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Seizure activity results in calcium- and mitochondria-
independent ROS production via NADPH and xanthine
oxidase activation

S Kovac*,1,2, A-M Domijan3, MC Walker1,4 and AY Abramov1,4

Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-
induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear,
mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-
induced ROS and their contribution to seizure-induced cell death. Using live cell imaging techniques in glioneuronal cultures, we
show that prolonged seizure-like activity increases ROS production in an NMDA receptor-dependent manner. Unexpectedly,
however, mitochondria did not contribute to ROS production during seizure-like activity. ROS were generated primarily by NADPH
oxidase and later by xanthine oxidase (XO) activity in a calcium-independent manner. This calcium-independent neuronal ROS
production was accompanied by an increase in intracellular [Na+] through NMDA receptor activation. Inhibition of NADPH or XO
markedly reduced seizure-like activity-induced neuronal apoptosis. These findings demonstrate a critical role for ROS in seizure-
induced neuronal cell death and identify novel therapeutic targets.
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Reactive oxygen species (ROS) contribute to neuronal
damage and have been linked to excitotoxicity.1–4 An increase
in ROS generation has also been identified in acute neurologic
disease such as stroke,5,6 and recent evidence indicates that
this may contribute to neuronal damage in seizures and
epilepsy.7–10 However, ROS measurements during seizure-
like activity were predominantly performed in homogenates,
extracellular fluids or brain regionswith no clear demonstration
of whether the ROS were of neuronal origin.9,11,12 Moreover,
these studies lacked the necessary temporal resolution to
determine accurately the evolution of ROS generation during
and after prolonged seizure activity. Such obstacles can be
overcome by live cell imaging of ROS, which has emerged as a
powerful tool to study disease mechanisms.13

If seizure activity induces ROS production in neurons, then
a critical question is which sources of ROS production are
triggered by such activity. Previous studies have suggested
that mitochondria are the primary source of ROS generation in
seizure models.8,14 However, there are alternative sources of
ROS, in particular the enzymes NADPH oxidase and xanthine
oxidase (XO). How these contribute to excitotoxicity during
seizure activity is uncertain. That these enzymes may have an
important role in seizure-induced ROS generation is sug-
gested by two observations: (1) NMDA receptors have a
pivotal role in seizure-induced neuronal damage15 and
(2) direct pharmacologic activation of NMDA receptors can
activate NADPH oxidase, increasing free radical production

and consequently neuronal death.5,16,17 There is also
burgeoning evidence of a role for NADPH oxidase activation
in chronic brain pathology secondary to psychosocial stress,
which leads to the development of neuropathologic altera-
tions, and also in neurodegenerative disease.18,19

Acute activation of NADPH oxidase in neurons has mainly
been shown after direct pharmacologic activation of NMDA
receptors via exposure to high levels of NMDA and this
activation is calcium-dependent.16,17 More recently, activation
of NADPH oxidase has been shown during seizure activity.9,20

These pathways also involved NMDA receptor activation and
upregulation of NMDA receptor subunits NR1 and NR2B.
Nonetheless, these studies used chemoconvulsant epilepsy
models, which, in themselves, may have an impact on ROS
generation. The mechanisms and relevance of activation of
NADPH oxidase during seizure activity independent of
chemoconvulsants is unclear, especially given the presence
of alternative sources of ROS production. Moreover, XO may
also represent a major potential source of ROS during periods
of increased metabolism, such as that occuring during
seizures. We have therefore asked whether NMDA receptor
activation has a role in seizure-induced ROS production and
which sources and mechanisms of ROS production are
involved in its time course during seizure-like activity.
Here, we demonstrate increased ROS generation during

seizure-like activity. This is activity-dependent, but it is
maintained by a Ca2+-independent pathway involving the
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activation of NMDA receptors, NADPH oxidase and XO at a
later phase. Blocking NADPH oxidase and XO prevented
seizure-induced neuronal cell death in vitro. We thus provide
compelling evidence that these ROS-generating pathways are
appropriate targets for preventing neuronal death in seizures.

Results

ROS generation and lipid peroxidation in vitro in the low
magnesium model. To determine the mechanisms and
sources of ROS generation, and their exact temporal
relationship during the initial phase of network hyperexcit-
ability, the well-established low magnesium culture model of
seizure-like activity was used.21,22 We performed live cell
imaging experiments in rat neocortical glioneuronal cocul-
tures (days in vitro 12–21; Figure 1a). In keeping with
previous reports, we found that seizure-like activity in the low
magnesium model induced oscillatory increases in intracel-
lular Ca2+, monitored with fura-2 (Figure 1b and
Supplementary Video 1),23 coinciding with rapid burst firing
of neurons, as has been shown previously.24 These changes
resulted in an immediate and significant increase in the rate
of ROS production in neurons (Figure 1c), while the rate of
ROS production in control cultures (neurons treated with
aCSF) was no different from baseline (Figure 1c). The
response was not homogeneous in all cells. Based on a
qualitative analysis of the rates of dihydroethidium (HEt)
fluorescence, we could distinguish two phases: ~ 2min and
10min after low magnesium exposure, and these time
windows were thus used for analysis (Figure 1c). There was
a statistically significant difference of ROS production between
the low magnesium and control (repeated-measures ANOVA;
F (1, 223)=56.4; Po0.001). There was also a significant
interaction between time and group (F (1,223)= 26.4,
Po0.001), indicating that as time progressed the difference
between the groups became significantly larger (Figure 1d).
Rates of ROS production measured after 2 min in neurons
exposed to low magnesium (n= 188) were almost two times
that of control neurons (n= 41; 166± 7% versus 85±2%).
There was a further increase in the rate of ROS production in
neurons observed 10min after omission of magnesium;
ROS production in these neurons was almost fourfold
greater than that seen in neurons under control conditions
(n=125; 337±17% versus 83± 7%). To confirm ROS
production using different approaches or indicators,
we conducted identical experiments and obtained similar

results using 530/380 ratio or measurements of 5- and
6- carboxy-2',7'-dichlorofluorescein (H2DFFDA) fluorescence
(Figures 1e and f).
ROS are known to induce oxidative degradation of lipids

(lipid peroxidation). We therefore determined lipid peroxidation
in the low magnesium culture model of seizure-like activity
using C11-BODIPY, an indicator of lipid peroxidation. The rate
of lipid peroxidation increased ~ 2-fold as a result of low-
magnesium-induced seizure-like activity (n=32; Po0.001;
paired t-test; Figures 1g and h).
Omission of magnesium from the superfusion solution

induces oscillatory increases in neuronal [Ca2+]c (Kovacs
et al.;25 Figure 1b). We hypothesized that increases in
neuronal ROS reflect the activity status of neurons. Simulta-
neous [Ca2+]c and ROS measurements indicated that the
neuronal ROS production coincided with the Ca2+ signal and
was greater in neurons with larger and more sustained Ca2+

oscillations (Supplementary Figures 1A and B).
To confirm that increases in ROS production were not a

peculiarity of the lowmagnesiummodel of seizure-like activity,
we reproduced our findings using another in vitro epilepsy
model. A well-established convulsant,23,26,27 4-aminopyridine
(4-AP), also induced a ~ 1.5- to 2-fold increase in ROS
production compared with baseline at both time points
(n= 126; 2 min: 195± 11%; 10min: 168.5± 10%; repeat-
measures ANOVA; F (1, 125)=464.6; Po0.001; Figures 2a
and b), confirming that the increase in ROS production is not
model-specific. In addition, we measured ROS production
after activation with low concentrations of glutamate, which
has been used as an in vitro model of epilepsy,28 yielding
similar results (n= 76; 2 min: 262±18% 10min: 179± 12%
(glutamate); repeat-measures ANOVA; F (1, 75)=291.0;
Po0.001; Figure 2c).
Unfortunately, we could not measure ROS with genetically

encoded ROS probes such as HyPer-3, as treatment with low
magnesium induced acidification; this was shown with the
H2O2-insensitive version of HyPer-3, HyPer-C199S (n=6;
Supplementary Figure 2E). Changes in pH were confirmed
using SNARF, which also demonstrated neuronal acidification
during low-magnesium-induced seizure-like activity (n= 29;
Supplementary Figures 2A–D).

Contribution of NMDA receptors and extracellular Ca2+ to
low-magnesium-induced ROS generation in neurons
in vitro. Low-magnesium-induced Ca2+ oscillations, repre-
senting seizure-like activity, have been shown to be NMDA
receptor-sensitive.29 Blocking the NMDA receptor with NMDA

Figure 1 Seizure-like activity in the low magnesium model of epilepsy induces ROS production in primary cortical neurons. (a) Phase-contrast image showing rodent
glioneuronal cultures in vitro and (b) seizure-like activity induced in neurons in the low magnesium model, as indicated by repetitive Ca2+ oscillations measured with the calcium
indicator fura-2 (see also Supplementary Video 1). Each trace in (b) represents a single neuron. Note that Ca2+ transients in neurons are synchronous and rhythmic characteristic
of seizure-like activity. (c) HEt fluorescence measurements in neurons (mean± S.E.M.) from a representative experiment showing low-magnesium-induced increases in the HEt
fluorescence in neurons exposed to low magnesium treatment (solid circle) and stable rates of HEt fluorescence indicating stable ROS generation rates in neurons treated with
aCSF only (control; unfilled circle). The vertical dashed line indicates replacement of the solution to either low magnesium (solid circle) or aCSF (unfilled circle) after a baseline
with aCSF. Bars indicate representatives periods that were taken to analyse the rate of ROS generation. (d) Mean rates of ROS generation at the representative time points in
neurons undergoing low magnesium treatment and neurons treated with aCSF only with the basal rate in neurons set as 100%. ROS generation in neurons as measured with (e)
ratiometric Het fluorescence imaging and (f) using H2DFFDA. Traces in (e) and (f) show fluorescence measurements from single representative neurons (circles). Bottom traces
(triangles) in these two panels indicate the differentiated trace. (g) Lipid peroxidation in neurons during low-magnesium-induced seizure-like activity as measured with C11-
BODIPY ratio in a representative experiment (mean± S.E.M.; upper trace). The bottom traces (triangles) indicates the differentiated mean C11-BODIPY fluorescence of the trace
represented above. (h) Histogram summarizing rates of lipid peroxidation during baseline (initial rate) and during low magnesium seizure-like activity (low Mg2+). Error bars
indicate S.E.M. ***Po0.001 and **Po0.01
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receptor antagonists (APV: 25 μM; n=30 or MK801: 10 μM;
n= 56) or the NR2B subunit specific antagonist ifenprodil
(10 μM; n=73) abolished the low-magnesium-induced Ca2+

signal (Figures 2d–f). Ca2+-free low magnesium solution also
abolished the low-magnesium-induced Ca2+ signal, suggest-
ing that external calcium is pivotal in maintaining low-

magnesium-induced Ca2+ oscillations in neurons (n=37;
Figure 2g).
Given that the [Ca2+]c oscillations in the low

magnesium model are dependent on NMDA receptors
and external Ca2+ entry, we determined how each
of these factors contributed to ROS generation observed
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in this model. We measured HEt fluorescence in the
presence of different NMDA receptor blockers (MK801,
APV and ifenprodil) or Ca2+-free low magnesium aCSF
and compared rates of ROS production with the

rates obtained with low magnesium treatment alone
(Figures 3a and b).
There was a statistically significant difference in the rate of

ROS production between the groups (repeat-measures
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ANOVA; F (4, 405)= 19.5; Po0.001). There was also
a significant interaction between time and group F
(4, 405)= 11.8, Po0.001), indicating that as time progressed
the difference between the groups became significantly larger
(Figure 3b). Blocking the NMDA receptor in neurons with APV
(n= 56; 25 μM), MK801 (n=65; 10 μM) and ifenprodil (n= 52;
10 μM) in low magnesium conditions significantly reduced the
rate of ROS production both 2min and 10min after omission of
magnesium when compared with control (Figures 3a and b).
Despite blocking low-magnesium-induced [Ca2+]c signals in
neurons (Figure 2g), Ca2+-free low magnesium aCSF had no
suppressive effect on neuronal low-magnesium-induced ROS
formation (Figures 3a and b). Neuronal rates of ROS
generation in Ca2+-free low magnesium did not differ
significantly from neuronal rates of ROS generation in low
magnesium conditions at 2 min (Figure 3b) and ROS produc-
tion at 10min was even slightly higher in neurons exposed to
Ca2+-free low magnesium compared with low magnesium

only, indicating, surprisingly, that seizure-induced ROS gen-
eration is not dependent on Ca2+ influx.
As ROS generation is NMDA receptor dependent when

Ca2+ is present, we hypothesized that ROS generation in
Ca2+-free lowmagnesium aCSF would also depend on NMDA
receptor activation.
There was a statistically significant difference of ROS

production between neurons treated with APV (25 μM;
n=25) in Ca2+-free low magnesium aCSF and neurons
treated with Ca2+-free low magnesium aCSF, only (repeat-
measures ANOVA; F (1, 111)= 24.0; Po0.001; Figures 4a
and b). Therewas a statistically significant interaction between
the effects of group (APV+Ca2+-free low magnesium aCSF
versus Ca2+-free low magnesium aCSF) and time point
measured on ROS production, indicating that as time
progressed the difference between the groups became
significantly larger (F (1, 111)= 6.0; Po0.05). Blocking NMDA
receptors with APV (25 μM; n= 25) significantly reduced the
ROS increase in Ca2+-free low magnesium aCSF both 2 and
10min after low magnesium treatment (Figures 4a and b).
Imaging of intracellular sodium with SBFI showed that
omission of magnesium from Ca2+-free aCSF induced an
immediate rise of intracellular sodium (n=87; Figure 4c). This
intracellular sodium rise was blocked with APV (n=32;
Figure 4d), indicating that ROS production in Ca2+-free low
magnesium conditions can bemaintained by a current through
the NMDA receptor linked to an increase in intracellular
sodium through NMDA receptors (Figures 4c and d).

Sources of ROS generation in low magnesium model.
Recent studies have suggested that excessive pharmaco-
logic NMDA receptor activation predominantly induces ROS
production via activation of NADPH oxidase.17 Given that
low-magnesium-induced ROS generation was NMDA recep-
tor dependent, we asked whether ROS generation can be
blocked by inhibiting NADPH oxidase with AEBSF (20 μM), a
well-established inhibitor of NADPH oxidase activation.30

Excessive neuronal activity has been linked to ATP
depletion.23 Intracellular ATP depletion results in increased
adenine formation and consequently an increase in hypo-
xanthine and xanthine, substrates for XO.31,32 We therefore
hypothesized that late phases of ROS generation in the low
magnesium model might be due to hypoxanthine and
xanthine oxidation by XO, a process that generates hydrogen
peroxide. To distinguish between these two pathways, we
blocked low-magnesium-induced ROS production using the
NADPH oxidase blocker AEBSF or the XO blocker oxypur-
inol. Both AEBSF and oxypurinol reduced ROS production
(Figures 5a–d). There was a statistically significant difference
in the rate of ROS production between the groups (repeat-
measures ANOVA; F (1, 292)=14.2; Po0.001; Figure 5d).
There was a significant interaction between time and group
as time progressed; the difference between the groups
became significantly larger (F (1, 292)= 8.7; Po0.001;
Figure 5d). ROS production at 2 and at 10min was
significantly lower if AEBSF (n= 41; 20 μM) was added to
low magnesium aCSF when compared with low-magnesium-
treated neurons only (Figures 5a, b and d). Inhibition of XO
with oxypurinol (n=34; 20 μM) abolished the late phase of
low-magnesium-induced ROS production (415min after
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oxypurinol application; Figure 5c). These cells showed a high
rate of ROS generation in the early phase (Figures 5c and d).
In addition, 30min preincubation with gp91 ds-tat (n=53), a
specific peptide inhibitor of NADPH oxidase assembly,33

inhibited ROS production in the low magnesium model of
seizure-like activity when compared with gp91 ds-tat
scrambled (n= 43; Po0.001; t-test; Figures 5e and f). We
next blocked Rac1, an activator of the NOX complex.34

Inhibition of Rac1 with NSC-23766 (n=73) prevented
seizure-induced ROS increase when compared with low
magnesium treatment only (n= 54; Po0.001; t-test;
Figure 5f).
We failed to capture the secondary increase in ROS and its

inhibition with XO by statistical analysis owing to the time
differences in the appearance of the secondary ROS genera-
tion increase as can be seen by qualitative visual assessment
of the raw data (Supplementary Figure 3). Unlike oxygen
deprivation,5 seizure-like activity is a more subtle and variable
dysfunction with neuronal excitotoxicity and cell death
occurring at different time points.
There was a statistically significant difference in the rate of

ROS production between neurons treated with AEBSF
(20 μM) in Ca2+-free low magnesium aCSF and neurons
treated with Ca2+-free low magnesium aCSF, only (repeat-
measures ANOVA; F (1, 122) =75.1; Po0.001). There was a

significant interaction between time and group, as time
progressed the difference between the groups became
significantly larger (F (1, 122) =24.5; Po0.001; Figures 6a
and b). Blocking NADPH oxidase with AEBSF (20 μM)
significantly reduced rates of ROS generation 2 and 10min
after superfusion of low magnesium Ca2+-free aCSF when
compared with low magnesium Ca2+-free treatment only
(n= 36; Figures 6a and b). Similarly, AEBSF blocked
ROS production in 4-AP and in response to glutamate
(n= 126, 195± 11% (4-AP) versus n= 82 99±9% (4-AP and
AEBSF) and n= 76; 262±18 (glutamate) versus n= 70
151±13% (AEBSF and glutamate); both Po0.001; t-test;
Supplementary Figure 4).
Previous studies have suggested that increased ROS in the

low magnesium model are of mitochondrial origin.8,35 Como-
nitoring ROS of mitochondrial origin and intracellular Ca2+

changes in neurons, using the mitochondrial ROS indicator
MitoSOX and Ca2+ indicator Fluo-4, showed that in neurons
showing low-magnesium-induced Ca2+ oscillations, no
increase of ROS of mitochondrial origin could be detected
(Figures 7a and b). We tested rates at different time points.
There was a significant change in ROS production between
the time points (repeat-measures ANOVA; F (2, 44)= 4.1;
Po0.05). There was a decrease in the rate of ROS generation
over time that could be attributed to mitochondrial
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depolarization in low-magnesium-treated neurons, supporting
this as a significant confounder in previous studies (Figure 7b).

Apoptosis in the low magnesium model can be reduced
by inhibiting ROS production. Excessive ROS production
is known to lead to cell death.2 We therefore asked whether
blocking sources of ROS generation might reduce cell death

in the low magnesium model. The caspase-3 substrate
NucView 488 allows measurements of apoptosis in real time.
In time-series experiments with NucView 488, we observed
apoptosis in a small fraction of neurons after ~ 40min in the
low magnesium conditions (Figure 7c). After 2 h, ~ 40% of
neurons exhibited apoptosis. Pretreatment with inhibitor of
NADPH oxidase assembly, gp91 ds-tat significantly reduced
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the proportion of neurons undergoing apoptosis in the
low magnesium model of seizure-like activity (Figure 7d).
To confirm this, we analysed the degree of apoptosis at 2 h in
the different treatment groups. There was a significant
difference in the rates of cell death between the four groups
(F (3, 11)=8.43; one-way ANOVA; Po0.01). Adding the
NADPH oxidase inhibitor gp91 ds-tat or the XO inhibitor
oxypurinol to the low magnesium aCSF significantly reduced
the percentage of apoptotic neurons when compared with low
magnesium treatment alone (Po0.05; post hoc tests; Tukey’s
test; Figure 7e).

Discussion

Using live cell imaging, we have shown that seizure-like
activity induces profound changes in the rate of ROS
generation in neurons. This depends on the degree of
neuronal activity. ROS generation was blocked with NMDA
receptor antagonists, which also abolished the low-
magnesium-induced Ca2+ oscillations in neurons. To our
surprise, low-magnesium-induced ROS generation was inde-
pendent of external Ca2+, suggesting that a Ca2+-independent
mechanism can trigger a cascade leading to an increase in
neuronal ROS generation. Most importantly, the primary
sources of ROS generation during neuronal hyperexcitability
in this model were NADPH oxidase and XO, whereas
mitochondrial ROS generation, which was previously sug-
gested to be the primary source of ROS generation during
seizure-like activity,8,35 did not contribute significantly to
neuronal free radical load. Importantly, we also showed that
targeting these mechanisms, by inhibiting NADPH oxidase or
XO is neuroprotective.

Low-magnesium-induced ROS generation in neurons is
dependent on NMDA receptor. We found that low
magnesium-induced ROS generation is dependent on
repetitive epileptiform activity, as it was not seen when the
activity level of neurons was low as measured with
simultaneous [Ca2+]c recordings. Previous studies have
found that low-magnesium-induced Ca2+ oscillations and
the detrimental effect of NMDA receptor activation in cultures

can be abolished by blocking NMDA receptors.29,36 In
keeping with this, we were able to abolish ROS production
in the low magnesium model of seizure-like activity by NMDA
receptor antagonists. In addition, we were able to block ROS
production and low-magnesium-induced Ca2+ oscillations by
selectively blocking the NR2B subunit of the NMDA receptor,
suggesting that ROS production is mainly mediated by the
NR2B containing NMDA receptors. This is consistent with
previous evidence that indicates that NMDA receptor
excitotoxicity depends on the type of subunit expressed and
on the location relative to the synapse, so that the,
predominantly extrasynaptic, NR2B subunit containing
NMDA receptors are responsible for the detrimental effects
of NMDA receptor activation on neurons.37–40

NADPH oxidase is the primary source of free radical
generation in the low magnesium model of epilepsy and
can be activated independent of Ca2+ flux through the
NMDA receptor. Previous studies have shown that the
NMDA receptor-mediated ROS increase is linked to NADPH
oxidase activation.16,17 However, these two reports have
relied on excessive pharmacologic NMDA receptor activation
(40 and 100 μM NMDA), raise concerns about the physiologic
and pathophysiologic relevance of this finding to disease. Our
study, for the first time, provides evidence and mechanistic
insight into free radical generation in an in vitro model of an
acute neurologic disease. Our results convincingly show that
NMDA-receptor-dependent ROS production in neurons is
dependent on NADPH oxidase activation. NADPH oxidase in
neurons can be activated through Ca2+-mediated activation
of PKC, which in turn phosphorylates p47phox a subunit of the
NADPH oxidase complex responsible for assembly with the
NOX2 subunits.41 Interestingly, we found that NADPH
oxidase was activated in low Mg2+- and Ca2+-free conditions,
implying a mechanism of NADPH oxidase activation that is
independent of Ca2+ entry. Our results indicate that NOX2
may rely solely on Na+ entry through NMDA receptors,
something that has also been suggested in a study showing
sodium-dependent activation of NOX2 in cardiomyocytes.42

Whether NADPH oxidase assembly relies on Ca2+-indepen-
dent PKC activation in this setting remains to be determined.
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This finding has important therapeutic implications as it
suggests that NMDA-mediated detrimental ROS generation
can be maintained without excessive calcium entry. Previous
reports have shown that intracellular acidification of neurons
can occur during transient NMDA receptor activation.43 We
have extended this finding by showing that activation of
NMDARs during low-magnesium-induced seizure-like activity
is also sufficient to induce intracellular acidification.
Several in vivo and in vitro epilepsy models support the

pivotal role of NADPH oxidase in seizures and epilepsy. In
keeping with our findings, an increase in NADPH oxidase

activity has been linked to chemoconvulsive epilepsy models
such as the pilocarpine and kainate model of epilepsy.20,44

Inhibition of NADPH oxidase was effective in reducing cell
death in the in vivo pilocarpine model of temporal lobe
epilepsy.9,45 However, our study shows for the first time that
the protective effect of NADPH oxidase inhibition is indepen-
dent of chemoconvulsants.

XO contributes to a delayed increase in ROS gene-
ration in epileptiform activity. We identified that XO
inhibition resulted in decreased generation of ROS during
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low magnesium exposure. The inhibition of ROS gene-
ration affected the late phases (410min) of low
magnesium exposure. These findings were difficult to
capture in a group analysis as the onset of the late
phase varied significantly between cells, indicating that
the XO-dependent secondary ROS generation is not
homogeneous. Intracellular ATP depletion occurs during
continuous epileptiform activity,23,45 and results in
adenine formation and consequently an increase in
hypoxanthine and xanthine, substrates for XO.31,32

Previous reports have shown a beneficial effect of XO
inhibition on seizures.46–48 Our results confirm these obser-
vations, and for the first time provide evidence that inhibition
of XO with oxypurinol reduces seizure-induced neuronal
cell death.

Mitochondria are not the primary site of ROS generation
in the low magnesium model of epilepsy. Increased free
radical generation in seizures has commonly been ascribed
to mitochondrial dysfunction; this assumption has, however,
often been based on the coincidence of ROS changes and
changes in mitochondrial metabolism during seizures.44,49

Despite studies suggesting that ROS of mitochondrial origin
are the major source of ROS in epilepsy and specifically in
the low magnesium model of epilepsy,8,35,50,51 we show here
that ROS of mitochondrial origin are not the primary
contributors to the neuronal free radical burden. Some of
the previous work has only demonstrated indirect evidence of

free radical formation through measures of glutathione, a
major antioxidant.51,52 A major confounder in the interpreta-
tion of the few studies that use HEt to measure ROS
production is that it is based on the temporal relationship
between the increased HEt fluorescence and Ca2+ transients.
However, HEt can undergo fluorescent dequenching on
depolarization-induced release from the mitochondrial matrix
to the cytoplasm.53 Using MitoSOX, a more specific
mitochondrial ROS indicator, we were not able to support
these previous findings, and, in contrast, observed a general
decrease in mitochondrial ROS generation. Mild intracellular
Ca2+ influx stimulates respiration and consequently leads to
mitochondrial membrane potential hyperpolarization. This, in
turn, can slightly increase the generation of ROS.54 However,
mitochondrial membrane potential depolarization, as occurs
during prolonged seizure-like events,14 inhibits mitochondrial
ROS generation.
For the first time, we have provided a detailed insight into the

importance of different ROS-generating pathways in hyper-
excitability (summary in Figure 8). Our findings of ROS
generation during hyperexcitability, the time course and the
sources of ROS generation with a calcium- and mitochondria-
independent mechanism suggest novel interventional targets
to prevent neuronal death in neurologic diseases associated
with hyperexcitability, such as epilepsy, and challenge tradi-
tional views on exclusively mitochondria- and calcium-
dependent excitotoxicity.
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Materials and Methods
Cortical cell cultures. Mixed cocultures of cortical neurons and glial cells
from postnatal (P0) Sprague–Dawley rats (UCL breeding colony) were prepared
according to a modified protocol described by Haynes.55 Rat brains were quickly
removed and neocortical tissue was cut and minced in ice-cold HBSS (Ca2+ and
Mg2+ free; Gibco-Invitrogen, Paisley, UK). After treatment with 1% trypsin for 15 min
at 37 °C to dissociate the cells, residual trypsin was removed and the tissue was
triturated. The suspension was plated onto poly-D-lysine/laminin-coated coverslips
and cultured in Neurobasal A medium (Gibco-Invitrogen) supplemented with B-27
and 2 mM L-glutamine (Gibco-Invitrogen). Experiments were carried out after
12–21 days in vitro to allow maturation of synapses in cultures. Neurons were
identified and distinguished from glia by their smooth rounded somata and distinct
processes using phase-contrast imaging.

Transfection with genetically encoded pH probe
HyPer-C199S. At day 11, glioneuronal cultures were transfected with plasmid
coding HyPer-C199S. HyPer-C199S, a pH indicator, has been recommended as an
ideal control for the genetically encoded H2O2 indicator HyPer-3, as it is the H2O2-
insensitive version of the HyPer-3. Transfections were performed using Effectene
transfection reagent (Qiagen, Venlo, Netherlands) yielding ~ 5% transfection
efficiency in neurons. Cells were subjected to imaging, 1–3 days after transfection.

Imaging of intracellular ROS generation, [Ca2+]c, ROS and
[Ca2+]c coregistration and [Na+]c. Fluorescent dyes were obtained from
Invitrogen (Paisley, UK), unless otherwise stated. Preincubation and experimental
procedures were performed at room temperature and all preincubations were
performed in an HEPES-buffered salt solution (aCSF), composition in mM: 125
NaCl, 2.5 KCl, 2 MgCl2, 1.25 KH2PO4, 2 CaCl2, 30 glucose and 25 HEPES, pH
adjusted to 7.4 with NaOH. ROS generation was measured with HEt (2 μM, mostly
superoxide) or H2DFFDA (20 μM, mostly hydrogen peroxide). To avoid accumula-
tion of oxidized products, HEt was not preincubated, but was present in solutions
throughout the experiments. In experiments using H2DFFDA, cells were incubated
for 30 min and washed before experiments. To target mitochondrial ROS production,
cells were loaded with MitoSOX (10 μM) for 10 min and washed before experiments.
Intracellular Ca2+ measurements were performed using fura-2-AM (5 μM) or Fluo-4
AM (5 μM) and intracellular sodium levels were monitored with the ratiometric dye
SBFI-AM (10 μM). Ca2+ and Na+ indicators were loaded with 0.005% Pluronic
F-127 for 30 min and then washed. Rates of lipid peroxidation in neurons were
measured using C11-BODIPY. Glioneuronal cocultures were preincubated for
20 min with C11-BODIPY (excitation 581/emission 591; 2 μM; Molecular Probes,
Eugene, OR, USA). pH was monitored in neurons using carboxy-SNARF-AM
(10 μM), which were loaded with 0.005% Pluronic F-127 for 30 min and then
washed. To correlate the rate of ROS production to Ca2+ changes within the cell,
ROS generation and [Ca2+]c were measured simultaneously using HEt and Fluo-4
AM. Experiments were carried out in either aCSF or excluding MgCl2 (low
magnesium). Experiments with extracellular Ca2+ depletion were performed in aCSF
omitting Ca2+ and adding the Ca2+ chelator EGTA (0.5 mM).
Fluorescent images were obtained on an epifluorescence inverted microscope

equipped with a × 20 fluorite objective (Cairn Research, Kent, UK). Excitation
wavelength was selected using a 10 nm bandpass filter centred on 340, 380, 490 or
530 nm light as appropriate. Emitted fluorescence was detected by a cooled CCD
camera after passing through a long-pass filter and 12-bit resolution. Laser power,
gain and black level were optimized to obtain the full dynamic range while avoiding
saturation for each excitation wavelength. Fluorescence of H2DFFDA was excited by
illumination at 490 nm, whereas HEt was excited by illumination at 530 nm.
Ratiometric HEt fluorescence was recorded with excitation light at 380 and 530 nm.
For most of the experiments, we chose to perform measurements of ROS production
rates with HEt at a single wavelength, first to avoid photobleaching and phototoxicity
from excitation of cells in the range of UV light and second based on the fact that in
some experiments [Ca2+]c was coregistered with the ROS rate measurements. It was
not possible to measure H2DFFDA fluorescence alongside Fluo-4 fluorescence given
the similar emission wavelength of these dyes. [Ca2+]c and [Na+]c were measured
after exciting dyes with light provided by a xenon arc lamp, the beam passing through
a monochromator at 340 and 380 nm with bandwidth of 10nm (Cairn Research, Kent,
UK). We presented traces as the ratio of excitation at 340 and 380 nm, both with
emission at 4515 nm. Intracellular Na+ and Ca2+ levels were expressed as ratios
and were not calibrated to avoid inaccuracies arising from different calibration
methods. Phototoxicity and photobleaching of cells was minimized by limiting light
exposure to the time of acquisition of the images. Fluorescent images were acquired

with a frame interval of 10 s. Data were analysed using software from Andor (Belfast,
UK). Illumination intensity was kept to a minimum (at 0.1–0.2% of laser output) to
avoid phototoxicity and the pinhole set to give an optical slice of ~ 2 μm. Rates of ROS
increase were calculated at different time points (2 and 10 min) after exposure to low
magnesium aCSF only or to low magnesium aCSF in the presence of drug. These
were compared with rates recorded during a 2–5 min aCSF exposure period referred
to as baseline. Experiments were repeated at least four times using more than three
different cultures.

All confocal images were obtained with a Zeiss 710 LSM (Jena, Germany) with an
integrated META detection system. Coregistration of ROS production and Ca2+ signal
was performed exciting HEt with the 565 laser and measuring light emitted at 580–
620 nm. Simultaneous Ca2+ signals were acquired, exciting Fluo-4 with the 488 nm
argon laser and measuring the emitted light at 500–550 nm (x40 objective). C11-
BODIPY (581/591) was excited using the 488 and 543 nm laser line and fluorescence
measured using a bandpass filter from 505 to 550 nm and 560 nm long-pass filter
(x40 objective). HyPer-C199S fluorescence was excited at 488 and 405 nm and
emission set at 510–540 nm and expressed as 488/405 ratio. Carboxy-SNARF was
excited using the 543 nm laser line and emission was collected at 580± 30 and
650 ± 30 nm. SNARF was expressed as 650/580 ratio and was calibrated with brief
application of NH4Cl2.

MitoSOX images were obtained using a x63 objective to increase precision in
measuring fluorescent signals immediately over mitochondria. MitoSOX were excited
using the 565 nm laser line and fluorescence measured above 580 nm. Compared
with HEt, MitoSOX is less potential sensitive and undergoes significantly less
fluorescent dequenching. Fluorescent dequenching indicates the release of the dye
to the cytosol and highlights the importance of measuring the signal immediately over
mitochondria with high magnification as in our experimental set-up.5

Measuring apoptosis with NucView 488 caspase-3 substrate.
Apoptosis was assessed both by measuring time series and time points within the
experiment. NucView 488 caspase-3 substrate allows detection of caspase-3
activity in real time. Neuronal cultures were loaded for 15 min with 10 mM NucView
488 caspase-3 substrate (Biotium, Hayward, CA, USA). The 488 nm argon laser
was used to excite NucView 488 fluorescence, which was measured using a
bandpass filter from 510 and 560 nm. Using phase-contrast optics, a bright-field
image allowed identification of neurons, above the glial layer.5

Statistical analyses. Statistical analyses (two-tailed Student's t-test, one-way
ANOVA, repeat-measure ANOVA, post hoc Tukey) were performed using SPSS
17.0 (SPSS, Chicago, IL, USA). Throughout ROS production was measured at two
time points (2 and 10 min) and a repeat-measures ANOVA was used for analysis
with time at the within-subject factor. The significance level was set at Po0.05 and
all data are given as mean±S.E.M.
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