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[1] Spectrally resolved outgoing radiance is a potentially

powerful tool for testing climate models. To show how it can be

used to evaluate the simulation of cloud variability, which is the

principal uncertainty in current climate models, we apply spectral

empirical orthogonal function (EOF) analysis to satellite radiance

spectra and synthetic spectra derived from a general circulation

model (GCM). We show that proper averaging over a correct

timescale is necessary before applying spectral EOF analysis. This

study focuses on the Central Pacific and the western Pacific Warm

Pool. For both observation and GCM output, cloud variability is the

dominant contributor to the first principal component that accounts

for more than 95% of the total variance. However, the amplitude of

the first principal component derived from the observations (2� 3.4

W m�2) is 2 � 6 times greater than that of the GCM simulation.

This suggests that cloud variability in the GCM is significantly

smaller than that in the real atmosphere. INDEX TERMS: 3359

Meterology and Atmospheric Dynamics: Radiative processes; 3360

Meterology and Atmospheric Dynamics: Remote sensing; 3337

Meterology and Atmospheric Dynamics: Numerical modeling and

data assimilation; 3399 Meterology and Atmospheric Dynamics:

General or miscellaneous

1. Introduction

[2] It is well known that clouds are the principal source of
uncertainty in current climate models [Cess et al., 1995]. The
climate sensitivity, which is defined as the surface temperature
increase caused by a doubling of CO2, is strongly dependent on the
cloud feedback [Houghton et al., 2001]. Therefore, realistic cloud
simulation is essential for reducing uncertainties in climate pre-
diction. A widely used approach to evaluating cloud simulations is
to compare simulated mean cloudiness with its observed counter-
part. However, there is another meaningful way to evaluate model
performance by studying the second-order statistics [Leith, 1975;
Bell, 1980; North et al., 1993; Goody et al., 1998]. Haskins et al.
[1997, 1999] clearly showed the power of spectrally resolved
outgoing radiance for comparison of second and higher order
statistics. Due to the lack of access to cloud data in models, work
of Haskins et al. [1997, 1999] focused only on clear-sky situations.
However, clouds are prominent components in the climate system
and thus the information in cloudy spectra should not be over-
looked. In this paper, we include both clear-sky and cloudy data in

our study and apply the spectral empirical orthogonal function
(EOF) analysis to spectrally resolved outgoing radiance. The
methodology and results pertaining to clouds in the tropical
atmosphere are discussed.

2. Data and Methodology

2.1. Observation

[3] The dataset of spectrally resolved radiance we used is the
Infrared Interferometer Spectrometer (IRIS). It was a Michelson
Fourier transform spectrometer flown from April 1970 to January
1971 on Nimbus 4. The corresponding ENSO phase during this
period is moderate La Niña. It covered the spectral region from 400
to 1600 cm�1 with an apodized resolution of 2.8 cm�1. The signal
to noise ratio at the mid-point of the spectrum was better than 100
and degraded to about 20 at the frequency endpoints. IRIS was a
nadir sounder with a field of view of about 95 by 120 km [Hanel
et al., 1972]. Its orbit was a sun-synchronous orbit at approxi-
mately 1100-km altitude, crossing the equator at around 0 and 12
hour local time. During the 10-month operational period, IRIS
collected about 700,000 spectra.
[4] Our analysis is limited by the length of the observational

record. We have only 10 months of observation from IRIS.
Therefore, any climate processes with a characteristic timescales
longer than 10 months is not addressed in this study. However, if
we treat the atmosphere as an isolated system, most intrinsic time
scales are shorter than one year. Some important but still poorly
understood processes, such as the lifecycle of clouds, have time-
scales of less than several days. Therefore, the IRIS data are
sufficiently long to test such physical processes in the model.

2.2. GCM and MODTRAN

[5] The UCLA GCM we work with is a recognized grid point
model of the global atmosphere extending from the surface of the
Earth to a height of 50 km [Mechoso et al., 2000]. The horizontal
resolution is 4� � 5� in latitude and longitude. There are 9 layers in
the troposphere and 6 layers in the stratosphere. The output is twice
per day, at 0000 GMT and 1200 GMT. Cloud optical depth is
computed based on liquid water and ice particle concentrations. A
prediction scheme for cloud liquid water and ice based on a five-
phase bulk microphysics is used [Kohler, 1999]. The GCM is
forced with monthly averaged SST for the same period as IRIS.
After we obtain the tropospheric vertical profiles of temperature,
water vapor and cloud optical depth at each grid point from GCM,
we input them into a radiative transfer model to calculate the
outgoing spectrum at the top of the atmosphere at each grid point.
Therefore, we have two spectra every day at each grid point.
[6] The radiative transfer model that we use is the MODTRAN

4.0 (MODerate resolution TRANsmittance code) developed by the
Air Force Research Laboratory, with the capability of simulating
the radiative effects of different kinds of clouds [Wang and
Anderson, 1996]. It is well known that infrared radiation is strongly
absorbed by optically thick clouds and the effect of scattering is
secondary. Cotton and Anthes [1989] indicates that 90% of
incident infrared radiation can be absorbed in less than 50-m
pathlengths in a liquid cloud. This justifies simulating cloud
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radiative behavior as simply absorptive rather than as multiple
scattering, a convenience we desire considering the computational
expense which would otherwise be involved in generating multiple
scattering computations for �80,000 spectra. The detailed discus-
sion of the feasibility of using MODTRAN in such comparisons
can be found in Haskins et al. [1997].
[7] Tropospheric profiles are taken from the model output while

stratospheric profiles are taken from standard profiles used by
MODTRAN. The reasons for doing this are: (1) it is difficult to
avoid spurious reflection of upward-propagating waves in a model
with a rigid upper boundary at 50 km [Callaghan et al., 1999; Salby,
private communication]; (2) the 6-layer representation of the strato-
sphere in the model might not be enough for a satisfactory simu-
lation of the stratospheric variability. As a result of (1) and (2), the
variability in the stratosphere is less realistic. Therefore, we elimi-
nate stratospheric variability so that we can focus on the troposphere.

2.3. Data Manipulation

[8] Before we can carry out our spectral EOF analysis, we need
to average the spectra over certain regions and time scales. This is
necessary because the spatial and temporal sampling patterns of
observations are not the same as those in the model. In this study,
we focus on two regions. One is the Central Pacific, defined as
180�W to 130�W and 10�S to 10�N; the other is the Warm Pool,
defined as 90�E to 150�E and 10�S to 10�N. During its 10-month
flight, IRIS collected 10804 spectra over the Central Pacific and
8467 spectra over the Warm Pool. For the GCM we use, there are
66 grid points in the Central Pacific and 78 grid points in the Warm
Pool. The appropriate timescale for the averaging is discussed in
the next paragraph. For IRIS data, the number of spectra collected
during the ascending node is different from those collected during
the descending node. Before we average the data, we weight data
from the ascending branch and from the descending branch such
that day-night contrasts are eliminated.
[9] We are forced to choose a temporal averaging window

suitably long to reduce complications arising from undersampling
by the sounder, a problem typical of any sounder sensitive to clouds
[Salby, 1989]. The asynoptic nature of satellite measurements is
especially important for clouds because the space and time scales of
cloud variability are easily less than that of the sampling. Salby
[1989] pointed out that clouds change typically in hours, which is
much shorter than the time for the globe to be covered by the
satellite and that a sufficiently long period averaging can remove the
aliasing from unresolved random variability. We estimate the time-
scale to do the average with synthetic spectra based on GCM output.
We use two different ways to get the daily average over a given
region. One is to do average with all grid points inside this region
(hereafter, ‘‘average-all’’ method), the other is to find the grid points
nearest to the satellite tracks and average spectra only at those grid
points (hereafter, ‘‘track-orbit’’ method). Obviously, the latter
method is more directly suitable for comparison to IRIS spectra.
With these two methods, we obtain the averages over periods longer
than one day. When the averaging is done over a long enough
timescale, the difference of two sets of averaged spectra should be
very small, demonstrating that the ‘‘track-orbit’’ method is already a
good approximation to the ‘average-all’ method at this timescale.
Figure 1 shows a comparison of the standard deviation of these two
sets of spectra over the Central Pacific. It can be seen that for 5-day
averaging the standard deviation from the ‘‘average-all’’ method is
only half of that from the ‘‘track-orbit’’ method; when the averaging
period is 25 days, they are almost the same. Therefore, for the
Central Pacific, we adopt 25-day averages. We apply the same
analysis to the Warm Pool and it shows 25 days is also long enough
for discrepancies in standard deviation to cancel.

2.4. Spectral EOF Analysis

[10] We perform spectral EOF analysis on the spectra obtained
as described in 2.3. Given a set of radiances measured at

frequency n, denoted as In(t), the EOFs, fn
(i), are unit eigenvectors

of covariance matrix

Cn1n2 ¼ In1 tð Þ � In1
� �

In2 tð Þ � In2
� �

ð1Þ

where the overbar represents an average over all samples. Let li be
the eigenvalue corresponding to the i-th eigenvector fn

(i); then the
principal component (PC) can be defined as

PC ið Þ
n ¼

ffiffiffi
l

p
if ið Þ

n ð2Þ

PCs have dimensions of radiance, so can be more easily interpreted
than EOFs [Haskins et al., 1999]. Compared with the spatial EOF
analysis that is most widely used in the atmospheric sciences, this
EOF analysis just replaces space with frequency.
[11] Principal components and covariance matrices are conju-

gates of each other. To compare EOFs of climate variables from
observations and model is equivalent to comparing their second-
order statistics. Moreover, the leading EOFs usually can be
interpreted physically.

3. Results

[12] Figure 2(a) shows a comparison of the mean spectra over
the Central Pacific obtained from IRIS observations and the
MODTRAN calculations based on the GCM output. Figure 2(b)
is the same as Figure 2(a), but for the Warm Pool. It can be seen
that the differences between the observations and the model over
the Central Pacific are much bigger than over the Warm Pool. For
the Central Pacific, in the window region (800–1000 cm�1), the
brightness temperature of IRIS mean spectra is higher than that of
the simulated mean spectra by more than 10 K. Since the window
region is transparent to thermal radiance and the observed sea
surface temperature is provided as a boundary condition for the
model, this difference in the window region is most likely caused
by clouds. In other words, on the average, the model has more
clouds in the Central Pacific than the real atmosphere. The bright-
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Figure 1. (a) The standard deviation of spectrally resolved
radiance derived from the GCM. The dotted line was computed
from data averaged over 5 days for the Central Pacific using the
‘‘track-orbit’’ method (as defined in the text). The solid line is the
same as the dashed line, except that the averaging was performed
using the ‘average-all’ method (as defined in the text). (b) Same as
(a), except that the time interval for averaging is 20 days. (c) Same
as (a), except that the averaging time is 25 days.
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ness temperature difference in the window region over the Warm
Pool is less than 5 K.
[13] The comparison in the previous paragraph only shows how

well the model simulates the atmosphere in the long-term mean
state. It does not show how well the variability of model clouds
matches that of the observations, and this is exactly what the
spectral EOF analysis can tell us. Figure 3 presents the first
principal component (hereafter, PC1) of the 25-day averaged
spectra over the Central Pacific from IRIS and model data. Each
PC1 explains the bulk of the variance: PC1 from IRIS accounts for
98.0% of the total variance, and that from the model also accounts
for 98.0% of the total variance. The most striking difference is in
the amplitudes of the PC1s. The peak of PC1 from IRIS in the
window region is 3.5 mW m�2 cm str�1 (corresponding brightness
temperature, hereafter TB, is 2.4 K), while the counterpart from the
model is only 1.5 mW m�2 cm str�1 (TB = 1.2 K). The integral
from 400 to 1400 cm�1 for IRIS PC1 is 2.05 W m�2. For the
model PC1, it is 0.88 W m�2, less than half of the observed PC1.
Given that both model and observed PC1 account for 98% of the

total variance, this implies that, for the Central Pacific, the model
variance in outgoing radiation is only about half of what we
observed from IRIS. Figure 4 shows the observed and modeled
PC1 for the Warm Pool. As in the case of the Central Pacific, PC1
explains most of the variance: for IRIS it accounts for 99.1% of the
total variance and for the model 94.5%. The difference in ampli-
tude is even larger than in the case of the Central Pacific. The peak
of PC1 from IRIS in the window region is 6.6 mW m�2 cm str�1

(TB = 4.8 K), while the counterpart from the model is only 1.1 mW
m�2 cm str�1 (TB = 0.96 K). The 400 to 1400 cm�1 integral for
PC1 from IRIS is 3.4 W m�2, and for PC1 from the model, it is
0.54 W m�2. The model PC1 is only about one-sixth of the
observed PC1 in this case. Since PC1 also explains almost all
the variance for the Warm Pool, the model variance in the outgoing
radiation is only about one-sixth of what was observed by IRIS.
[14] We apply a simple inversion scheme to explore the con-

tribution of clouds to PC1. The detailed description of this scheme
can be found in Haskins et al. [1999]. Simply put, stepwise
regression is applied to each PC1 to determine the cloud contri-
butions. There are four types of clouds in this scheme, the tops of
which are located at 4, 8, 12 and 16 km. For each PC1, the amount
of variance that can be explained by clouds is listed in Table 1.
Except for the IRIS PC1 over the Central Pacific, clouds can
explain on the order of 90% of the variance in all PC1s. The
corresponding cloud height and cloud fraction change derived from
this inversion scheme are also listed in Table 1. The results suggest
that the most likely contributors to PC1s are high clouds rather than
low clouds. They also suggest that the corresponding cloud heights
derived from IRIS PC1s are higher than those from model,
indicating that there might not be enough high cloud in the model.
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Figure 2. (a) The 10-month averaged radiance spectra over the
Central Pacific. The dotted line is derived from IRIS observations,
and the solid line is computed from the GCM. (b) The same as (a)
for the Warm Pool.
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Figure 3. Comparison of the PC1 derived from 25-day averaged
spectra over the Central Pacific from IRIS observations (dashed
line) with that from the GCM.
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Figure 4. Comparison of the PC1 derived from 25-day averaged
spectra over the Warm Pool from IRIS observations (dashed line)
with that from the GCM (solid line). The dotted line is same as the
solid line, except that the clouds have been interpolated to the
value of local noon/midnight (refer to text for details).

Table 1. Summary of the Fraction of Variance of the PC1s

Explained by Clouds, and the Corresponding Cloud Height and

Cloud Fraction Changea

Central Pacific Warm Pool

IRIS Model IRIS Model

Variance explained by cloud 70% 91% 99% 96%
Corresponding top of cloud 16km 12km 12km 8km
Corresponding cloud fraction change 2.9% 1.7% 7% 1.7%

aAll these are derived from the inversion scheme mentioned in text.
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Given the simplicity of the inversion scheme that we use, and the
difficulties of the retrieval of infrared spectra under a cloudy
situation, the results from this simple inversion may not be
quantitatively robust. But qualitatively, it shows that the major
contribution to PC1 is due to cloud. This is true for both IRIS
observation and the GCM.
[15] Other than random fluctuations which can be smoothed out

by averaging over a long period, there is another kind of temporal
variability which wemust take into account: diurnal variability. IRIS
always sampled at local noon and midnight, but the GCM gave
output at 1200 and 0000 GMT. So we need to investigate to what
extent the two different time-sampling patterns affect the PC1. To
tackle this issue, we do a simple test. We assume the cloud diurnal
variations are sinusoidal, C(t) = C0 + Ca sin[2p(t � Tm)/24], where
C0 is a constant term, and 0� t� 24 hour. The phase information is
obtained from Bergman and Salby’s studies about diurnal variations
of cloud cover [Bergman and Salby, 1996]: for low cloud, Tm	�2;
for high cloud, Tm 	 11. Based on this sinusoidal curve, we can
interpolate GCM cloud output to local noon and midnight. With
these new cloud data, we can calculate spectra and do spectral EOF
analysis. The dotted line in Figure 4 is the PC1 over the Warm Pool
computed in this way. It can be seen that there is only a slight
difference between this PC1 and the original PC1 (the solid line in
Figure 4). Also Bergman and Salby [1996, 1997] show that diurnal
variations of cloud over tropical ocean regions are weaker than those
over landmasses, and the cloud diurnal contributions to the time-
mean thermal flux are usually less than 1 W m�2. Therefore, we
conclude that although diurnal variations can bias our comparison
results somewhat, it cannot explain the substantial difference found
between the GCM and observations.

4. Conclusion

[16] The above sections clearly show that spectral EOF analysis
can be a useful tool for comparing the second-order statistics of
climate models and observations, even when clouds are included.
After sampling problems are carefully treated, we demonstrate the
discrepancy between observations and a selected climate model
(the UCLA GCM) in the variability of outgoing infrared radiance.
For the two regions that we study, cloud accounts for the vast
majority of the variability in outgoing infrared radiance. However,
the model underestimates the amplitude of cloud variations by a
factor of 2�6.
[17] It is a very interesting question where the underestimation

of clouds in the model comes from. It could be related to an
incorrect representation of the tropical low-frequency variability
in the GCM, especially the intraseasonal variability. It is well
known that the current GCMs cannot realistically simulate intra-
seasonal variability [Slingo et al., 1996]. The dominant mode of
tropical intraseasonal variability is the Madden-Julian Oscillation
(MJO) [Madden and Julian, 1971], which is closely related to
convective anomalies in the eastern hemisphere. This possibility
is supported by the time series of 25-day running mean of the
brightness temperature in the window regions. For the Warm Pool
where one end of the MJO convective dipole is located [Mat-
thews, 2000], the time series from IRIS shows clear peaks
separated by approximately 50 days, which is close to the period
of MJO. The time series from UCLA also shows intraseasonal
oscillation, but the oscillation is much broader and the amplitude
of oscillation is much smaller than that from IRIS. On the other
hand, it is also possible that the deficiencies of the cloud
parameterization scheme in the model also contribute to this
underestimation.
[18] In summary, spectrally resolved radiance provides us an

independent source for evaluating climate models. Compared with
the traditional way of validating models by comparing thermody-
namical variables, such as temperature and pressure, this approach
is more comprehensive and more directly related to clouds. More-

over, the spectra and relevant statistics can disclose more informa-
tion about clouds, such as the cloud height and cloud fraction
change. This can provide useful diagnostics and insights for
improving climate models.
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