor specificity, we used available KARI structure data to identify the amino 

acid residues in the �2�B-loop of the Rossmann fold that distinguish between the two 

cofactors (Brinkmann-Chen et al., 2013). A sequence alignment of Swiss-Prot-annotated 

KARI sequences allowed us to divide this diverse enzyme family into three groups based 

on �2�B-loop length (6-, 7-, and 12-residue loops) and to develop a simple recipe for 

switching the cofactor specificity of each major KARI enzyme subfamily from NADPH 

to NADH. This engineering work provided valuable information on the determinants of 

cofactor binding and also led us to question whether nature might have already 

undertaken a similar engineering task to create an NADH-preferring KARI. Despite 

recent advances in bioinformatic cofactor specificity prediction (Geertz-Hansen et al., 

2014), few attempts have been made to find alternate cofactor utilization profiles within 

large enzyme families (Di Luccio et al., 2006). Because no method existed to predict the 

cofactor specificity of uncharacterized KARIs based on their primary sequences, we used 

knowledge gained from our previous work to exhaustively search known KARI 

sequences for KARIs with �2�B-loops predicted to improve utilization of NADH. Here, 



we report the discovery of the first bi-specific and the first naturally NADH-preferring 

KARIs. The catalytic efficiencies of two of the naturally NADH-preferring KARIs 

reported here exceed those of any previously engineered variants. We suggest that rare 

proteins such as these, with properties desirable for metabolic engineering, are available 

in nature and may be uncovered using knowledge gleaned from structural and mutational 

studies. 

 

2 Materials and Methods 
 
2.1 General 
 
Biological media were purchased from Research Products International (Mt. Prospect, IL, 

USA), NAD(P)H from Codexis, Inc. (Redwood City, CA, USA), oligonucleotides and 

gBlocks from Integrated DNA Technologies (San Diego, CA, USA), DNA polymerases, 

restriction enzymes, and T4 ligase from New England Biolabs (Ipswich, MA, USA). (S)-

2-acetolactate (S2AL) was provided by Gevo, Inc. (Denver, CO, USA). DNA sequencing 

was performed by Laragen (Los Angeles, CA, USA). Standard molecular biology 

methods were taken from Maniatis et al. (Sambrook, 1989). 

2.2 Cloning, variant construction, expression, and kinetic assays

The genes encoding KARIs were obtained as gBlocks, codon-optimized for E. coli. For 

each gene, the gBlocks were assembled either via PCR using T7 promoter and terminator 

primers and Phusion polymerase following the manufacturer’s instructions or via Gibson 

cloning (Gibson, 2011). All KARIs were cloned into pET22(b)+ between restriction sites 

NdeI and XhoI in frame with the C-terminal his-tag for expression in E. coli BL21 E. 

cloni Express cells from Lucigen (Middleton, WI, USA). Heterologous protein 



expression and purification were conducted as described (Bastian et al., 2011). Protein 

concentration was determined via the Bradford assay (Bio-Rad, Hercules, CA, USA).  

KARI activities were assayed by monitoring NAD(P)H consumption in the presence of 

(S)-2-acetolactate (S2AL) at 340 nm in a plate reader (Tecan Infinite M200, San Jose, 

CA, USA). The assay buffer contained 100 mM potassium phosphate pH 7, 1 mM DTT, 

200 �M NAD(P)H, 2.5 mM S2AL, and 10 mM MgCl2. For kinetic assays, we monitored 

the consumption of the cofactors via their fluorescence emission at 440 nm with 

excitation at 340 nm.  

2.3 Sequence Alignment 

All sequences annotated as EC 1.1.1.86 and non-fragmentary were downloaded from 

UniProtKB (Apweiler et al., 2013) on 11/1/2013, a total of 8,043 sequences. The 

sequences were aligned using MAFFT version 7 (Katoh and Standley, 2013). Duplicate 

sequences were removed, as were those with less than 20% identity to the Slackia exigua 

KARI. This left 3,383 unique KARI sequences, with an alignment length of 933 

positions. The �2�B-loop was identified based on the sequences with solved structures 

deposited in the RCSB PDB (Bairoch and Apweiler, 1999) (E. coli, S. exigua, S. 

oleracea, O. sativa, P. aeruginosa, and A. acidocaldarius (Brinkmann-Chen et al., 2013; 

Ahn et al., 2003; Biou et al., 1997; Leung and Guddat, 2009; Thomazeau et al., 2000; 

Tyagi et al., 2005; Wong et al., 2012; Cahn et al., 2014)). Further analysis was completed 

using a custom-written Python script (supplemental information). 



3 Results and Discussion 
 

To develop a recipe for changing the cofactor specificity of any KARI from NADPH to 

NADH we previously used an alignment of 643 Swiss-Prot-annotated KARI sequences 

(Brinkmann-Chen et al., 2013). Here, we expanded this alignment to include un-reviewed 

UniProt Knowledgebase (UniprotKB) (Apweiler et al., 2013) sequences and searched this 

expanded sequence space for �2�B-loops deviating from the classic NADPH-preferring 

KARI motifs. To do so, all 8,043 sequences annotated as EC 1.1.1.86 from UniProtKB 

were aligned using MAFFT; duplicate and low-identity sequences were removed as 

described in the Methods section. The �2�B-loop and its context were then identified 

based on KARI crystal structures (Brinkmann-Chen et al., 2013; Ahn et al., 2003; Biou et 

al., 1997; Leung and Guddat, 2009; Thomazeau et al., 2000; Tyagi et al., 2005; Wong et 

al., 2012; Cahn et al., 2014). The distribution of amino acids at each position, including 

positions present in only a very small number of sequences, is shown in Figure 1. The 

four phosphate-binding residues are highly conserved, but there is considerable variation 

at most of the other positions of the loop as well as in the length of the loop. Figure 2 

shows these positions in the NADPH co-crystal structure of Slackia exigua KARI, a 7-

residue loop KARI whose sequence is near the consensus sequence. 

 

As previously reported (Brinkmann-Chen et al., 2013), KARIs can be divided into three 

sub-families based on the length of the �2�B-loop. Of the 3,383 unique KARIs in our 

expanded alignment, 2,262 (66.8%) had 7-residue loops, 593 (17.5%) had 6-residue 

loops, and 512 (15.1%) had 12-residue loops, which is in good agreement with previous 



alignment results. Eleven sequences were missing the �2�B-loops (these were unlabeled 

fragmentary sequences), leaving just six KARIs with other loop lengths. 

Based on previous structural studies and mutational analysis (Brinkmann-Chen et al., 

2013; Hasegawa et al., 2012; Rane and Calvo, 1997), we have proposed that cofactor 

specificity is controlled by up to four amino acid residues in the loop: the first two 

positions, the antepenultimate position, and the ultimate position, as indicated by red 

arrows in Figure 1 and labeled for the S. exigua KARI in Figure 2. We searched the 

expanded sequence alignment for proteins having an acidic residue at any of these four 

positions. In our previous work, introduction of acidic residues into the �2�B-loop was 

crucial for switching the cofactor specificity (Bastian et al., 2011; Brinkmann-Chen et al., 

2013); this has also been shown to be a major determinant of cofactor specificity in 

nature (Baker et al., 1992; Carugo and Argos, 1997; Pletnev et al., 2004; Van Petegem et 

al., 2007) and in engineered proteins (Khoury et al., 2009). For the six KARI sequences 

with non-standard �2�B-loop length we could not predict which residues would interact 

directly with the cofactor. We therefore visually inspected those loops for the presence of 

multiple acidic residues in their N-terminal or C-terminal ends. Ultimately, from the 

alignment of 3,383 KARI sequences, 58 were identified by this method as being possibly 

NADH-preferring, including four of the six KARIs with nonstandard �2�B-loop lengths. 

To avoid over-representing KARIs from closely related hosts, the full sequences of these 

KARIs were clustered using the UniProt alignment tool, and for each of the 26 clusters 

one representative sequence was selected to create the list of putative NADH-dependent 

KARIs shown in Figure 3. Most of the clusters were singletons or contained only a 



handful of sequences; the two largest clusters are represented by Metallosphaera sedula 

and Sulfolobus islandicus. 

 

������	
���
��
��������������������������
����
�
��
��������������	�����
�
����������

���	���������������
�	������	�������
������� ��
�
!
���"�#$�
�	
�	�
�	����
���
�����%&�

'	��(
���
���������
��'�����)��	����	������������	����"�#$��	����	�����
����

������������������*�&����������	���
�	��+�Hydrogenobaculum���&�"�#$�,��-"�#$.
�

Ignisphaera�aggregans�"�#$�,$�-"�#$.
�Metallosphaera�sedula�"�#$�,/�-"�#$.
�����

Syntrophomonas�wolfei�"�#$�,0�-"�#$.�+��	���������	����1�����������
�����
�
�����

��
������*�����������,�������
�����
�
��������
���������2���*��3�).
��	
��������

+�Archaeoglobus�fulgidus�"�#$�,��-"�#$.
�Desulfococcus�oleovorans�"�#$�,��-"�#$.
�

Thermacetogenium�phaeum�"�#$�,'�-"�#$.
����������������������	�����"�#$�

,4�-"�#$.�+���������� �������
��
��
�	��������
�����
�
��������
���,����2���*�.�

����
��������)%����)56�,'�����).&�'	�������K/����K�������������	����"�#$�������

�1�����������������	����	�����*�������������	�����*� �������
���"�#$������E.�coli
�

7�-$��8&�$�-"�#$�
������
���������������
��
�	����������"/���������������	����������&�

Two of the naturally NADH-preferring KARIs, Tp_KARI and Ua_KARI, have catalytic 

efficiencies on NADH that exceeded the best engineered NADH-preferring KARI, 

Ec_IlvCP2D1-A1, by 2.8-fold and 1.2-fold, respectively. Both Tp_KARI and Ua_KARI 

have very low (~1 �M) K� for NADH (Table 1). These features render these two 

excellent candidates for anaerobic BCAA or isobutanol fermentations. Ia_KARI may also 

be of value due to its ability to utilize both cofactors and its good activity at low cofactor 

concentrations. 



 

In our previously engineered NADH-preferring KARIs (Bastian et al., 2011; Brinkmann-

Chen et al., 2013), most, if not all, NADPH-dependent activity was abolished by the 

mutations. In contrast, nature achieved NADH cofactor utilization with NADPH KM or 

KH values equivalent to NADPH-preferring KARIs, leading to lower specificities than 

many of our engineered KARIs (Brinkmann-Chen et al., 2013). We previously 

demonstrated that NADPH-preferring KARIs can have their specificity reversed by 

mutation of the ultimate and antepenultimate residues of the �2�B-loop to aspartate in 

the case of the 7- or 12-residue loops, or, in the case of the 6-residue loop, mutation of 

the ultimate position to aspartate and of the second to proline. Interestingly, none of the 

naturally NADH-utilizing KARIs we found follow this recipe. Aspartate is present in 

only four out of 26 ultimate positions and one out of 21 antepenultimate positions, 

although Sw_KARI has a glutamate at both positions. Of all 26 sequences, only 

Sw_KARI has acidic residues at more than one of the four key positions. Only two of the 

sequences have proline at the second position, and neither KARI has a 6-residue �2�B-

loop or an aspartate at the ultimate position. These differences may reflect different 

selective pressures (e.g. specificity reversal in the engineered enzymes versus utilization 

of NADH in the natural enzymes). They could also arise from the very different 

evolutionary paths taken. 

 

Eight of the 26 putative NADH-utilizing KARIs possess acidic residues at the first 

position of the loop, six at the second, three at the antepenultimate position, and five at 

the ultimate position. It is interesting that the plurality of these putative NADH-utilizing 



KARIs have acidic residues the first position of the �2�B-loop. Although none of our 

previous cofactor-specificity reversals required an acidic residue at this position, 

Hasegawa et al. introduced a mutation to glutamate at this position, suggested by 

comparison with the NADH-dependent dihydrolipoamide dehydrogenases, in an attempt 

to reverse the cofactor specificity of the C. glutamicum KARI (Hasegawa et al., 2012). 

The resulting mutant enzyme was specific for NADH, but had less activity with NADH 

than the wild-type enzyme. It is also worth noting that all five KARIs with 6-membered 

�2�B-loops have an aspartate at the antepenultimate position, but that the structure of the 

KARI from Alicyclobacillus acidocaldarius (Cahn et al., 2014), an NADPH-preferring 

enzyme with a 6-membered �2�B-loop, shows this position to be structurally 

homologous with the non-interacting pre-antepenultimate position of the 7-membered 

loop KARIs. Thus it is unclear whether and how this aspartate would interact with the 

cofactor. Outside the �2�B-loop, the 58 putative NADH-utilizing KARIs have no unique 

conserved residues.  

All of the KARIs described here are members of the Class I (short chain) KARI 

subfamily, which is believed to be evolutionarily older than the Class II (long chain) 

KARIs such as E. coli KARI (Ahn, et al., 2003), and all originate from microbial hosts 

adapted to extreme conditions (thermophiles, acidophiles, and halophiles) (Auernik et al., 

2008; Beeder et al., 1994; Hattori et al., 2000; McInerney et al., 1981; Niederberger et al., 

2006; Romano et al., 2013). Additionally, with the exception of the archaeote M. sedula, 

all hosts are anaerobes. However, adaptation to anoxic environments does not 

automatically imply the presence of an NADH-preferring KARI, as among the thousands 

of sequences there are many NADPH-preferring KARIs from anaerobe hosts. For each of 



the eight characterized KARIs, we examined the three KARIs with the highest overall 

sequence identity and predicted their cofactor specificity using the sequence of their 

cofactor binding loops (Table 2).  

 

For six of the eight newly characterized KARIs, the majority of these nearest neighbors, 

which generally came from closely related organisms, have loops sequences that suggest 

a conventional NADPH binding mode. For the remaining two KARIs, Ia_KARI and 

Ms_KARI, which are 64% identical to each other, the nearest neighbors have very 

similar sequences and were filtered out during the clustering step. That these enzymes 

have used differing sets of substitutions for cofactor utilization and that each is 

phylogenetically isolated from the others but close to non-reversed sequences suggests 

that NADH-utilization has arisen independently in KARIs of several different organisms. 

 

In many protein families, the few characterized representatives have come from 

commonly studied mesophilic organisms. The properties of these enzymes are often 

assumed to be representative of the enzyme family as a whole. However, a rational, 

knowledge-guided search of all available sequences can uncover novel properties in more 

distantly related organisms, many of which can be valuable tools for metabolic engineers.  

In this study, we have shown that the presence of acidic residues at conserved phosphate-

binding positions can be used to identify candidate genes encoding NADH-preferring 

proteins in the industrially important KARI enzyme family. With minor modifications, 

we expect this approach to be useful in finding enzymes with differing cofactor 

requirements in other oxidoreductase families. 
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Table 1. Biochemical characterization of bi-specific and naturally NADH-specific 
KARIs and comparison to wild-type E. coli KARI (Ec_IlvC) and engineered Ec_IlvC6E6 

and Ec_IlvCP2D1-A1  (Bastian et al., 2011). 

Enzyme KM or KH [�M] kcat [s-1] kcat/KM or H [mM-1s-1]
NADH/NADPH 

ratio of kcat/KM or H

 NADH NADPH NADH NADPH NADH NADPH  

Ec_IlvC 1,075 41 0.3 3.6 0.3 88 0.003 

Ec_IlvC6E6 30 650 2.3 0.20 74 0.40 185 

Ec_IlvCP2D1-A1 26 > 1,400 4.3 0.54 165 < 0.4 > 412 

Hs_KARI 39 46 0.12 0.12 3.2 2.7 1.2 

Ia_KARI < 1 <1 0.02 0.03 > 20 >25 ~ 0.8 

Ms_KARI 24 31 0.06 0.07 2.5 2.1 1.2 

Sw_KARI 57 44 0.28 0.22 5.0 5.0 1.0 

Af_KARI 5.0 26 0.1 0.04 20 1.5 13 

Do_KARI 32 n. a. 0.25 n. a. 8.0 n. a. - 

Tp_KARI <1 40 0.46 0.25 460 6.0 74 

Ua_KARI 1.1 38 0.22 0.05 200 1.3 152 

All enzymes were his6-tagged and purified prior to characterization. Enzyme activities were determined in 
100 mM potassium phosphate pH 7 with 1 mM DTT, 200 �M NADPH or NADH, 2.5 mM S2AL, and 10 
mM MgCl2. Concentrations of the purified enzymes were determined using the Bradford assay. The KM or 
KH values for the cofactors, corresponding to the concentration of the half-maximum activity, were 
measured with appropriate dilutions of NADPH and NADH in the presence of saturating concentrations of 
substrate S2AL. Mutations located within the cofactor-binding pocket of Ec_IlvC6E6: A71S, R76D, S78D, 
and Q110V. Additional mutations in Ec_IlvCP2D1-A1: D146G, G185R, and K433E. For standard errors and 
Hill coefficients, please refer to Table S1 of the SI.  
n.a. = not active 
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Table 2. Nearest neighbors of the eight KARIs characterized in this work. Results are 
limited to the top three hits, and the cofactor binding loop and predicted cofactor 
specificity are shown.  

 
KARI 
(�2�b-loop sequence) 

%
ID Organism Oxygen 

requirements* 
�2�b-loop
sequence 

Predicted 
cofactor 
specificity 

Do_KARI 
(QLEGDAY)

86 
80 
78 

Uncultured Desulfobacterium 
Desulfococcus multivorans 
Desulfatibacillum alkenivorans 

Anaerobic 
Anaerobic 
Anaerobic 

QMEGDAY 
QREGGAS 
QRDGGKS 

NADH 
NADPH 
NADPH 

Sw_KARI 
(LRKPFDEASEKE)

73 
72 
71 

Syntrophothermus lipocalidus 
Desulfitobacterium dehalogenans 
Syntrophobotulus glycolicus 

Anaerobic 
Anaerobic 
Anaerobic 

LRKPEDDFTTAE 
LRADSRR 
LRKDSSR 

Bi-specific 
NADPH 
NADPH 

Af_KARI 
(LPEWDKAT)

77 
77 
76 

Archaeoglobus veneficus 
Archaeoglobus profundus 
Archaeoglobus sulfaticallidus 

Anaerobic 
Anaerobic 
Anaerobic 

LYKGSRS 
LYKGSKS 
DKKGTRN 

NADPH 
NADPH 
unclear 

Tp_KARI 
(DIPSSEN) 

72 
72 
71 

Caldicellulosiruptor saccharolyticus 
Caldicellulosiruptor hydrothermalis 
Caldicellulosiruptor obsidiansis 

Anaerobic 
Anaerobic 
Anaerobic 

LYHGSKS 
LYHGSKS 
LYQGSKS 

NADPH 
NADPH 
NADPH 

Ua_KARI 
(ETEILGGNKNPS)

98 
64 
52 

Uncultured archaeon 
Akkermansia muciniphila 
Paenibacillus lactis 

Anaerobic 
Anaerobic 
Facul. anaerobic 

ETEILGGNKNPS 
VRPGKS 
LREGKS 

NADH 
NADPH 
NADPH 

Ia_KARI
(LERQGDS)

73 
73 
69 

Sulfolobus solfataricus 
Sulfolobus islandicus 
Acidianus hospitalis 

Facul. anaerobic 
Facul. anaerobic 
Aerobic 

LEREGKS 
LEREGKS 
LEREGNS 

Bi-specific 
Bi-specific 
Bi-specific 

Ms_KARI 
(LEREGKS)

90 
88 
80 

Metallosphaera cuprina 
Metallosphaera yellowstonensis 
Acidianus hospitalis 

Aerobic 
Aerobic 
Aerobic 

LEREGKS 
LEREGKS 
LEREGNS 

Bi-specific 
Bi-specific 
Bi-specific 

Hs_KARI 
(LDDKSPH)

79 
77 
77 

Thermocrinis albus 
Hydrogenobacter thermophilus 
Hydrogenivirga sp. 

Microaerophilic 
Aerobic 
Microaerophilic 

LPAGSKS 
LPEGSKS 
LHEKSRS 

NADPH 
NADPH 
NADPH 

% ID: percent identity of the nearest neighbor to its respective KARI 
*) The oxygen requirements of the host organisms were obtained from various microbiological databases.  
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Highlights 

� Available KARI sequences searched for those predicted to effectively utilize 
NADH 

� Eight novel KARIs characterized; four are bi-specific (use NADH and NADPH) 
and four prefer NADH 

� These are the first natural NADH-utilizing KARIs reported 
� Nature found different cofactor re-engineering solutions 
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