
Fast and Private Genomic Testing
for Disease Susceptibility∗

George Danezis
Department of Computer Science

University College London

Emiliano De Cristofaro
Department of Computer Science

University College London

ABSTRACT
Advances in DNA sequencing are bringing mass computational
genomic testing increasingly closer to reality. The sensitivity of
genetic data, however, prompts the need for carefully protecting
patients’ privacy. Also, it is crucial to conceal the test’s specifics,
which often constitute a pharmaceutical company’s trade secret.
This paper presents two cryptographic protocols for privately as-
sessing a patient’s genetic susceptibility to a disease, computing
a weighted average of patient’s genetic markers (the “SNPs”) and
their importance factor. We build on the architecture introduced
by Ayday et al. but point out an important limitation of their model,
namely, that the protocol leaks which and how many SNPs are tested.
Then, we demonstrate that an alternative SNP encoding can sim-
plify (private) computations, and make patient-side computation on
a smartcard device extremely efficient. A second protocol variant,
based on secret sharing, further reduces online computation.

1. INTRODUCTION
In the past few years, progress in DNA sequencing genomics

has been quite exceptional, with costs dropping faster than what
Moore’s law would predict. This enables important advances not
only in genetics, but also in healthcare, as genome-based medicine
becomes increasingly preventive and personalized [10]. At the same
time, however, genomic data disclosure prompts important privacy
and ethical concerns. Genomes not only uniquely and irrevocably
identifies their owner, but also contain information about ethnic her-
itage and susceptibility to diseases and conditions (including mental
disorders), thus raising fears of genetic discrimination [1]. Due to
its hereditary nature, disclosing one’s genome implies disclosing
that of close relatives too [11] and masking sensitive portions of
the genome is essentially impossible as correlation between genetic
mutations (aka linkage disequilibrium) can be used to reconstruct
redacted features [9]. Aiming to address these concerns, the research
community has designed and prototyped a few cryptographic tech-
niques realizing privacy-preserving in-silico genomic testing, such
as [2–4, 6–8, 12, 14].

Private Disease Susceptibility (PDS). We focus on privately as-
sessing a patient’s susceptibility to a given disease, i.e., without
revealing anything other than the test outcome. Susceptibility is
computed as a weighted average, depending on whether some ge-
netic markers – aka Single Nucleotide Polymorphisms (SNPs) – are
expressed in patient’s genome, and some importance factors. Specif-

∗An extended abstract of this paper, titled “Simpler Protocols for Privacy-
Preserving Disease Susceptibility Testing” was presented at the 1st Work-
shop on Genome Privacy (GenoPri 2014). This is the full version.

ically, susceptibility S to disease X is computed as:

S(X) =

∑
i Ci · Pr[X|SNPi]∑

i Ci
,

where, for each of SNPi,Ci is the importance factor andPr[X|SNPi ∈
{0, 1, 2}] a SNP-dependent weight. 0, 1, 2 denote, respectively, the
presence of the SNP in no, one, or both chromosomes.

In [3], Ayday, Raisaro, Hubaux, and Rougemont presented a cryp-
tographic protocol, denoted as ARHR13 in the rest of the paper,
relying on the following model: A Certified Institution (CI) receives
a Patient (P)’s genetic sample, sequences it, and produces an en-
crypted encoding of all possible SNPs. The encrypted sequence
is then stored on another (cloud-based) entity called Storage and
Processing Unit (SPU). Patients are issued with a smartcard, that
contains part of the secret key needed to decrypt the genetic informa-
tion. When a test is to be performed by a Medical Centre (MC), the
MC initiates a protocol involving the SPU (holding the encrypted
data), P’s smartcard (holding a secret key), and the MC itself (which
holds the weights). In other words, the ARHR13 protocol is so that
the results of the test are calculated over encrypted data to protect
P’s privacy. Additionally, weights and importance factors are not
revealed to the patient for trade secrecy.

Issues with ARHR13. One limitation incurred by ARHR13 is the
use of the expensive Bresson, Catalano, and Pointcheval (BCP) [5]
variant of the Paillier cryposystem. Another, more fundamental is-
sue is that the protocol actually reveals which and how many SNPs
are being tested. As pointed out in [8], this may raise a few issues:
(1) an eavesdropper learns how many SNPs are being tested and can
infer which disease or condition the patient is being tested for; (2)
the SPU learns the exact SNPs used and can therefore infer which
condition is being tested; (3) the identity and size of the SNPs in-
volved in a test, i.e., not only weights and importance factors, might
also constitute the pharmaceutical company’s trade secret, and thus
should not be disclosed. To obviate this issue, one could use padding,
i.e., adding some fictitious SNPs, with zero weight, to the test. How-
ever, this padding should then amount to all possible “interesting”
SNPs, which is in the order of 1 million. Unfortunately, ARHR13
does not scale well enough to support this extension, due to the un-
derlying BCP cryptosystem’s inefficiency. As we report in Sec. 5,
running times are in the order of 1 hour on commodity hardware,
and gigabytes of (encrypted) traffic would need to be exchanged.

Roadmap. Motivated by the above issues, this short paper revisits
the Private Disease Susceptibility (PDS) protocol proposed by Ay-
day, Raisaro, Hubaux, and Rougemont (ARHR13) [3]. We propose
a much simpler, yet equivalent, encoding for the SNPs, which en-
ables us to design two significantly more efficient protocol variants:
the first relies on the user-side smartcard to process (part of) the
computation, and the second on infrastructure servers. Our novel

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/21619615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


protocols fulfill all requirements of the original proposal, and their
efficiency allows us to extend the scheme to hide which and how
many SNPs are being tested. As we show in Sec. 5, our protocols
run in the order of minutes even when testing 1 million SNPs, and
only generate a few megabytes of traffic.

2. PRELIMINARIES

2.1 The ARHR13 Protocol
We now review the Private Disease Susceptibility (PDS) protocol

proposed in [3] (denoted as ARHR13 in the rest of the paper):

• Step 0: Cryptographic keys (public and secret keys) of each pa-
tient are generated and distributed to the patients. Symmetric keys
are also established between all parties.

• Step 1: (P→ CI) The patient (P) provides a sample to the Certi-
fied Institution (CI) for sequencing.

• Step 2: (CI→ SPU) The CI performs sequencing and encrypts
patient’s real SNP using a symmetric key kPC shared with P. (If
at least one allele carries the mutation, the SNP is “real” and “po-
tential” otherwise). It also encrypts patient’s real and potential SNP
positions under P’s public key, using a modified Paillier cryptosys-
tem [5] (which, besides additive homomorphism can also support
proxy re-encryption). P’s public key is denoted as (n, g, h = gx),
where the strong secret key is the factorization of n = pq, the weak
secret key is x ∈ [1, n2/2]. The encryption of a real SNPi, under P’s
public key, results in E(SNPi, gx) and E(SNP2

i , g
x). (The second

ciphertext is needed to carry out homomorphic operations later on.)
Also, the CI encrypts an arbitrary position v0 for every potential
SNP, using kPC , and sends the encrypted SNPs of P to the SPU.

• Step 3: (P→ MC, SPU) The patient’s weak secret key x is di-
vided into two shares: x(1) and x(2) (such that x = x(1) + x(2)).
Then, x(1) is given to the SPU and x(2) to the MC in the next step.
Note that, thanks to the proxy re-encryption property, an message
encrypted under P’s public key can be partially decrypted by the
SPU using x(1), and then decrypted at the MC using x(2) to recover
the original message.

• Step 4: (MC→ P) The MC wants to conduct a susceptibility test
on P to disease X. P provides the other part of his secret key x(2) to
the MC, which tells the patient the positions of the SNPs required
for the test and obtains his consent to run the test.

• Step 5: (P → SPU) The patient’s smartcard encrypts each re-
quested position using the symmetric key shared with the CI. The pa-
tient sends the SPU the encrypted positions of the requested SNPs.

• Step 6: (SPU→MC) The SPU receives each requested position
in an encrypted form. If the patient has a real SNP at the requested
position, the SPU retrieves the encrypted SNP at the corresponding
(encrypted) location. Otherwise, the SPU retrieves an encryption of
v0. Then, the retrieved SNPs are re-encrypted at the SPU under the
P’s public key. An encrypted SNP (using a random r ∈ [1, n/4])
is re-encrypted, under the same public key, by using a new random
number r1 ∈ [1, n/4]. Re-encrypted (or partially decrypted) SNPs
are sent to MC (by SPU) in the same order as they are requested.

• Step 7: (MC→ SPU) The MC computes P’s total susceptibility
for disease X by using the homomorphic properties of the cryp-
tosystem. The MC sends the encrypted result to the SPU.

• Step 8: (SPU→MC) The SPU partially decrypts the result using
x(1) with proxy re-encryption and sends it back to the MC.

• Step 9: The MC decrypts the message received from the SPU by
using x(2) and recovers the result.

2.2 Simpler Encoding of the SNPs
Our first observation is that each SNPi can only be one of 3 dis-

tinct values, i.e., 0, 1 or 2. The original ARHR13 scheme encodes
those integers directly. On the contrary, we propose to encode each
SNP as a 3-bit binary vector, with a value of 1 corresponding to
the observed SNP, and the value of zero at other positions (for ex-
ample SNPi = 0, 1 or 2 would be represented as 100, 010 or 001,
respectively). We then note that, for each binary indicator variable
Ij ∈ {0, 1} representing a possible value at a certain SNPi = α,
we can associate a weight wj = Ci · Pr[X|SNPi = α]. For a test
constant Z =

∑
i Ci, the computation reduces to:

S =

∑
j wjIj

Z

Intuition. The encoding of SNPs as binary indicator variables re-
moves the need for non-linear operations such as squarings that
were used in the ARHR13 protocol. The computation is reduced to
a simple sum of pairs of secret values – one provided by the MC (or
pharmaceutical company) representing the test (wj) and one pro-
vided by the SPU and representing the genome of the user (Ij). We
note that the encodings of the SNP as SNPi ∈ {0, 1, 2} or as indi-
cator variables Ij ∈ {0, 1} contain exactly the same information –
and given the one in clear, the other may be produced.

The new encoding allows us to replace the expensive BCP cryp-
tosystem [5] with a significantly faster Additively Homomorphic
Elliptic Curve based El-Gamal (AH-ECC) cryptosystem (presented
below). Also note that ciphertexts produced by AH-ECC are signif-
icantly shorter than BCP encryptions – see Sec. 5.

2.3 Cryptography Background
We rely on the Additively Homomorphic Elliptic Curve based El-

Gamal (AH-ECC) cryptosystem, which involves three algorithms:

1. KeyGen(1τ ): On input a security parameter τ , select an ap-
propriate elliptic curve E and (G,H) public generators on E
(generating a group of order q). Choose a random private key
x ∈ Zq , define the public key as pk = x ·G, and output public
parameters (E,G,H, pk) and private key x.

2. Encrypt(m, pk): Messagem is encrypted by drawing a random
element k ∈ Zq and computing two EC-points as (A,B) :=
(k ·G, k · (pk) +m ·G). The output ciphertext is (A,B).

3. Decrypt(A,B, x): Decryption is performed by computing the
element m ·G = B − x ·A. A pre-computed table of discrete
logarithms may then be used to recover m from m ·G (which
is practical for small ranges of m).

Pairwise point addition of ciphertexts yields an encryption of
their sum, i.e., v · E[a] + w · E[b] = E[v · a+ w · b]. Ciphertexts
may also be re-randomized by adding a fresh ciphertext of zero.

3. PRIVATE DISEASE SUSCEPTIBILITY
TESTING BASED ON SMARTCARDS

We now show how the computation on the SNPs may be facil-
itated, compared to ARHR13 [3], by some user-held trusted hard-
ware, such as a smartcard, using the encoding outlined in Sec. 2.2.

Assumptions. Similar to ARHR13 [3], we assume that the patient’s
SNPs are encrypted, upon sequencing, by the Certified Institution
(CI) using standard symmetric encryption (e.g., AES in CBC mode,
with a MAC using an encrypt-then-MAC mode), under a key K.
Genomic data is also to be signed by the CI to certify its origin. En-
crypted SNPs can be stored either at the SPU or with the patient’s.
Naturally, we recommend the enforcement of some access control



mechanism to protect data from unauthorized access even if en-
crypted. We also assume adversaries to be semi-honest (aka Honest-
but-Curious). Finally, we assume that K is stored on a smartcard
provided to the user. These are in-line with the assumption in the
ARHR13 protocols that also require user to have a smartcard that
participates in the protocol execution.

Protocol Sketch. We aim to design a protocol that supports the
calculation of the disease susceptibility, in such a way that SNPs are
never in the clear outside the smartcard, and the trade secrets of the
MC are also kept confidential. The protocol is as follows:

• To facilitate computation, the MC encrypts the weights using the
AH-ECC cryptosystem introduced in Sec. 2.3. Each weight wj
is encrypted as Ex[wj ] =Wj = (kj ·G, (x · kj) ·G+wj ·H),
with kj fresh secrets and x the private key only known to the MC.

• Whenever a test is to be performed, the MC provides the patient’s
smartcard with the encrypted weightsWj as well as an encryption
of zero (E[0]). The smartcard initializes a register R with the a
re-randomized encryption of zero, i.e., R = E[0]k, for a random
k. Then, in a streaming fashion, for each value of Wj (encrypted
weights received from MC) and Ij (received from the SPU or
read from local storage), it updates the register R as R ← R +
Ij ·Wj . Note that because computation is in a streaming fashion,
the smartcard only needs to keep O(1) state.

• Since the value of Ij is binary, each step of the computation either
involves a single elliptic curve point addition or none. Naturally,
only the SNP positions for whichWj weights have been provided
have to be considered for accumulation.

• When all weights Wj have been processed their signature is
checked to ensure they represent a valid test. The accumulated
valueR is then output from the smartcard, and sent to the MC for
decryption. To decrypt R = (A,B), on input the private key x,
the MC computes HS = B − x ·A. Since the discrete log prob-
lem is assumed to be hard in the elliptic curve group, recovering
S requires using precomputed tables of some maximal size of S.

Remarks. Note that, while the patient’s smartcard is involved in the
protocol, the smartcard does not actually perform any (expensive)
elliptic curve point multiplications, since it leverages the binary na-
ture of Ij to only run (cheaper) additions. Modern smartcards can
perform thousands of elliptic curve additions a second. The internal
state of the smartcard comprises a symmetric key K, a handful of
elements, and a couple of accumulated hashes – all operations are
performed in a streaming manner as data is received. Also, observe
that the MC only needs to store a key, and perform a single decryp-
tion per test. The tables used for decryption can be re-used even
if the private key is rotated. Finally, note that the potentially large
number of encrypted SNPs, as well as the encrypted weights Wj ,
can be pre-fetched or downloaded ahead of time, and can be stored
on untrusted storage devices.

Security. We defer formal security proofs to a future extended
version of the paper, but, as mentioned above, the security of the
scheme stems, in a straightforward way, from the intractability of
the Elliptic Curve Discrete Logarithm Problem (ECDLP).

4. SECRET-SHARING BASED PROTOCOL
We now present our second protocol, which is based on secret-

sharing and relies on infrastructure servers to improve on efficiency.
Specifically, we propose a protocol that makes use of two distinct
parties, assumed not to collude with each other. These two parties
can be embodied by the SPU and the MC, which in the setting of

the original ARHR13 protocol are also assumed not to be colluding
and entrusted with a similar burden of computation.

Protocol Sketch. We assume that the CI produces and provides the
patient with a smartcard containing the private key y corresponding
to a public key y ·G, where G is a public point on a secure elliptic
curve. The public key is then used to output an El-Gamal encrypted
stream of all indicator variables Ij corresponding to the patient’s
SNPs. Each ciphertext is a pair of elements:

Uj = (kj ·G, kj · y ·G+ Ij ·H),

where H is a random public point on the elliptic curve.
The weights wj are also encoded by the MC as a sequence of

random values uj and vj under the constraint that uj + vj ≡ wj
mod q (q is the order of the group formed by the elliptic curve).
Knowledge of either sequences leaks no information about the se-
cret weights wj . The sequences uj and vj are distributed to SPU
and MC, respectively. The test computation proceeds as follows:

• The encrypted SNPs, Uj , are loaded by the SPU and MC.

• The SPU and the MC use the shares of the secret weights to
compute the following sums over elliptic curve points:

A =
∑
j

uj · Uj B =
∑
j

vj · Uj

(Addition here denotes pairwise addition of two elliptic curve
points, i.e., the elements of the ciphertext.)

• The ciphertexts A and B are sent to the patient’s smartcard and
used to computeD = A+B, which is decrypted using the secret
y inside the smartcard. This yields an elementHS = H

∑
j wj ·Ij ,

and the test result S can be recovered through the use of a lookup
table, either at the patient or using a service at the MC.

Remarks. Compared to the first protocol (Sec. 3), this construction
offers a few advantages. Since the secret in the smartcard is only
used at the end of the protocol, disease susceptibility tests may be
pre-computed once the tests are designed, and then decrypted when
the smartcard is provided by the user as a way of authorizing result
disclosure. Until that point, no genetic information is leaked. Also,
note that the scheme may be generalized to any number of trusted
parties and shares, or collapsed into a simpler computation if, e.g.,
a pharmaceutical company acts as a trusted service to facilitate the
computation. Note that both the SPU and the MC have to perform
a number of (full) elliptic curve multiplications to compute the ci-
pher texts A and B, but the smart card only needs to perform two
additions and a single decryption to uncover the result.

Security. While we defer formal security proofs to a future extended
version of the paper, it is easy to observe that the privacy of the
weights is guaranteed by the security of AH-ECC (secure under the
ECDLP assumption), and the privacy of the SNPs is based on the
security of the conventional, bulk, encryption scheme.

5. PERFORMANCE COMPARISON
We now analyze the performance of our proposed PDS protocols,

and compare them to the ARHR13 [3] scheme.

Pre-processing. We start with analyzing the complexity of the SNPs’
encryption. According to [13], there are approximately 50 million
known SNPs. While any individual carries (on average) about 4
million SNPs, both ARHR13 and our new protocols require that
the CI encrypts all of patient’s SNPs (i.e., both real and potential
SNPs). Obviously, this operation is performed only once, at sequenc-
ing time, so we only focus on the storage complexity. In ARHR13,



for each SNP, two BCP [5] ciphertexts (one for the SNP, one for
the SNP’s square) are sent to, and stored at, the SPU. Considering a
112-bit security parameter, each BCP ciphertext is a pair of 4096-bit
group elements. Therefore, the encryption of 50M SNPs generates
2 · (5 · 107) · (2 · 4096) bits, i.e., almost 100GB. On the contrary,
the encryption of either all the SNPs or all the weights with our pro-
posed schemes takes 2 · (5 · 107) · (2 · 193) bits, i.e., about 4.5GB,
which represents an order of magnitude improvement.

PDS Testing (Computation). Next, we review the efficiency of the
different PDS protocols, focusing on the online phase. In ARHR13,
the computational complexity is dominated by the homomorphic
operations at the MC, involving the encrypted SNPs and weights/
contributions. This requires multiplying some encrypted integers to
some constants – see Eq. 6 in [3]. In the ciphertext domain, these
operations correspond to modular exponentiations, specifically, for
each SNP, the MC needs to perform three such multiplications,
hence, six BCP modular exponentiations. Exponents are drawn from
a small group, since, as explained in [3], these exponents are prob-
abilities multiplied by 1000. To estimate protocol’s running time,
we implemented the BCP cryptosystem in C, using OpenSSL, and
measured the time to perform the homomorphic operations on a
Macbook Air equipped with a 1.7 GHz Intel Core i7 CPU. Over
1000 runs, we measured an average of 3.5ms per SNP.

As discussed in Sec. 1, in order to actually hide the identity and
the size of SNPs contributing to the disease susceptibility, the test
should involve all possible “interesting” SNPs. As we were told by
genetics experts, this is in the order of 1M. Thus, when considering
1M SNPs, ARHR13 incurs, on the MC, running times in the order
of 3.5ms × 1M, i.e., approximately 1 hour.

We also implemented, in C/OpenSSL, our two new protocols and
measured, on the same machine, the running times to execute the
test. For our first, smartcard-based protocol, we measured 13 mins
on the MC to encrypt 1M SNPs (which can actually be precomputed
ahead of time) and 7s for the operations on the patient’s side. Note
that the user-side computation is assumed to run on a smartcard,
thus, running times will likely be 1 order of magnitude longer than
7s, but this would still be significantly more efficient than ARHR13.
Also, recall that only (very efficient) point additions are executed on
the patient’s smartcard. For our second, secret sharing-based proto-
col, it took 14 mins to run the aggregation protocol between the SPU
and the MC with 1M SNPs. Note that this can be executed offline,
without the patient’s involvement (the smartcard is only needed to
decrypt the final result). Therefore, the online time really depends
on a single smartcard operation, independently from the number of
tested SNPs (thus, it is in the order of milliseconds).

PDS Testing (Communication). Finally, we measure the traffic
generated by each PDS protocol’s online phase. With ARHR13, the
SPU needs to send to the MC two BCP [5] ciphertexts for each
SNP (the SNP encryption and its squares). Assuming 1M SNPs,
this entails 2 · 106 · (2 · 4096) bits, i.e., roughly 2GB. Whereas, the
communication complexity of our first (smartcard-based) protocol
is dominated by the transfer of the encrypted weights from the MC
to the patient, which amounts to 92MB in our experiments. The
second protocol is very economical in terms of bandwidth on the
user device. However, the CI still needs to send, to the SPU and the
MC, 92MB each, even though this can be done before the tests take
place, and amortized over multiple tests.

6. CONCLUSION
This short paper presented two protocols for private disease sus-

ceptibility tests, following the model proposed in ARHR13 [3]. We

started by pointing out a few limitations of ARHR13, specifically,
the fact that the protocol leaks which and how many SNPs are being
tested, potentially allowing an adversary to infer information about
the test’s specifics and/or the disease the patient is being tested for.

We introduced an alternative (but equivalent) encoding of the
SNPs, which allows us to reduce to the problem of summing prod-
ucts of secrets. This can either be done by relying on a smartcard at
the patient’s side, or using secret sharing on infrastructure servers.
Both protocols ensure that genetic information is always encrypted
when in transit or on general purpose hardware, and use a secret
within a smartcard to unlock the result of the test. Since the numeri-
cal domain of the test results is small, we used the simpler and more
efficient/compact AH-ECC scheme, as opposed to the expensive
BCP cryptosystem [5]. This means that our protocols can scale and
be applied to a very large number of SNPs, thus hiding the nature
of the test performed and protecting the trade secrets involved.

As part of future work, we plan to release a more detailed de-
scription of the protocols, a deployment on smartcards, and a full
open-source implementation.1 Finally, we plan to adapt our proto-
cols to other settings where linear models are used, e.g., adjusting
Warfarin drug dosing based on genetic traits.

Acknowledgments. We thank the authors of [3] for their valuable
feedback and for sharing the source code of their implementations.

References
[1] E. Ayday, E. De Cristofaro, J.-P. Hubaux, and G. Tsudik. The Chills

and Thrills of Whole Genome Sequencing. IEEE Computer, 2014.
[2] E. Ayday, J. L. Raisaro, U. Hengartner, A. Molyneaux, and J.-P.

Hubaux. Privacy-preserving processing of raw genomic data. In DPM,
2013.

[3] E. Ayday, J. L. Raisaro, J.-P. Hubaux, and J. Rougemont. Protecting
and Evaluating Genomic Privacy in Medical Tests and Personalized
Medicine. In WPES, 2013.

[4] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik. Coun-
tering GATTACA: Efficient and Secure Testing of Fully-Sequenced
Human Genomes. In CCS, 2011.

[5] E. Bresson, D. Catalano, and D. Pointcheval. A simple public-key
cryptosystem with a double trapdoor decryption mechanism and its
applications. In ASIACRYPT, 2003.

[6] Y. Chen, B. Peng, X. Wang, and H. Tang. Large-Scale Privacy-
Preserving Mapping of Human Genomic Sequences on Hybrid Clouds.
In NDSS, 2012.

[7] E. De Cristofaro, S. Faber, P. Gasti, and G. Tsudik. GenoDroid: Are
Privacy-Preserving Genomic Tests Ready for Prime Time? In WPES,
2012.

[8] E. De Cristofaro, S. Faber, and G. Tsudik. Secure Genomic Testing
with Size-and Position-Hiding Private Substring Matching. In WPES,
2013.

[9] Y. Erlich and A. Narayanan. Routes for breaching and protecting
genetic privacy. Nature Reviews Genetics, 15(6), 2014.

[10] G. Ginsburg and H. Willard. Genomic and Personalized Medicine:
Foundations and Applications. Translational Research, 154(6), 2009.

[11] M. Humbert, E. Ayday, J.-P. Hubaux, and A. Telenti. Addressing the
Concerns of the Lacks Family: Quantification of Kin Genomic Privacy.
In CCS, 2013.

[12] A. Johnson and V. Shmatikov. Privacy-preserving data exploration in
genome-wide association studies. In KDD, 2013.

[13] National Center for Biotechnology Information (US). Single Nu-
cleotide Polymorphism Database. http://www.ncbi.nlm.nih.
gov/projects/SNP/.

[14] R. Wang, X. Wang, Z. Li, H. Tang, M. Reiter, and Z. Dong. Privacy-
preserving genomic computation through program specialization. In
CCS, 2009.

1Preliminary code is already available at: https://github.com/
gdanezis/genepriv.

http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
https://github.com/gdanezis/genepriv
https://github.com/gdanezis/genepriv

