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THE STABILIZATION OF SLIP ON A NARROW WEAKENING FAULT 
ZONE BY COUPLED DEFORMATION-PORE FLUID DIFFUSION 

BY J. W. RUDNICKI 

ABSTRACT 

The transient stabilization of rapid slip on a very narrow weakening fault zone by 
the coupling of the deformation with pore fluid diffusion is investigated. More 
specifically, the fault zone is assumed to be so narrow that it can be idealized as a 
planar surface and the constitutive law is specified as a relation between stress on 
the fault " r , t  and relative slip 8. The study considers only the stabilizing effect due to 
the time dependent response of the fluid-infiltrated elastic material surrounding the 
fault: the response is elastically stiffer for load alterations which are too rapid to 
allow for fluid mass diffusion between neighboring material elements (undrained 
conditions) than for those which occur so slowly that the local pore fluid pressure is 
constant (drained conditions). Calculations are performed to determine the length 
of the precursory period (the period of self-driven accelerating slip prior to dynamic 
instability) by assuming that the near-peak ~'~lt versus 8 relation is parabolic and that 
the far-field tectonic stress rate is constant. An important result of the calculations 
is that the duration of the precursory period is predicted to decrease with increasing 
fault length for a plausible range of material parameters. Although this appears to 
disagree with results based on simple dimensional considerations, the result is due 
to the dependence of the constitutive law on a characteristic sliding distance 
necessary to reduce ~'tlt from peak to residual value. Calculated precursor times are 
very short, typically less than a few days for fault lengths of 1 to 5 km, a tectonic 
stress rate of 0.1 bar/year, and field diffusivities of 0.1 to 1.0 m2/sec. The results 
are, however, sensitive to details of the ~, versus $ relation which are, at present, 
poorly known. 

INTRODUCTION 

The diffusion of pore fluid has been suggested as a factor contributing to earth- 
quake precursory phenomena. Although the initial interest in the role of pore-fluid 
diffusion primarily concerned its possible connection with purported observations 
of seismic-wave travel-time anomalies [e.g., Nur, 1972; Scholz et al., 1973; Anderson 
and Whitcomb, 1975] Rice and Rudnicki (1979) (hereafter abbreviated as RR) have 
emphasized that  the coupling of deformation with pore-fluid diffusion may be 
important in controlling the time scale of precursory deformation even when 
circumstances are not favorable for wave-speed alterations. More specifically, RR 
demonstrated that the coupling of deformation with pore-fluid diffusion can stabilize 
incipient rupture and give rise to a precursory period of quasi-static but accelerating 
deformation for plausible ranges of constitutive parameters. 

There ~ire two separate mechanisms for the transient stabilization of faulting by 
the mechanical action of pore fluids (Rice and Cleary, 1976), The first mechanism 
is that  the presence of an infiltrating fluid in an otherwise linear elastic porous solid 
causes the response to applied loads to be time-dependent. Specifically, the response 
is elastically stiffer for load alterations which are rapid by comparison to the time 
scale of pore-fluid diffusion (undrained conditions) than for those which occur more 
slowly (drained conditions). During undrained conditions there is insufficient time 
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for diffusive mass flux so that fluid-mass content of material elements is constant 
whereas for drained conditions the pore fluid diffuses in response to applied loads to 
keep the local pore-fluid pressure constant. The second mechanism of stabilization 
has been termed dilatant hardening and it arises from the tendency of brittle rock 
to dilate or increase the volume of pore space when sheared inelastically. If this 
dilation occurs more rapidly than fluid-mass diffusion into the newly created pore 
space, the local pore-fluid pressure decreases. Consequently, the effective compres- 
sive stress (total stress minus pore-fluid pressure) increases and inhibits further 
inelastic deformation due to extension of microcracks and frictional sliding on 
microcrack surfaces. 

The study of these stabilizing mechanisms by RR was based on an inclusion 
model of faulting which was suggested by Rudnicki (1977). In this model, a zone of 
material (the inclusion) is considered to deform inelastically, and in particular to 
strain-soften, whereas the surrounding material remains nominally elastic. The rock 
mass is loaded by far-field stresses or strains, assumed to be of tectonic origin, and 
the inclusion material is driven past peak stress. Rudnicki (1977) identified the 
inception of seismic faulting with the point at which no further quasi-static defor- 
mation of this system is possible and a dynamic runaway  of the inclusion strain 
O c c u r s .  

In order to incorporate the effects of pore fluids in this model, RR employed the 
solution of Rice et al. (1978) for the deformation of a spherical inclusion in a fluid- 
infiltrated porous elastic solid. Thus, the results are rigorous only for the case of a 
spherical inclusion. Although they estimated the results for more narrow zones by 
a suitable modification of parameters, they pointed out that these must be inter- 
preted with caution. Fault zones observed in the field, however, are frequently very 
narrow (although these narrow zones may be the final result of instability in a 
process of inelastic deformation in a larger volume of material), and faulting is often 
idealized as slip on a planar surface. In this case, it is more appropriate to state the 
constitutive law as a relation between stress and relative sliding on the fault surface 
rather than between stress and strain. 

The purpose of this paper is to study in a very simple way the stabilizing effects 
of the pore fluid for a very narrow zone and especially to assess differences between 
the time scale of precursory processes for inclusion zones and very narrow zones. 
Only the time-dependent stiffness effect will be analyzed. For convenience, the 
analysis will be restricted to the case of plane strain and will employ the solution of 
Rice and Cleary (1976) for a dislocation [also obtained by Booker (1974) for the 
special case of incompressible constituents] in a fluid-infiltrated porous elastic solid. 
Despite the simplicity of the analysis, one significant result is that  the precursor 
time, as defined by RR, may decrease with increasing size of the zone for a 
representative range of material parameters. This result is in contrast to those based 
on simple dimensional considerations (Scholz et al., 1973; Anderson and Whitcomb, 
1975) and to those of RR. Although RR demonstrate that the precursor time does 
not generally scale with diffusion time L2/c, where L is a characteristic length and 
c is diffusivity, the precursor time in their results does increase with increasing fault 
length. Nevertheless, the result obtained here is shown to be the proper limit of the 
inclusion model for very narrow zones. 

The present analysis like that of RR considers a zone of inelasticity or slip which 
is fixed in size. For a very narrow zone, however, the strong-stress concentration at 
the edge of the zone may initiate spreading. Thus, models of spreading zones of slip 
are pertinent, particularly in situations of continuing slip on well established fault 
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zones. Rice and Simons (1976) have studied the stabilization of a spreading shear  
fault  by t ime-dependent  response of the surrounding material  and Rice (1977) has 
discussed the coupled deformation-diffusion effects for a spreading zone of dilatancy 
on the basis of an earlier (Rice, 1973) one-dimensional model for shear-band 
propagat ion in overconsolidated clay slopes. Because of the mathemat ica l  complex- 
ity, results for spreading slip zones have been obtained only for very  simple loadings. 
In contrast,  the present  analysis, a l though limited like tha t  of RR  to zones of 
inelasticity which are fixed in size, explores coupled deformation-diffusion effects 
for nonlinear  relations between stress and slip or strain. 

In the next  section, the model  will be discussed in more detail. Th e  onset of 
runaway instability and the effects of the coupling of the pore-fluid diffusion with 
the deformat ion will be discussed quali tat ively by means  of a graphical analysis 
in t roduced by Rice (1977). Next, the re levant  results of Rice and Cleary (1976) will 
be reviewed and then  used to derive an integral equat ion for the t ime-dependent  
slip on the fault. This  integral equat ion is solved numerical ly to determine the 
precursor  time, the results are compared  to those of RR, and possible implications 
for detect ing ear thquake  precursors are discussed. 

MODEL FOR SLIP ON A NARROW FAULT 

The  discussion in the first par t  of this section follows tha t  of Rice (1977). Consider 
a narrow fault  zone which is idealized as a planar  surface. The  fault  zone is embedded 
in nominal ly elastic material  with shear  modulus G and Poisson's ratio v (Figure 1). 
The  rock mass is loaded by far-field stresses which, for convenience, are taken to be 
the single shear  stress ~ ,  whereas the stress sustained by the fault  surface is ~p,. If  
rft  is uniform and the fault surface is circular of radius L, then  the relative 
displacement  of the two sides is 

_ 4(1 - r) (2L) ¢~ - ¢Z_______L [1 - r2/L2] 1/2 
~r(2 - v) G 

where r is the distance from the center.  If  the fault surface is, instead, an infinite 
strip of width 2L (plane-strain geometry) 

"r0o 
t /=  ( 1 -  p ) ( 2 L ) - - ~ G  ~ t  [ 1 -  r2/L2] 1/2. 

Because the displacements are nonuniform, it is more convenient  to work with the 
average displacements 

= ~(2L)(v~ - .rr~t)/G (1) 

where 

= 8(1 - ~)/3~r(2 - ~) 

for the circular geometry  and 

(2) 

= 7r(1 - p)/4 (3) 

for plane strain. These  formulas have been given by Rice (1977). If  ~ is related to 
Tzt by a consti tut ive law, equat ion (1) is for average slip on the fault as a function of 
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r~. Thus, equation (1) is analogous to the "Eshelby relations" employed by Rudnicki 
(1977) and RR in their analyses of inclusion models for faulting. 

Rice {1977) has suggested a simple graphical interpretation of equation (1) which 
is shown in Figure 2, The line represented by equation (1), which will be termed the 
Eshelby line, is drawn through the appropriate value of ~ on the stress axis. The 
intersection of this line with the ¢zt versus 8 curve yields the values of stress and slip 
on the fault. As depicted in Figure 2a, ~'nt is always less than To and consequently 
the fault is weaker than the surrounding material. However, Rice (1977) has pointed 
out that  the graphical construction applies in the same way if the ¢tzt versus 8 curve 
is drawn to the left of the ~ axis (Figure 2b) where the slip on the fault is now 
measured relative to that  for the unloaded state in the far-field. In this case, ¢nt > 
• ~ and the fault has greater resistance to the imposed far-field deformation than 

rflt 
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r 
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FIG. 1. (a) Model of a fault zone of length 2L embedded in nominally elastic material of shear modulus 
G and Poisson's ration r. Loading is by far-field stresses r~. (b) Relation between stress on the fault (~r~t) 
and relative slip {8) of the fault surface. 

does the surrounding material. In either case, as ~ increases, the stress on the fault 
traverses the ~zt versus 8 curve (Figure 2c). After peak stress, there occurs a point 
(A in Figure 2c) at which the Eshelby line is tangent to the stress-displacement 
curve. At this point, no further quasi-static increase of r~ is possible and there is a 
dynamic runaway of slip on the fault. The increases of ~ are shown in equal 
increments in Figure 2c and the corresponding increments of 8 illustrate that  the 
approach to instability is marked by an increased rate of fault slip. This is a general 
precursory effect and the accompanying increase in surface displacement rate has 
been studied in detail for long strike-slip earthquakes by Stuart (1979a) and by 
Stuart and Mavko (1979) and for the San Fernando thrust earthquake by Stuart 
{1979b). However, as in the case of the inclusion model (RR), the pre-instability 
acceleration of slip is more dramatic if pore-fluid effects are present. 

It is evident from Figure 2 that  the slope of the Eshelby line reflects the stiffness 
of the material surrounding the fault. However, the situation for a very narrow fault 
zone differs slightly from that  for an inclusion zone because the stiffness of the 
surrounding material depends on the length of the zone. Specifically, the stiffness is 
inversely proportional to the length of the fault zone. (If the inclusion was considered 
to be embedded in a finite body and its length was comparable to the distance to 
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the boundaries, the effective stiffness of the surroundings would depend on the 
inclusion length, but presumably, this dependence would differ from that for the 
narrow zone of the same length.) 

The onset of instability can be delayed by increasing the stiffness of the surround- 
ing material, i.e., making the Eshelby line steeper. This is precisely the situation if 
the surrounding material is fluid-infiltrated: The increased rate of displacement as 
instability is approached causes the surrounding material to respond in stiffer, 
undrained fashion; in this case, the equation of the Eshelby line is given by equation 
(1) with the Poisson's ratio for undrained response ~, substituted for u. Because p, 
> v (Rice and Cleary, 1976), the Eshelby line is steeper. Although instability is 
delayed beyond point A (Figure 3a), if the slope of the rzt versus ~ curve continues 
to decrease, the curve eventually becomes tangent to the Eshelby line for undrained 
response, and instability ultimately occurs at point B. It is, of course, possible that 
the slope of the zzt versus $ curve does not decrease monotonically from A to B but, 
instead, begins to increase at an intermediate point. In this case, a period of 
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FIG. 2. (a) The  "Eshelby line" relates the stress (zf~t) and slip (~) on the  fault to the  far-field stress 
r~. (b) Seismic gap interpretat ion.  (c) Approach to instabil i ty.  Increase of f~ in equal increments  
illustrates acceleration of slip (~ as instability (A) is approached (after Rice, 1977). 

accelerated slip (in the sense described above) would not be followed by an 
instability. This example suggests the way in which processes of fault slip may be 
sensitive to details of the constitutive behavior. 

If it is assumed that after instability the system simply comes to rest in the next 
equilibrium position based on the short-time or undrained response (C in Figure 
3b), the construction in Figure 3b also predicts an amount of afterslip as the response 
relaxes from undrained conditions. This afterslip would correspond to the slip from 
C to D, at least if the relaxation rate is much greater than rate of increase of T~. It 
is also worth remarking that the qualitative descriptions in Figures 2 and 3 are not 
limited to effects arising from pore-fluid diffusion, but may be applied to other 
situations of time-dependent behavior in which the limiting long-time and short- 
time responses are approximately elastic. 

The dilatant hardening effect also has a simple interpretation in terms of the 
graphical construction in Figure 2. The decrease in pore-fluid pressure caused by 
the dilatancy which accompanies slip in the fault zone results in an increase of 
effective stress (total stress minus pore-fluid pressure) if the decrease in pore-fluid 
pressure occurs more rapidly than it can be alleviated by fluid diffusion. This 
increase in effective stress in response to rapid slip as point A (Figure 2) is 
approached will inhibit further inelastic deformation due to frictional sliding in the 
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fault zone. This process is reflected by a local increase in the slope of the ~zt versus 
curve near point A. 
In the next section, the equations necessary to study more carefully the evolution 

of the system from A to B will be described for the case of stabilization by the time- 
dependent stiffness effect. In particular, it is of interest to calculate the length of 
time necessary to traverse the ~zt versus ~ curve from A to B. Because the time scale 
of deformation during this period is set by pore-fluid diffusion and, consequently, is 
much more rapid than the tectonic deformation rate, it may be possible to observe 
precursory effects. 

T~ 

f t A B ~ L ~ d r a i n e  d , ~8 
f ~ response 

\ 

~undrained 
response 

8 
(o) 

r~ undrained (shorl-time) response 

d (long-time) response 

D 
F , -  ~ ,  

dynamic quasi-static 
slip after-slip 

(b) 
FIG. 3. (a) Stabilization of faulting from A to B by time-dependent stiffness of surroundings. Stiffness 

changes are exaggerated for illustration. (b) Quasistatic afterslip from C to D as the material surrounding 
the fault relaxes from undrained to drained response. Assumes r= = constant and that system takes on 
next equilibrium position (C) after instability (D). 

ANALYSIS OF COUPLED DEFORMATION-DIFFUSION 

The analysis will employ the solution for an edge dislocation suddenly introduced 
into an elastic porous fluid-infiltrated solid. This solution was derived for the special 
case of incompressible constituents by Booker (1974) and used to study the time- 
dependent redistribution of stress after faulting. Rice and Cleary (1976), in the 
course of establishing fundamental solutions for plane strain, obtained the edge 
dislocation solution for fully compressible constituents. Cleary (1977) has obtained 
the corresponding three-dimensional solution for a point dislocation. 

The time-dependent shear stress T(X, t) at a point x on the axis y = 0 due to an 
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edge dislocation having a Burgers  vector  of magni tude 8 which is introduced on the 
x axis at  x '  and at  t ime t '  is (Rice and Cleary, 1976) 

r ( x ,  t) = 
G 8 

2~r(1 - v~) (x - x ')  
- -  L [ ( x  - x ' ) 2 / 4 c ( t  - t ')], t > t '  (4) 

where G is the shear  modulus, Vu is the Poisson's ratio for undrained response 
(constant  fluid mass in material  elements),  c is the diffusivity, 

L ( z )  = 1 - (v= - v )z  -1 (1 - e-Z)~(1 - v), 

and v is Poisson's rat io for drained response (local pore-fluid pressure is constant).  
For  very  short  t imes (t -~ t') the response is undrained,  L(~)  = 1, and equation (4) 
reduces to the usual elasticity result  with ru as Poisson's ratio 

¢(x, t -~ t') - 
G 

27r(1 - v~) (x - x')" 

On the o ther  hand, for very  long t imes (t >> t'), the response is drained, L(0) = (1 
- Vu)/(1 - v) and 

G 8 
T(X, t >> t') -- 

2¢r(1 -- v) (X -- X')' 

where the appropriate  Poisson's ratio is now the drained value. 
If the dislocations are continuously distr ibuted in t ime and along a segment S of 

the x axis, the stress is 

G f ~  ( 028(x ', t ' )  1 . [ (x  - x ' ) 2 ]  

where ~= is a uniform stress in the far-field and (028/Ox'Ot ') d x '  d t '  is the net  
dislocation accumulated in t ime d t '  and space dx ' .  If  the stress on the fault surface 
is a funct ion of the relative slip, i.e. 

T(X, t) = ~Zt[8(X, t)] on S (6) 

then  equat ion (5) is an integral equat ion for the slip on the fault surface. In general, 
the  solutions to such equat ions are not  unique unless a subsidiary condition is 
specified (Bilby and Eshelby,  1968; Muskhelishvili,  1953) e.g., tha t  displacements 
outside the dislocation are single valued and tha t  a Burgers '  circuit around S 
encloses no net  en t rapped  dislocation. 

Unfor tunately ,  when the consti tut ive relation, equat ion (6), is nonlinear, equations 
such as (5) are difficult to solve numerical ly (Cleary, 1976) even when the time- 
dependent  effects due to pore-fluid diffusion are neglected. Therefore ,  mat te rs  are 
much  simplified by considering two discrete dislocations at  x '  = +_a. The  dislocations 
are of equal  magni tude but  have opposite orientations, and they  vary  continuously 
in time. Also, the stress at  the center  of the dislocations is assumed to be represent-  



1018 J .W.  RUDNICKI 

ative of the stress sustained by the fault, i.e., r(x = 0, t) = r~t. With these 
simplifications and the subst i tut ion of equat ion (6), equat ion (5) becomes 

"rfu[6(O)] = r~(O) (1 - r.)~r~ ~ ~ ( 0 ' ) L ( 0 -  0") dO' (7) 

where 0 = 4c t / f l  is t ime nondimensionalized by the diffusion t ime a2/4c. The  
separat ion between the dislocations 2a is chosen so tha t  for drained response, 
equat ion (7) reduces to the expression for the relative displacement at  the center  of 
a crack-like fault  of length 2L which sustains a uniform stress rzt 

6 = (2L)(1 - ~,)(r~¢ - Tzt)/G. (8)  

Thus,  a = 2L/cr in order  to simulate more closely a crack-like fault. Although these 
simplifications seem drastic, the consti tut ive parameters  are so poorly known tha t  
it does not  seem sensible to consider overly detailed models. Moreover ,  equat ion (8) 
differs f rom equat ion (1) [with ~ from equat ion (3)] by only a factor  of ~r/4, and 
equat ion (7) preserves the t ime-dependence  of fault-slip which is the pr imary  feature  
of interest  here. Booker  (1974) used a similar simplification in his study. 

I t  is more  convenient  to eliminate the infinite range of integrat ion by subtract ing 
from equat ion (7) its value at  0 = 0, tha t  is, 

• ~ , (8o)  = ,r~(o)  
G 

(1 - ~ , , ) (2L)  

d6 
- ~  ( O ' ) L ( O  - 0 ' )  dO'  

where 6o = 6(0) and qr~ has been replaced by 2L. T h e  result  is 

2 L ( 1  - p) 
G (~ :¢(0)  - ~-=(0) - [ r p t ( 6 ( 0 ) )  - ~-z,(6o)])  

fo d = r ( 6  - 60) - ( r  - 1) _ ~  (6 - 6 o ) K ( O  - 0 ' )  dO'  (9)  

where r = (1 - ~)/(1 - v,), and K(~) = ~[1 - exp(-1/~)] .  The  paramete r  r is the ratio 
of the stiffness of response of the surrounding material  for undrained conditions to 
tha t  for drained conditions (see Figures 3 and 4). A detailed discussion of appropriate  
values for i, and p, and, thus, of r has been giv6n by RR. Choosing r -- 4 corresponding 

s corresponding to ~ = 0.2 and ~, = 0.3 brackets  the to I, = 0.2 and ~u = 0.4 and r = 
range of interest,  bu t  as noted  by R R  there  seems to be no direct source of in situ 
values of v and ~,. Rice and Cleary (1976) and O'Connell  and Budiansky (1977) have 
remarked  tha t  values inferred from seismic wave speed ratios are not  appropriate,  
and the effects of large scale joints and fractures  in the field are likely to cause in 
situ values to differ substantial ly f rom those inferred from intact  laboratory  speci- 
mens  as in Rice and Cleary {1976). 

As remarked  earlier, there  have been very  few precise laboratory determinat ions  
of the relat ion for stress versus relative sliding, and in addition, it is at  present  not  
known how accurately such experimental ly  de termined consti tutive relations reflect 
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i n  s i t u  conditions. In view of these uncertainties, we have simply assumed tha t  the 
¢zt versus 8 relation is parabolic in the vicinity of peak stress (Figure 4) 

T f / t ( 3 )  = Tp - -  ( T p  - -  Tr)[(3 - -  3 p ) 2 1 ( ~ r  - -  3p)2], 3 > 30.  (lO) 

The peak stress ~p occurs at  3p and at an amount  of slip 3r the parabola is trt incated 
since the stress typically levels off at  a residual value Yr. There is no slip beyond the 
initial value 3o until  a threshold stress Tzt(~o) is reached and in practice 3o ~ 3p as 
experiments suggest tha t  the stress drops with even very small amounts  of relative 
displacement. This curve has the character of those observed by Dieterich (1978) 
and by Barton (1972, 1973), but  details of the shape are uncertain. 

Substi tuting equation (10) into equation (9) with 50 = 8p and rearranging yields 

f0 d$ QO + r ~ 2 / 2  = r $  - ( r  - 1) ~ (0') K ( O  - 0 ' )  dO '  (11) 

where ~ = (8 - 3 p ) / ( 3 B  --  5p), 5B is the value of 3 at which final instability (dynamic 

-Cfl ~ 

"Up ------ l l ~ T p - ,  (Tp - "rr) L ~r._ ~pj 
vf,, (3o: 

v r . . . . . .  - ~  

I i 
I I 
I i 

3p S r 3 - 3  o 

FIG. 4. Assumed form of Tf~t versus relative slip relation. The dashed portion of the curve illustrates 
a more realistic leveling off at a residual level of stress. It was assumed in the calculations that 80~ 8p. 

runaway of fault  slip) occurs, 

F(2L)21[G][(Tp-Tr)(2L)21 
V = 2(1 - ~)(1 - pu) L 4~r2c J ' G~r-- -  8p) 2 J (12) 

and ÷~ has been taken as constant. The first bracket in equation (12) contains the 
characteristic diffusion time (length squared divided by diffusivity) but  it is impor- 
tan t  to note tha t  an additional factor of (2L) z enters the last bracket. Thus, Q is 
proportional to the fault length to the fourth power. The second bracket in equation 
(12) is the far-field strain-rate so tha t  the product  of the first two square brackets is 
the ratio of the characteristic t ime for diffusion to tha t  for tectonic straining. This 
ratio is typically very small. The last bracket contains parameters  of the constitutive 
law. 

A simple numerical procedure for solving equation (11) is outlined in the Appendix 
and the results are given in the next section. 
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NUMERICAL RESULTS FOR PRECURSOR TIME 

Equat ion  (11) has been solved for a wide range of values for the loading parameter  
Q and for two values of the stiffness ratio r. Typical  histories of slip versus t ime 
nondimensionalized by the diffusion t ime to = ( 2 L ) 2 / 4 c ~  are shown in Figures 5 
and 6 for Q = 0.35 and for r = 4 and r = s, respectively. The  dashed curves show the 
corresponding slip in the absence of pore fluid effects. Th e  nondimensional  precursor  
t ime 0prec is defined as in RR  as the t ime which elapses be tween the slip at  which 
instability would occur in the absence of pore fluids (point A) and tha t  (point B) at 
which instabili ty ul t imately occurs. Thus,  points A and B correspond to the same 
points in Figure 3. The re  is, of  course, some arbitrariness in the definition of 
precursor  time, but  the definition is unambiguous within the context  of the model  

I.C 
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0.2 

0 
0 

8 -Sp (~B-~P ! / B 

/ / /  Q=0.35 

I I I I I [ D 
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60=t/tD 

(a) 

~-~P (b) ~B'- ~ P / 
I.O B 

0.8 A 
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FIG. 5. History of time-dependent fault slip for constant ~:=. A and B are as in Figure 3a. 8/i is the 
value of slip at B. Dashed curve is the slip history in the absence of pore-fluid effects. 

and, as remarked  earlier, this is the period during which the t ime scale of deformat ion 
is set by pore-fluid diffusion ra ther  than  the tectonic strain ra te  so tha t  precursory 
effects may  be detectable.  Although instability in the absence of pore fluids is 
preceded by accelerated slip, Figures 5 and 6 make it clear tha t  the effect is much  
more  pronounced  with coupled deformation diffusion effects. Th e  variat ion of 0prec 
with Q is shown in Figure 7. Note  tha t  Oprec increases with decreasing Q, but  0prec 
appears  to have no simple functional relat ion to Q. As is to be expected, 0prec is 
smaller for the smaller value of r. 

Some results are shown in dimensional form in Table  1 for r = ~ and in Table  2 
s Th r e e  values of fault  length (2L) 1 km, 3 km, and 5 km, and two values of for r = ~. 

the diffusivity, c = 0.1 m2/sec and c = 1 m2/sec are shown. Relatively small values 
of the fault  length have been chosen because the analysis neglects the effects of the 
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free surface which will be more  significant for faults of larger dimension. Th e  
diffusivities are representa t ive  of those inferred from field observations of faulting 
phenomena  and they  have been discussed in more  detail by Rice and Simons (1976). 
Geodetic  measurements  of the rate  of strain accumulat ion on the San Andreas 
(Prescot t  and Savage, 1976) suggest ~ = 0.1 bar /yr .  A representat ive  value of rp - 
Vr might  be 100 bars and G = 200 kb. Rice (1977) has inferred a value of ~ r  - -  ~p '-'- 2 
to 3 ~m from Dieterich 's  (1978) s tudy of slip on flat ground surfaces of Wester ly  
granite and a 6r - 8p value of 2 - 3 mm from Coulson's results (quoted by Barton,  
1973) for shear  of a natural  joint  in granite. However,  because these results suggest 
tha t  6r -- 6p increases with the presence of gouge and, possibly, with length of sliding 
surface (Barton, 1972), a value of ~r - -  ~ p  = 2 cm has been chosen as representat ive  
of in  s i tu  conditions. In any case, ~r --" ~p is the most  uncertain of the parameters  
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FIG. 6. Same as Figure 5 except the stiffness ratio r - 8 7' 

and, unfor tunately ,  the calculation is sensitive to its value because it appears  squared 
in the denominator  of the expression for Q. Of course, the effects of alterations in 
parameters  can be de termined from Figure 7, bu t  the precise measurements  of 
s tress-displacement curves under  a var ie ty  of conditions would certainly be a 
worthwhile undertaking.  

DISCUSSION 

Examination of Tables 1 and 2 indicates that an increase in the stiffness ratio r 
8 4 

from V to ~ causes a three- to fivefold increase in tv .... An order of magnitude 
decrease in diffusivity c from 1 m2/sec to 0.i mZ/sec causes an increase in tvrec of 1.2 
to 3 times. The most interesting feature of the results, however, is that the predicted 
precursor time in days tprec not only is not proportional to the diffusion time t o  = 
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L2/c~r 2 but actually decreases with increasing values of to. This result is caused by 
the dependence of Q on (2L) 4 [see equation (12)] whereas to oc (2L) e and, more 
fundamentally, by the dependence on L of the stiffness of the surrounding material 
(as reflected in Figure 2 by the slope of the Eshelby line). Because the constitutive 
law introduces into the driving force Q an additional characteristic length ~r - -  (~p 

which must be scaled by the fault length, Q increases much more rapidly with L 
than does tD. This rapid increase in Q can therefore outweigh the increase in t~ and 
cause tprec to decrease with increasing L. 

It will be shown here that the increase of tprec with fault length agrees with the 
limiting case of RR's results for stabilization of a narrow inclusion-like fault zone by 
time-dependent stiffness of the surroundings. Although the analysis of RR applied 

IO.Ot~prec 
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Fro. 7. Prescursor time nondimensionalized by the diffusion time as a function of the nondimensional 
loading parameter  Q [see equation (12)]. 

rigorously for spherical inclusions, the results for narrow axisymmetric inclusions 
were approximated simply by choosing an appropriate slope for the Eshelby line. A 
comparison of their results with those here requires the conversion of the relative 
slip $ to a measure of shear strain for a narrow elliptical (plane strain) inclusion. If 
the semiaxes of the ellipse are L and b, where L >> b, then 8/2b  yields a measure of 
strain in the narrow inclusion. The width of the peak in the stress-strain curve, 
which was assumed by RR to be parabolic near peak stress [see equation (3) or 
Figure 6 of RR], was ~. This h can be related to the parameters of the ¢ versus 8 
curve (Figure 4) by requiring that  the difference in strain, as measured here by 8/2b, 
between the values at peak stress and at final instability (undrained runaway) be 
the same in both cases. Then a comparison of equation (10) with equation (31) of 
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RR reveals that  

G [ 6 r - - 6 P l  2 2 
X - (,p T~------~ [ ~ J  ~ (13) 

where ~ = L/b is the aspect ratio of the inclusion. For ~ = 18 as assumed by RR and 
the values used in Tables 1 and 2 

1.3 × 10 -4 
X - (14) 

(2L in km) 2" 

For the fault zone sizes used here and by RR, the values of h from equation (14) are 

TABLE 1 

PREDICTED PRECURSOR TIME tprec IN DAYS FOR THE TRANSITION FROM A TO B IN FIGURE 3a* 

2L = 1 km 2L = 3 km 2L = 5 km 

c = l m 2 / s e c  

c = 0 . 1 m 2 / s e c  

Q = 4 . 8 × 1 0  -4 Q = 3 . 9 x 1 0  -3 Q = 0.3 

tD " = 0.29 d tD = 2.64 d tD = 7.33 d 

0p~¢ = 5.75 0p~¢ = 0.40 Op~ = 0.087 

tp~¢ = 1.69 d /pre:  = 1.05 d tpre~ = 0.64 d 

Q = 4 . 8 x 1 0  -~ Q = 3 . 9 × 1 0  -~ Q = 3.0 

tD = 2.93 d tD = 26.4 d to = 73.3 d 

Op~ = 1.62 0,~¢ = 0.072 Op~e~ = 0.0128 

tprec = 4.75 d tprec = 1.91 d t p ~  = 0.94 d 

* T h e  fo l lowing v a l u e s  w e r e  u s e d  in t h e  ca lcu la t ion :  +.  = 0.1 b a r / y r ,  G = 200 kb, Tp - r~ = 100 bars ,  

6,- - 6p = 2 cm,  r = 4 /3 .  Also s h o w n  a re  Q, t h e  n o n d i m e n s i o n a l  fo rc ing  t e r m  [ e q u a t i o n  (12)]; t h e  diffusion 

t i m e  to = L2/e~: 2 in days ,  a n d  t h e  n o n d i m e n s i o n a l  p r e c u r s o r  t i m e  0w~¢ = tp~o¢/tD. 

T A B L E  2 

SAME AS TABLE 1 EXCEPT THE STIFFNESS RATIO r = 8 /7  

2L = 1 km 2L = 3 km 2L = 5 km 

c = 1 m 2 / s e c  

c = 0 . 1 m 2 / s e c  

Q = 5 . 6 ×  10 -4 Q = 4 . 5 5 × 1 0  -2 Q = 0.35 

tD = 0.29 d tD = 2.64 d to = 7.33 d 

0prec = 2.24 0pre~ = 0.115 0 p ~  = 0.021 

tprec ---- 0.66 d tpre¢ = 0.30 d tpre: = 0.15 d 

Q = 5 . 6 x 1 0  -3 Q = 4 . 5 5 × 1 0  -~ Q = 3.5 

tD = 2.93 d tD = 26.4 d tD = 73.3 d 

0,r~ = 0.575 0 , ~  = 0.017 0 , ~  = 0.0024 

tpr~ - 1.69 d t p ~  = 0.44 d tpr~ = 0.18 d 

20 to 500 times smaller than the value (25 × 10 -4) used by RR. This discrepancy 
again emphasizes the need for precise investigations of constitutive parameters both 
for the deformation of intact rock and for frictional sliding. 

If equation (14) is used in equation (35) in RR which is their expression for the 
nondimensional driving force denoted by R [analogous to Q in equation (11)], then 

R o¢ (2L) 4. 

Because R then has the same dependence on L as does Q, the predicted decrease in 
tpreo with increasing tD agrees with the proper limit of the result for a narrow 
inclusion having a fixed parabolic r versus 6 relation. (This result was suggested to 
me in a personal communication from J. R. Rice.) When equation (14) is substituted 
into equation (35) of RR, values of tvroc predicted here can be compared with those 
estimated from Figure 12 of RR. (Note that  estimates are necessary because RR 
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gives curves corresponding to r = 1.1 and 1.25.) For c = 1 m2/sec, r = ~, ~ = 0.1 
bar/yr  and values for the fault length of 1 km and 5 kin, tpre¢ estimated from the 
curve for r = 1.1 in Figure 12 of RR are 0.41 d and 0.18 d, respectively. The 
corresponding values from Table 2 are 0.66 and 0.15 d. The agreement is very good. 
Although it is not surprising that an axisymmetric inclusion of aspect ratio 18:1 
adequately models a very narrow fault zone, the good agreement does suggest that 
the primary effect of geometry is on the stiffness of the surrounding material and 
that  differences in the details of the induced flow field (for plane strain versus 
axisymmetric deformation) do not greatly alter the relaxation time from undrained 
to drained response. 

The prediction that  the precursor time decreases with increasing size of the fault 
zone appears to disagree with studies based on field observations (e.g., Figure 5 of 
Whitcomb et al., 1973; Figure 3 of Anderson and Whitcomb, 1975; Figure 9 of Scholz 
et al., 1973). Nevertheless, the scatter in those data for small fault lengths, for which 
the results calculated here are most applicable, would not seem to rule out a 
precursor time which is constant or decreases slightly with fault length. As remarked 
earlier, events on larger faults are likely to be complicated by effects of the free 
surface and by the possibly time-dependent boundary condition on the base of the 
lithosphere. Moreover, this analysis has neglected the complementary stabilizing 
mechanism of dilatant hardening and has assumed that the significant inelasticity 
is confined to a very narrow zone. The latter evidently cannot be the case if 
observations of wave-speed travel-time anomalies are to be attributed to dilatancy: 
a substantial proportion of the material sampled by the wave path must be dilatant. 
Dilatancy may arise from uplift in sliding on the fault surface and laboratory 
observations (e.g., Barton, 1973) suggest that such uplift can be suppressed only by 
a compressive stress on the order of the strength of intact rock. An additional source 
of dilatancy is the inelastic deformation near the ends of the faults due to the strong 
stress concentrations there. The accompanying stabilizing effects due to dilatant 
hardening may cause the precursor time to scale with fault length in a way which is 
different from predictions based on only the stabilization due to the time-dependent 
stiffness effect. 

The predictions for the precursor time in Tables 1 and 2 are very short and 
observed effects due to accelerated slip prior to instability would provide short-time 
precursors. In addition, the magnitude of the effects will diminish approximately as 
the inverse square of the distance from their source. Thus, the increase in defor- 
mation rate over the background tectonic rate may be detectable at the free surface 
only toward the end of what is called here the precursory period. If 8r -- 8~, the slip 
necessary for the fault stress to decrease from peak to residual value (Figure 4), is 
much smaller than the 2-cm value assumed Lere, the predicted precursor times will 
be very much shorter. Indeed, even if the complementary stabilizing effect due to 
dilatant hardening is included, there is the possibility that precursor times may be 
too short to be detectable in practice, for example, by strain or tiltmeters. This is 
one possible explanation for the frequent failure to observe precursory effects. 

The results here and those of RR strongly suggest that  the coupling of pore-fluid 
diffusion with deformation will be important in setting a time scale for processes 
preparatory to faulting. At the same time, precise predictions are impossible in view 
of uncertainties about constitutive parameters and transport properties. 
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A P P E N D I X  

Numer ica l  solution o f  equat ion (11) 

The integral in equation (11) can be discretized by writing 

• = Jo dO' (0) K(O - O')dO' = Z dO' 
k = l  (k--1)~O 

- -  ( O ' ) K ( O  - O ' ) d O '  

where 8 = nhO. If the derivative d~/dO' is approximated as constant in each interval, 

where 3k = ~(khS) and 

n - 1  

I ~- 6nK1 + ~ 6.-t(K~+1 - K~) (A1) 
l = l  

f 
l 

Kz = A0 u[1 - exp(-1/uhO)]du.  
/ -1)  

The KI can be computed numerically and the substitution of equation (A1) into 
equation (11) yields a quadratic equation for 6n. 


