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THE IDENTIFICATION OF BUILDING STRUCTURAL SYSTEMS 
I. THE LINEAR CASE 

BY FIRDAUS E. UDWADIA AND PANOS Z. MARMARELIS 

ABSTRACT 

This paper investigates the response of stractural systems to strong earthquake 
ground shaking by utilizing some concepts of system identification. After setting 
up a suitable system model, the Weiner technique of nonparametric identification 
has been introduced and its experimental applicability studied. The sources of 
error have been looked into and several new results have been presented on 
accuracy calculations stemming from the various assumptions in the Wiener 
technique. 

The method has been applied in studying the response of a 9-story reinforced 
concrete structure to earthquake excitation as well as ambient vibration testing. 
The linear contribution to the total roof response during strong ground shaking 
has been identified, and it is shown that a marked nonlinear behavior is exhibited 
by the structure during the strong-motion portion of the excitation. 

INTRODUCTION 

The development of design procedures for the aseismic design of structures necessitates 
the ability to determine structural responses to large ground excitations. To do this, one 
requires a proper understanding of the system through a quantitative identification of the 
actual physical process. Recent studies on the observed response of structures to strong 
ground shaking indicate marked nonlinearities in system dynamics (Udwadia and 
Trifunac, 1972). Response calculations of structural systems to large earthquake excita- 
tions would therefore necessarily involve a proper inclusion of these nonlinear features. 
The identification problem would then be one of defining the dynamics of the complete 
nonlinear system. 

In its most general interpretation, knowledge of the dynamic characteristics of a 
structure implies cognizance of the functional relations between the excitations and the 
responses at various points of the structure. Such an identification is ultimately aimed at 
obtaining a mathematical representation, or model, of the system. Having obtained by 
some means such a mathematical model, the investigator can then simulate the system 
response to any input. The usefulness of such a model would lie in the feature that 
structural responses to large ground motions can then be computed. Full-scale vibration 
tests fall short of such a capability due to the inability to produce large well-controlled 
inputs. 

The problem of identifying a structural system may be formulated from two broad 
viewpoints. In the first, the mathematical structure of the model is given or assumed, but 
its parameters are not. In the second, no a pr ior i  information whatsoever is specified 
regarding the structure of the model. In the present paper, attention is focused on the 
second of these viewpoints. 

Most of the work done so far in the area of system identification as applied to structural 
systems has been viewed from the parameter estimation approach (Nielsen, 1966; 
Gersch et al., 1972; Iemura and Jennings, 1973), where the system model is assumed to 
be known. Moreover, such analyses have generally assumed linear system models. 
Although structural systems subjected to strong ground shaking are almost universally 
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nonlinear in nature, there have been no previously reported attempts to characterize the 
dynamics of such systems through the application of a general theory of nonlinear 
systems. This can be readily understood because the theory developed by Wiener was 
not available prior to about 1950 and also because it was particularly obscure to the 
non-mathematician. 

Part I of this study presents the general structural identification problem. It briefly 
outlines the basic Wiener theory (Wiener, 1958) of nonlinear system characterization, 
so as to provide the necessary background for an understanding of its extent of appli- 
cability to building structural systems using earthquake and microtremor ground-motion 
inputs. The advantages of such a technique together with its encumbent shortcomings 
are pointed out and methods of improvement suggested. Input-output data obtained 
from a nine-story reinforced concrete structure during the 1971 San Fernando, California, 
earthquake are analyzed according to these procedures. Together with the two 
components (NS and EW) of strong ground shaking considered, data in the EW 
direction from an ambient test are also studied. In this part, the linear characterizations 
of  the building (in the two directions) are obtained and discussed. The effects of possible 
error sources and the possible effect of the nonlinearities in adversely affecting the linear 
characterizations of the system are analyzed. 

Part II concentrates on the nonlinear behavior of the same structure as obtained 
through the determination of the higher-order system kernels and introduces the non- 
linear feedback model. The effect of various error sources in the computation of the 
nonlinear kernel is discussed. Model responses for the same inputs are determined using 
first, the linear characterizations and then, the nonlinear characterizations. 

The studies indicate that structures subjected to strong ground shaking could portray 
strong nonlinear effects. The nonlinear models synthesized using Wiener's technique 
show that marked improvements in the response prediction are effected by the inclusion 
of the nonlinear features. 

THE STRUCTURAL IDENTIFICATION PROBLEM 

In general, the system identification problem may be characterized by three different 
sets of considerations: a class of models, M, a class of inputs, I, and an error criterion, 5. 
It usually takes the following form: Given the system response for the class of inputs I, 
identify a member from the class of models, M, which minimizes some error criterion, e. 
This error criterion, e, usually takes the form of a norm of the difference between the 
system performance and the model response. These three features of the identification 
problem are not independent cf  each other, but would influence each other considerably. 
A common example is the use of a model from the class of linear systems for the analysis 
of structural responses to low-level excitations (inputs) such as microtremors or wind. 

System models may be broadly classified as parametric and nonparametric models : 
(a) Parametric models. Here the configuration and mathematical description of the 

system to be identified are assumed to be known, and the several parameters on which 
the system response is assumed to depend are estimated. The formulation of the identi- 
fication task eventually becomes a search in "parameter" space which attempts to mini- 
mize a suitable error criterion. Although such a problem formulation is useful, in many 
instances it suffers from certain defects in terms of the three basic quantities in system 
identification mentioned above. 

(b) Nonparametric models. The structural configuration of the system is considered 
unknown (no assumptions are made about it). In this case identification becomes a 
search in "function" space, i.e., a class of functionals within a wide class of systems. 
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Approach (a) has several inherent disadvantages, as well as advantages. It requires 
some a priori assumptions regarding the nature of the system. Then a search is made for 
the best model within this parameter space described by the assumed state equations. 
Such models could lead to large errors in complex structures, in the case of a linear 
system representation, if the order of the mathematical model does not coincide with the 
order of the actual structure. This could be an important difficulty in large structures 
where the mass and stiffness distributions are not properly understood so as to obtain 
an accurate enough representation of the model order. Nonparametric representations 
do not require the order of the system to be explicitly known. The identification of such 
a parametric model becomes even more difficult if the system is nonlinear. In this case, 
the search in parameter space may become both difficult and costly in computer time. 

The use of any one modeling approach will ultimately depend upon the purpose of the 
identification and the amount of a priori information we have on the system functional. 
To a large extent, the nonparametric approach encompasses the parametric approach+; 
for after the system functional is determined, the system parameters can be easily 
identified from this functional. A combination of the two approaches would then seem 
fruitful, the nonparametric approach forming a logical prelude to parameter estimation. 
Furthermore, if the aim is to study the time response and to be capable of predicting 
it for a given class of inputs, the nonparametric approach is ideal. 

In this paper we have taken the nonparametric viewpoint, i.e., our ultimate aim of the 
identification process is to predict the response rather than to estimate various parameters. 
A characteristic feature of such a general approach is that in our attempt to predict the 
time history of the response of the structure, which we look upon as a black box 
unrestrained by any a priori assumption about the system, we lose some physical under- 
standing of the various details within the black box. We obtain an overall picture of the 
complete structure in terms of certain functions rather than in terms of the more physically 
understandable assumed model parameters. 

The feedback model 

The input-output "black-box" model of a structure which is subjected to an input, x, 
measured at the basement, and whose response, y, is measured at the roof, is shown in 
Figure la. Figure l b shows a simplified model of the soil-structure system schematically. 
Typically, we shall be interested in the basement record, x(t), and the roof record, y(t). 
The true input, it, to the system passes through the structure, represented by the black 
box, B, reaches the top of the structure, and is reflected back by means of the element R. 
The signal then descends through the structure depicted by the element B*. On reaching 
the foundation, a part of the signal gets reflected back into the structure. The part which 
does this can be imagined as being produced by the signalj going through the black box L. 
Also, a part of the signal (which can similarly be imagined as produced by the signal j 
going through the element T) is transmitted to the ground. This transmitted signal is 
further modified as it passes through the ground (element G). Finally, the signal interferes 
with the incoming signal, i~, completing the "feedback loop." 

Each of the black boxes shown in Figure 1 indicate nonlinear, time-variant, finite 
memory subsystems. Since the signal speeds in structural systems are relatively small 
(in comparison with characteristic response times), each of the boxes shown would 
generate time-delayed outputs. One could visualize this by imagining that each black 
box is composed of two elements: a time-delay element, which simply delays the signal, 
and a filter element, which alters this delayed signal, allowing it to pass through with 
infinite signal speed. The feedback mechanism makes such time delays critical in the 
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response analysis. Furthermore, it must be noted that the delay created by the delay 
element of any one black box may be quite comparable to the characteristic time of the 
filter element it contains. 

A simpler visualization of the system can be made by lumping all the elements in the 
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FIG. 1. (a) Black box model of structural system; (b) idealized feedback model for soil structure 
systems; (c) analysis of structural system S from input-output data between node points p and q. 

feedback loop into only one element, designated by A. The characterization depicted in 
Figure lc then emerges. The input (x)-output (y) relation essentially observes the black 
boxes B and R between the node points p and q (Figure lc). In this paper the properties 
of these black boxes shall be studied from an analysis of the p-q segment of the visualized 
structural model. 
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The effect of feedback, which shall not be considered in detail in this paper, can be 
qualitatively looked upon for the sake of illustration as follows: Assuming for simplicity 
that all the elements are linear, 

and 

r. = B ~  ( I )  

y = / 'p+f (3) 

where the tildes represent Laplace transforms and the capital letters represent transfer 
functions. Also, 

= ~1+~2 = B * ( L + G T ) f  

= A f  = R A B 2  

where 

and 

thus yielding 

A = B * ( L +  GT) 

:~ = ?t+~, 

B +  R B  
~ 

- 1 - R A B  tt" (4) 

Assuming that our measurement is at the roof, R ~ 1 so that 

2B 

1 - A B  

If  there is no feedback, e = 0 and i t = x. In that case 

p = r t . ( B + R B ) =  Sr t. 

From equation (4) it may be seen that large output amplitudes will be obtained at 
frequencies (1) which correspond to the poles of B with A B  ~ O, and (2) which correspond 
to the zeros of the function (1 -RAB) .  

The above discussion, although crude in its assumptions, heuristically serves to show 
that large outputs, y, can be obtained at the frequencies that not only coincide with the 
poles of B but also with those that may correspond to the zeros of (1 - R A B ) .  Thus, 
keeping in mind that the output, y, can be largely influenced by the feedback, e, let us 
proceed t O the analysis of the p-q segment of the system by considering the response of the 
system to microtremor and earthquake ground motions. 

Sys tem stationarity 

An important decision that has to be made before the identification of a process is 
undertaken is the time length of record that one needs to utilize to obtain reliable informa- 
tion on the system. This in turn is strongly dependent on the nature of the system being 
studied. In general, for time-invariant systems, the identification is improved by the use 
of longer record lengths due to the effect of input-output noise smoothing as well as 
parameter smoothing (Marmarelis and Naka, 1973, 1974). However, for time-variant 
systems the length of record chosen must be sufficiently long so as to ensure adequate 
noise and parameter smoothing, and yet be sufficiently short so that the system properties 
do not change appreciably during the time length required to complete the identification. 

Under low levels of excitation, such as wind and microtremors, structural systems are 
primarily excited in the linear range and usually do not undergo any perceptible deteriora- 
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tion, so that they could be considered stationary and the problem taken to be one o f  the 
"time-invariant" type. Under large dynamic loads, however, structural systems show 
nonlinear responses (Iemura and Jennings, 1973) and often exhibit a deteriorating 
behavior, so that even during the measurement interval the characteristics of the system 
may not remain invariant with time. To study the earthquake response of a structure, 
then, it is necessary that the structural model should include nonlinear time-variant 
features in it. 

Since the general nonlinear identification of time-variant systems is beyond the scope 
of this study, we shall assume that the structural characteristics of a system remain 
invariant over the time length during which the identification is carried out. As described 
in the section on experimental applicability, a general idea about the time length over 
which severe structural changes do not occur can be obtained through techniques such 
as moving-window analysis or sequential filtering (Udwadia and Trifunac, 1975). 

THEORY 

Wiener's major contribution to the general theory of nonlinear system identification 
was the use of white noise as the input test signal. White noise is a random signal which 
contains all frequencies with equal energy, and, therefore, it can serve to test the system 
exhaustively. This is because any input function over a finite interval can be approx- 
imated arbitrarily closely by some segment of a Gaussian white-noise signal (i.e., a white- 
noise signal whose amplitude has a Gaussian distribution). In practice, of course, the 
test white-noise input is band-limited (i.e., it cannot contain frequencies which are 
arbitrarily high) and it is finite in duration. However, the same arguments are valid 
provided that (a) the bandwidth of the white-noise signal completely covers the bandwidth 
of the system under testing and (b) the duration of the white-noise test signal is sufficiently 
long in comparison with the characteristic times of the system. The resulting characteriza- 
tion, using these methods, is a statistical average characterization, and two systems which 
respond identically to Gaussian white noise would then be considered equivalent. 

For a causal (physical) system S, whose input is x(t) and output is y(t), we have 

y(t) = F[t; x(z), z < t] (5) 

where F is a functional whose value (a real number) at time t depends only on the past 
values of the input. For a time-invariant system with finite memory, M, equation (5) 
reduces to 

y(t) -- F[x(z), t - M  _< z _< t]. (6) 

The "memory" of a system is approximately equivalent to the "settling time" of the 
system. 

Volterra showed that equation (6) can be written as 

y(t) = go + ~o gl(z)x( t -  T) dz + ~ o  g2(z,, z2)x( t -  za)x(t-  z2) dTxdz2 

+ ~ o  ga(zl, T2, x3)x(t--vl)x(t--T2)X(t--T3)dTldT2dT3+ . . .  (7) 

where gi(h ,  z2 . . . . .  Ti) is a symmetric function of its arguments. The set of {gi} is called 
the set of Volterra Kernels of the system. This set of kernels completely characterizes the 
dynamic response of a nonlinear, time-invariant system with finite memory (Brilliant, 
1958). Wiener (1958) has shown that equation (7) can be written as an infinite series 

y(t) = ~ G,[h,, x(t)] (8) 
n=0 

where {G.} form a complete set of orthogonal functionals with respect to a Gaussian 
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white-noise input x(t). The system would be completely characterized if the kernels {h,} 
are all determined. The orthogonal property of functionals is expressed as 

E{Gn[hn, x(t)]Gm[hm, x(t)]} = 0, for m 4: n 

= constant, for m = n (9) 

where E{. } denotes the expected value of the quantity in the brackets. Moreover, the 
Wiener G-functional of degree n is such that it is orthogonal to all functionals of degree 
less than n. 

The first four functionals of this series are 

Go[ho, x(t)] = h o 

61 [h,, x(t)] = hi (¢ )x ( t -  ¢)d¢ 

G2[h2, x(t)] = ~So h2(¢,, ~2)x(t-rl)x(t-¢2)d¢l d¢2 

-PI; ¢2)d¢2 
G3[h3, x(t)] = JJ'J'o h3(h,  ¢2, %)x( t -  h )x ( t -  e2)x(t- r3)" 

• d¢,d¢2dz3-3PI~ o h3(¢1, ¢2, %)x(t-¢,)dhd¢2 (10) 

where P is the spectral density level of the input white noise, i.e., P = ~bxx(f ) is the power 
spectrum of x(t) at frequency, f.  The set of symmetric kernels {h,} characterizes the 
system and could be thought of as being generalized "impulse responses" of the nonlinear 
system. The first order kernel h~(¢) corresponds to the impulse response function of linear 
systems theory. The nonlinear kernels describe quantitatively the nonlinear cross talk 
between various portions of the past input as it affects the present response. For example, 
for a second-order nonlinear system, i.e., a nonlinear system for which hk---0 for 
k => 3, h2(t, t - t~)  indicates the deviation from linear superposition that arises in the 
response at a time t > t~ when the inputs comprise two delta functions, one at time 
t -- 0 and the other at time t = t~ (cf., part II of this study). The kernels may thus be 
interpreted so as to reveal interesting physical properties of the system dynamics. 

In Wiener's formulation of the method a general nonlinear memory system was 
represented by the cascade combination of a linear system with multiple outputs and a 
nonlinear no-memory system. This was accomplished by expanding the past of the system 
input in terms of Laguerre polynomials (a linear transformation) and then expanding 
the system functional defined on the Laguerre coefficients in terms of Hermite functions 
(a nonlinear no-memory process since it involves multiplication of the terms of the 
Hermite expansion). Thus, the identification problem was reduced to determining the 
coefficients of this expansion (Bose, 1956). 

The Laguerre polynomial expansion was chosen basically because it could be accom- 
plished easily by linear analog computation. The Hermite functions were picked by 
Wiener to expand the system functional because they have some convenient properties 
with respect to Gaussian white-noise signals. 

However, this formulation is impractical and difficult to apply in an experimental 
situation for the following reasons: 

1. The number of coefficients needed to characterize almost any system, linear or 
nonlinear, is extremely large. If n coefficients are used in the Laguerre expansion to 
describe the past of the input at any time and p coefficients are used to expand the system 
functional in terms of Hermite functions, then the number of coefficients needed to 
characterize the system is pn. Exploratory calculations showed that, even for a simple 
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nonlinear system such as a system with only a second-order nonlinearity, the number of 
characterizing coefficients has to be as large as 101 o. 

2. The computing time required for the evaluation of the characterizing coefficients 
is extremely long, especially since the computation has to be performed serially. In the 
synthesis phase, when the response to a particular input is desired, the computation is 
again very long because of  the large number of coefficients and the repeated Laguerre 
and Hermite expansions. 

3. It is desirable to be able to assign some meaning to the characterizing coefficients 
that would reveal some of the physically meaningful features of the system. This is 
extremely difficult under this formulation of the theory. The coefficients of the expansion 
are purely formal mathematical quantities and it appears futile to attempt to draw an 
analogy between them and physical properties of the system which they characterize. 

4. A linear system which is characterized very simply by the classical linear theory is 
characterized very cumbersomely by this method. A vast number of coefficients is 
needed to identify a linear system. This is due to the fact that a very large number of 
Hermite functions is needed to represent a linear transformation. 

5. It is very difficult to incorporate into Wiener's method any a priori information 
about the system so as to plan the computation for shorter lengths and reduce the 
number of the characterizing coefficients. Point (4) is an example of this serious short- 
coming of this very general method : The method in being so very general fails to recognize 
a simple situation and treat it accordingly. 

6. The derived nonlinear model is too cumbersome to use for prediction or comparison 
with experimental results even if a digital computer is available. 

Later, Lee and Schetzen (1965) employed cross-correlation techniques and showed 
how the kernels {hi} can be directly evaluated utilizing the orthogonality properties of 
equations (8) and (10). Taking the average (E{. }) of equation (8) we have 

e{y(t)} = E{h0} + e{fo 
+ E{SSo ]/2(Zl , z2)x(t-z)x(t-z2)dzldz2 - P  So h2(z2, z2)dz2} + . . .  

and assuming stationarity of the system and the input we get 

E{y(t)} = ho, 

recalling that x(t) is a Gaussian white-noise signal of zero mean. Similarly, the first-order 
kernel can be obtained by taking 

E[{y(t)- Go[]/o, x(t)]}x(t- ~)] = E{X G,[h,, x(t)]x(t- or)}. 
1 

Since x( t -a )= S6(z-a)x(t-r)d~ is a functional of first degree, the functionals 
G,,, n > l, are all orthogonal to it (Wiener, 1958). We therefore have 

E{y(t)x(t- ~)} = So ] / l ( '~)E{x(t  - -  " ~ ) x ( t  - -  o)} d't" ~- P ] / l ( ° )  

so that 
1 hl(~) =/ ,  E{y(t)x(t- ~)}. (11) 

To get the second-order kernel we determine the higher order cross-correlation 

1 
E[{y(t)- • G,[h,, x(t)l)x(t- al)X(t- a2) ] 

0 

and we proceed similarly, utilizing again the orthogonality of the Wiener series 
(cf., part II). The advantages of the orthogonality of the Wiener series are multiple: 
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(a) it allows measurement of the kernels to be made independently of each order, (b) it 
greatly alleviates the problem of signal contamination by noise sources at the input, 
output, or internally in the system, and (c) it allows a direct extension of the method to 
multi-input systems (Marmarelis and NaKa, 1974). 
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FIG. 2. Schematic showing sources of noise signals. 

EXPERIMENTAL APPLICABILITY, SOURCES OF ERROR AND ACCURACY CALCULATIONS 

The application of Wiener's method requires rather involved and lengthy digital 
computations. It is therefore useful to develop some criteria which would be indicative 
of how successful the approach might be when applied to structural systems, giving due 
consideration to the various assumptions underlying the technique. 

Nonlinearities in structures strongly depend on the amplitude ranges and the frequency 
content of the input signals. Since we are interested in the earthquake response of 
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structures, it would be instructive to conduct tests with input amplitudes which are 
comparable to those created by close-in ground shaking. However, in the full scale testing 
of structures the generation of such large dynamic loads, which are white in character, 
may be very difficult. We are therefore forced to revert to naturally occurring loads that 
arise in the normal lifetime of structures. From the point of view of this analysis, we 
appear to have run into the following problem: While microtremors, created by random 
excitations of the ground in space and time, provide a very broad band spectrum, the 
amplitude levels are rather low; whereas strong ground shaking, while providing large 
amplitude inputs in a structure, would not be nearly as white in general due to various 
factors such as preferential frequency characteristics of the source function, the location 
of the observation point, and the filtering effect of the intervening region between the 
source and receiver, etc. It appears then that the effect of the nonwhite nature of the 
source would be an important consideration in the application of this technique to 
structural problems when earthquake excitations are used. This effect can be studied 
as follows: 

Let l(z) be the impulse response of a low-pass filter which transforms ideal white noise 
x(t) to the real input "colored noise" signal x*(t). Then, 

x*(t) = ~_~ l( v )x ( t -  v)dv. 

The first order kernel is estimated by taking the cross-correlation ~bx.y(r ) multiplied by 
a constant C1 [= 1/P if x*(t) is white noise, i.e., qSxx(T ) = P6(r)] (see equation 11) and 
is given by 

hi(z) = C, gpx.,(z) = C1E{y( t )x*( t -  z)} 

so that 

~l(v) = CI ~-o~ l (v )E{y( t )x ( t -  z -  v)} dv 

= C1 ~-~o~ l(v)qSxr(z+ v)dv = C 11_~oo l(v)Ph~(z+ v)dv. 

Taking Fourier transforms of both sides 

F11(oJ) = CjPE(09)H 1 (09) 
and 

/41(09) (14) 
H1(09)- C1pE(09) 

where L(09), H1(09 ), and /~1((/)) are the Fourier transforms of l(z), hl(z ), and hi(z) and 
L(09) is the complex conjugate of L(09). From equation (14) it is noted that for ~l(z) to be 
a good estimate of hi(z), it is required that the bandwidth of input signal, x*(t), should 
completely cover the system bandwidth. For large frequencies 09 the gain of the low pass 
filter l(~) will be substantially different from 1 and therefore errors may arise in estimating 
hi (r) in this frequency range. 

Hence, the input noise spectrum should be flat in character and should cover the 
complete frequency range in which the system's response is of interest. This provides the 
lower bound for the bandwidth of the input. 

The records used in this analysis were low-pass filtered and sampled at 50 pts/sec, 
giving a Nyquist frequency of 25 Hz. The energy content in the earthquake signals beyond 
this frequency is generally quite small so that attention can be focused on determining 
the structural system characteristics in this frequency band range. Error contributions 
described by equation (14) would then be small if the spectrum is sufficiently flat in this 
range. The sampling rate chosen is commensurate with the band of frequencies in which 
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the energy is mainly concentrated and will therefore lead to only small aliasing errors. 
Also, if the system response shows an effective cutoff frequency, fc, then the {hi (z)} can 
be completely ascertained by determining its value at At = 1/2fc. If the estimation is 
done with a larger time spacing (assuming that the record length permits this), the higher 
frequency contents of the generalized impulse responses will be irretrievably lost. On the 
other hand, if the sampling rate is considerably smaller in attempting to measure the 
very high-frequency response, while keeping the number of samples a constant (because 
of computational considerations), the statistical variance of the cross-correlation 
estimates increases because the number of independent samples from which the cross- 
correlation is computed decreases. 

The time length to which the kernels {h~(z)} must be computed depends on the memory, 
M, of the system. The memory, M, can be defined as that time t at which the response 
of the system to an impulse at time zero is negligibly small. Most structural systems 
exhibit the characteristics of lightly damped oscillators with the percentage of critical 
damping being at most about 7 to 10 per cent. This implies large settling times typically 
of the order of 5 to 20 sec. If the memory, M, is assumed too long, the number of com- 
putations required would be significantly increased in addition to the higher computer 
capacity required. On the other hand, if M is assumed to be too short, a systematic 
error will be introduced in the estimation process. 

Finally, the temporal length of the excitation must be such as to give tolerable values 
of the variances of the different statistical averages that the cross-correlations represent. 
For the earthquake records, we are further limited in the choice of a utilizable record 
duration in that we need to choose segments of the record where the input-output can be 
considered stationary processes and where the system can be assumed to remain time- 
invariant. The length of record chosen then must be short enough so that the system is 
invariant during the identification interval, but is long enough as compared to the memory 
of the system so that the statistical estimates have tolerable variances. The assumption 
that the input-output process is a stationary one, although frequently used in earthquake 
engineering, is of course incorrect for earthquake records. For microtremor records, the 
situation is quite different. These low amplitude ground motions (of the order of 
1 ~ I0 microns or so) are so small that the structure behaves essentially in a linear 
fashion, indicating very little nonlinearity, a feature which we shall observe is quite 
significant during strong ground shaking. The input signal, however, is stationary in 
nature, its bandwidth far exceeding the bandwidth of interest of the system response. 
This larger bandwidth leads to considerable statistical variations in the computed cross- 
correlations. Assuming that the system is linear with its impulse response denoted by 
h(Q (for the treatment of the nonlinear case see part II) and x(t) is a Gaussian white input, 
the statistical variance of the estimate of ha(z) can be expressed as follows 

Var {hi(r)} = A(R, M)aw 2 

where, as discussed later, A(R, M) is a function (<  l) of the record length, R, and system 
memory, M, and aw 2 is the variance of random variable [y(t)x(t-r)] whose average, 
E{w}, is a direct measure of ha(z) 

o r  

2 = e { [ x ( t -  I h(v)x(t- u)dvl 2} - { e [ x ( t -  I hi v)x(t- v)d,,l} 2 (15) 

aw 2 = ~Sh( v)h(#)E{x(t- z )x ( t -  Q x ( t -  v)x( t -  /~)} dvd~ 

- {~ h(v)E[xl t -  ~)x( t-  v)] dr} 2. (16) 
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Considering that tile average of the product of four Gaussian variables can be written as 

E{x(t - z)x(t - r )x ( t -  v)x(t -it)} = E{x(t - Qx(t - r)}. E{x(t - v)x(t - p)} 

+ E { x ( t -  z )x ( t -  v)}. E { x ( t -  r )x ( t -  p)} 

+ e{x(t  - r)x(t-/~)}. E { x ( t -  r)x(t - v)} 

and the second term of(16) can be written as 

~S k( v)k(lt ). E{x ( t -  z )x ( t -  v)}. E { x ( t -  z )x ( t -  it)} dvdlt 

equation (l 6) finally becomes 

aw 2 = var (x) I . [ ~  h(/,)h(v)4'(l,- v)dpdv+ [~ h(v)4'(z- v)dv] 2 (17) 
where 

o9o sin (O)oU) 
4'(u) = (18) 

rc (ogoU) 

is the autocorrelation of input noise x(t),COo is the bandwidth of this noise, and 
var (x) = 4,(0) is the variance of the Gaussian input signal. 

We consider the first term of equation (17). Writing h(v) and 4,(u) in terms of their 
Fourier transforms H(og) and ~(o9) respectively, we obtain 

4,(0) 
JJ-o~ H(Og) exp (-og/t)dm -oo H(og')(I)(og') exp (-iog'la)dog'dp. 

Noting that 
j'3o~ H(og) exp (-ioglOdo9 = J'_~ H(-og) exp (iogp)do9 

and 

we finally obtain 

Considering that 

H(-og) = H*(og) 

4 ~  j j j _  ~ H(og)H(og')(I)(eo') exp[i(og-og')#] dog'dogdg. 

j'_~ exp [i(og-o9')l~]d p = 6(09-o9') 

and that (1)(o9) is ideal low-pass with o9o bandwidth we finally get 

ogof °° Incog)12do9 
4~3  -~oo 

which, indeed, is an increasing function ofo9 o . Similarly, it can be shown that the second 
term can be written as 

H(og) exp (iogOdo9 

Thus, we finally get for the variance of the estimated kernel, 

E "°' If' L o9o / in(og)l dw i H(og)exp(iogr)do9 (19) Var [~(z)]  = A(R, M) 4n 3 + ~ m 2  -,oo 
d - ~o! I 

where COo is the bandwidth of the input signal and t!(o9) is the Fourier transform of h(t). 
We observe that Var [h(z)] generally increases with the bandwidth. However, the input 
signal, as previously mentioned, should at least cover the system bandwidth. Thus, the 
input noise bandwidth should be larger than the system bandwidth (as shown earlier) but 
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should not extend much beyond it. As discussed later, the variance of the kernel estimates 
also depends on the length of the characterizing experiment, and therefore the input band 
width and length of record both affect the kernel variance estimates. 

Besides the errors which arise due to our assumptions in the model structure, errors 
due to the finiteness of the record analyzed and contaminating noise signals are important. 
For instance, the variance in ~l(r) due to the finite record length as obtained by the cross- 
correlation method would be 

1 1 
Var {~l(z)} = -Ni Var [y(t)x(t-  z)] = ~ ¢r~ 2 

where Ni is the number of independent samples of [y(t)x(t-  z)] that can be obtained from 
the record. If M is the memory of the system and R is the record length, then 

Ni ,.~ R /M.  

Therefore, an estimate of the variance ofh~(r) is 

Var {/~j(z)} = (M/R)aw 2 . 

We note that for a given system, the rms error in the kernel estimates decreases propor- 
tionately to ~/R. For typical structures M is of the order of 1/~o,~, where o~, is the 
fundamental period (as obtained from linear analysis) and ~ is the percentage of critical 
damping. The record length R would then consist of N samples where N = R/At. 

Most structures during low level (wind and microtremor) tests are subjected to dis- 
tributed loads all along their height. However, their characterization through such 
experimentation is carried out by comparing the "input" signal at the base with the 
"output" signal at some level, ignoring the inputs to the structure at various other points 
(created, say, by the movement of people in the structure or the action of wind at various 
levels). These inputs, which actually may lead to considerable structural responses, are 
generally not considered in most of the experimental analyses. Insofar as the analysis 
attempts to characterize the structure without considering the effects of these multiple 
inputs that excite the system, one would need to consider these ignored inputs, Yl, as 
noise inputs and then try to estimate the errors brought about by such "'spurious" inputs 
in the estimation of the system kernels. 

One can visualize these ignored inputs, Yl, as following paths through the system 
which are different from the "input" path. The output y(t), then, can be expressed as 

y(t) = Z (G,,[h,,, x(t)]} + Z  Z {H,,[k,,,,, y,(t)]} (21) 
n i m 

assuming that the effect of these "disturbances" is simply additive to the system output. 
The more general case of nonlinear interaction between the inputs remains to be examined. 
For the linear case (see part II for the nonlinear case) we have n = m = 1. The estimation 
of the system kernel hl(r ) through cross correlation gives 

= F_,{x(t- v)x( t -  v)dv} + E {x ( t -  Y I 
i 

= Phi(z)+ Z ~ Kli(ll)(°x,i(t-IJ)d~ 
i 

where the autocorrelation of white input x(t) is ~b~(r) = P6(z). Therefore, the estimated 
kernel hl(~)is 
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I f  q~x~,(z) = 0, for  all inputs 71, then hi(z) = hl(r  ) and the estimate of  the system kernel 
is unadulterated by the contaminat ing noise signals 7i(t). This would be the case, for  
example,  when x(t) and 7i(t) are statistically independent,  since in that  case 

q~x~,(z) = E{x(t)}.E{v,(t) } = O. 

Errors created by output  measurement  noise ~(t) (generally caused by digitization, 
t ransducer  imperfections, and data processing) can also be studied in a similar manner.  

Here we have, 
1 1 

~x(r) = / S  ~by x(z) = fi E [ { ~  Gn[h,,, x(t)] +e(t))x(t-z)]  

= hd~) + 1  q~(r). 

If, for  example,  x(t) and e(t) are independent,  qS~(z) = 0 and then 

hl(~) = hx(T). 

We notice that  the est imation of  the higher order (n > l) nonlinear terms would involve 
~6 . . . . . . . . .  (Zl, z 2 . . . . .  %) so that  the error  would still be zero if, for  example,  x and e are 
independent and E[~] = 0, or n is odd. Thus,  the contaminat ing noise does not  affect the 
est imation of  the characterizing kernel under rather general conditions, in part icular  
when it is independent o f  the assumed input. 

Errors, e(t), occurring at the input either as measurement  errors or as deviations f rom 
a Gaussian signal, however,  do tend to affect the kernel estimation. We distinguish here 
between two types of  noise at the input:  (1) Input  noise which adulterates the Gauss ian  
white-noise signal and goes through the system (as in case C of  Figure 2), and (2) input  
measurement  noise (as in case D of  Figure 2). Proceeding similarly as above,  it can be 
shown that  

~ (r) = h~ (z) + 1  (El + Ez + E3 + . . . )  (22) 

where E~, E 2 . . . .  , are errors arising f rom hi ,  h2 . . . .  , respectively, and in case C are 
given by 

E 1 = ~ h i ( y )  [(~xe(~ - Y) + ~ex(T - F) --~ (Dee(T - Y)] dv (23) 

E 2 = ~ h2(Y1, v2)[(Dxxx(T-- Y1, T - -  Y2)-~- (J~xx~(T-- Vl, T- -  Y2) 

+ ~ ( ~ -  v~, ~ -  v2)+ ~ . ( z -  v~, r -  v2) 

+ q ~ ( ~ -  vl, ~ -  v2)+ ~ ( z -  v~, z -  v2) 

+ qS~x(z - vl,  z -  v2) + qS,,(z - v 1 , z - v2)]. dvldv 2 . (24) 

In case D, the errors can be characterized as 

E 1 = ~ h l (v )~b~( r -  v)dv 

E2 = ~ h2(vl, v2)~b~( ' c -  vl, z -  v2)dvldV 2. 

Note  that, for example,  qS~,(z~, zz) = qS~,~(- z~, z 2 -  zl), and therefore only one of  these 
~b's needs to be measured for any permuta t ion  of  (x, e, e). It  is noted that  the error  terms 
increase with the order of  nonlineari ty of  the system, and they are given as convolut ions 
of  signal-error correlations with the kernels. Therefore,  input errors such as those of  
case C are more  serious. 

Let us consider one such input  error  that  occurs quite commonly .  This is the error 
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introduced by the truncation of the Gaussian amplitude distribution at very low and very 
high input signal levels. That is, the input signal is not an ideal Gaussian, but is defined by 

1 
P,(x) = ~2-nexp ( -x2 /2 )  if Ix[ < K. 

= 0 if Ix I > K.  

Then, we have x*(t) = x(t)+ e(t) where x(t) is ideally Gaussian and 

I0  if Ix(t) I < K 
/ 

e(t) = I K-x ( t )  ifx(t)  > K 
| 

l - K - x ( t )  i fx(t)  < - K .  

From the formulas just derived, it is seen that the error depends on terms such as 
~bx~(z), ¢~,(z). Assuming x(t) to be ideal white-noise (infinite bandwidth) 

~=(z) = C(K).6(~) 

where 

C(K) = (Kx - x 2) exp ( - x2/2) dx. 
K 

Further, in this case, it can be easily seen that ~b~(z) = ¢~(z). Also, 

where 

~b,~(z) = D(K).~5(z) 

D(K) = ( K - x )  2 exp (-x2/2)dx.  
K 

Therefore (neglecting higher order kernels), the error E(K) in the estimate of hl(z ) can 
now be obtained by equation (22). Using the values of ~x~ and qS~ above, we get the 
estimate ~l(z) which is approximately given by 

~l(Z) ~ hl(z)[1 +2C(K)+  D(K)] 

hl(~)[1 + E(K)], (25) 

the exact equality holding ifh, = 0, n > 1 where 

2; 
E(K) = - (K 2 - x  2) exp (-xE/2)dx. 

V 27r 

Notice that the error function E(K) is negative since x 2 > K 2 in [K, oo], i.e., we would 
tend to underestimate hi(z ). This indicates that a small percentage error for K > 2.5 
standard deviations of the Gaussian wave. It should be noted, however, that knowledge 
of the truncation level K can correct for this error simply by utilization of equation (25) 
where the value of K is determined for the given experiment. 

APPLICATIONS TO A REINFORCED CONCRETE STRUCTURE 

In this section, the methods outlined above will be applied to earthquake accelerograms 
and ambient vibration test data obtained in a specific structure. 
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Description of the structure 

The structure tested is the Robert Millikan Library at the campus of the California 
Institute of Technology. It is a nine-storey reinforced concrete building with one basement. 
Figure 3 shows the NS section, the typical floor plan and the overall dimensions. The 
structural system is characterized by two shear walls designed to withstand lateral loads 
in the NS direction, and a core wall which houses the elevator shaft and provides resistance 
to EW loads. Other structural details, phases of construction, and the properties of the 
underlying soil are described in detail by Kuroiwa (1967). 

The choice of this building was dictated by the fact that it has been tested in numerous 
ways in the past. Both shaker and ambient tests have been carried out on it (Udwadia 
and Trifunac, 1972). Also, the records obtained during the San Fernando earthquake in 
California, 197l, are of exceptionally high quality. 

A N-S SECTION TYPICAL FLOOR PLAN 
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FIG. 3. Millikan Library Building. Left, a NS section; right, typical floor plan. 

Records used for analysis 

Both the NS and EW components of structural response have been studied. Records 
obtained during the 1971 San Fernando, California earthquake have been used 
(Figures 4 and 5). Also, the EW structural response to low-level amplitude motions was 
obtained by conducting an ambient vibration test in April 1973 when the small motions 
generated by wind and microtremors were recorded using sensitive vibration pickups 
(Figure 6). The actual experimental technique involved the placement of two Ranger 
seismometers (one in the basement and the other on the roof) whose outputs were 
amplified through a signal conditioner and recorded on analog magnetic tape. The tape 
was then converted to digital form on an analog-digital converter. The details of these 
tests have been extensively dealt with elsewhere (Udwadia and Trifunac, 1972) and will 
not be described here. The EW component of ground motion recorded during the earth- 
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quake is shown in Figure 4. The two sets of excitation cover a wide amplitude range and 
would be useful in studying the dependence of the structural characteristics on amplitude 
variations. 

The record length to be used in the analysis, as stated before, must satisfy the following 
considerations: (a) the system properties must be invariant during the identification 
process, (b) its length must be appreciably larger than the system memory (to reduce the 
variance in the statistical estimates), and (c) it must constitute a stationary signal. 
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FIG. 4. EW accelerogram records showing the time windows chosen for analysis and the variation of  
the lowest EW translational frequency as obtained by moving window analysis taking a window length 
of  8 sec. Data are from the San Fernando earthquake of  1971 on the Millikan Library. 

An idea of the duration of time during which the structure shows time-invariant 
characteristics can be obtained through a moving-window analysis of the earthquake 
record. The procedure for doing this is as follows : A time window of length T (8 sec in 
this case) is chosen. With the center of the time window located at T/2 sec, Fourier 
transforms of those portions of the input and output signals that lie within the time 
window are computed. The ratio of these transforms is computed giving the fundamental 
frequency, in an average sense, over that time interval. This gives one point on the 
frequency-time curve (Figures 4 and 5) whose time coordinate is the time corresponding 
to the center of the time window. The time window is next shifted along the time axis 
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a distance A (2 sec in this case); another average frequency is obtained and is plotted once 
more on the frequency-time curve. This approximate method is used to monitor frequency 
changes with time. Although the method suffers from several imperfections (e.g., the 
memory of the system, M, should be small compared with the length of the time window 
T), it gives a rough idea of the general zones in which the system can be considered time 
invariant. 

From the frequency-time plots shown in Figures 4 and 5, two separate window lengths 
each of 40 sec duration have been chosen : one from 3 to 43 sec and the other from 43 to 
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Fro. 5. NS accelerogram records showing the time windows chosen for analysis and the variations of 
the first and second NS translational frequency as obtained by moving window analysis taking a window 
length of 8 sec. Data are from the San Fernando earthquake of 1971 on the Millikan Library. 

83 sec. The two zones also represent two different regimes of amplitude variations. These 
record lengths have adequate lengths when compared to correlation times (1/~o,~) 
estimated from forced and man-excited tests. 

The record length chosen for the ambient vibration test was 1 rain. A typical segment 
of  this record is shown in Figure 6. The record length needed would in general be longer 
in this case due to the wider power spectrum of these input ground motions, requiring 
longer lengths over which noise smoothing needs to be done. 

Data processing 

In the case of the earthquake records, standard Volume 1I data (obtained from the 
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Earthquake Engineering Laboratory at Caltech) were used. These data are obtained by 
low-pass filtering the recorded motions with a cutoff frequency of 25 Hz. The sampling 
rate is 50 pts/sec. The ambient test data was low-pass filtered with a cutoff frequency of 
50 Hz and the sampling rate used was 100 pts/sec. 

The power spectra of the input and output records were next computed. Based on the 
results of these calculations, the input data were multiplied by a constant factor in order 
to normalize the power level of the fiat region of the input spectrum to unity. A similar 
scaling of the output spectrum was also done. This normalization was necessary to reduce 
the statistical variations in computing the first-order kernels. The power spectrum com- 
putations and the computations involved in determining the various cross-correlations 
were done using the Blackmann and Tukey (1958) algorithm to reduce the variance of 
the statistical estimates. For the power spectrum calculations this involved a splitting 
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FIO. 7. Millikan Library. EW roof and basement records. 

up of the record into three segments each of NAt~3 duration, calculating the power 
spectrum for each of these, and then averaging them to give the final estimate. The 
normalized power spectra of the motions at the roof  and the basement in the EW direc- 
tion are indicated for the window lengths [3-43] and [43-83] sec in Figures 7 and 8. 
Similar computations were carried on the NS component of motion (cf., part II). We 
observe that both basement spectra are reasonable approximations to broad-band white 
processes. Typical, normalized frequency histograms are shown corresponding to the 
roof  and basement records in Figure 9 for the time window [43-83] sec of the EW com- 
ponent. Dots representing points on a Gaussian curve are also plotted. Comparing the 
basement histogram with the Gaussian curve we observe the input to be Gaussian in 
character. 

Figure 10 shows the normalized autocorrelation functions computed for the input 
signals represented by the two EW earthquake time windows and the ambient test data. 
These functions are symmetric about the zero lag point and therefore have been plotted 
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only for positive lags. The large "spike" at zero lag, indicated in curve C, shows that 
the ambient data provide a much better approximation to white noise than the earthquake 
data. By the same token, however, the presence of these higher frequencies in the ambient 
data would lead to higher statistical variances (see equation 14) so that longer records 
would be necessary (to perform adequate noise-smoothing). Curve B appears to have a 
periodic component having a period of about 1.3 sec, while curve A, although showing 
no such marked periodic feature, indicates an oscillatory behavior which dies out with 
time. The interpretation of these curves will be discussed in detail in the following section. 

The first-order kernels computed, using the cross-correlation technique for the EW 
direction, have been shown in Figure 11. ha(z) corresponds to the time window [3-43] sec, 
kl(z ) to the time window [43-83] sec, and ll(z) to the ambient vibration test. We observe 
that there is a marked difference in the nature of the functions. While the hl(z ) kernel 
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FIG. 8. Millikan Library. EW roof and basement records. 

starts out with larger amplitudes (in its first cycle), it decays rapidly. The ka(z) and 
1 l(r) kernels, in comparison, begin with successively smaller amplitudes and decay much 
more gradually. Interpreting these functions as being the impulse responses, the mean 
period changes from 0.98 sec for hi(z), to 0.9 sec for kl(v), and to 0.78 sec for li(z). 
Considering these responses to be physically interpretable in terms of the viscously 
damped oscillator, estimates of the values of ~ range from about 5.5 per cent for 
hi(z), 3.5 per cent for kl(r), and 1.3 per cent for li(z). The functions hi, kl ,  and l i have 
not been smoothed in any way and are results of the direct computations. The higher- 
frequency component in the 11(z ) kernel is caused by the fact that the input is broader in 
its frequency characteristics, the relative proportion of the higher-frequency contents 
being more than in the earthquake data (see Figure 10). This higher proportion, although 
it allows the building to be tested at higher frequencies, increases the statistical variance 
of the kernel estimates as observed earlier. The la(z) kernel was computed out to 20 sec. 
However, for comparison purposes only, the first 10 sec have been shown in Figure 11. 
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Having  es t imated the f i rs t-order  kernels (i.e., the best  l inear  model  of  the system, in the 
mean-square  sense), the response of  the model  to the same input  ground mot ions  was 
determined,  and a compar i son  with the measured response made,  so as to provide  a test 
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FIG, 10. Normalized autocorrelation functions for input signals used in studying EW response. 
(A) Time window [3-43] sec, (B) time window [43-83] sec, (C) ambient vibration test, 

for the validi ty of  the model .  The response for the first 10 sec o f  ground mot ion  was 
calculated for the EW mot ion  cor responding  to the [3-43]-sec window. This compar i son  
is shown in Figure 12. The model  response indicated agrees well with the observed 
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response, although the model appears to be predicting slightly lower amplitudes than 
those actually recorded. Also significantly missing from the model response are the 
higher-frequency ripples which are dominant in the measured response. The model 
response indicates the presence of sharper peaks, the peaks in the measured response 
being broader in nature. 

' O I / ~  A Time Window[3-43]:h l ( r )  . - ~ ^ . ^ ^  . - - . - o -  

Time Window [43-83]: k I {z') 

I° / Ambient Test: "~1 (r) mean period ~0.78secs;~¢~ 1.5% 

o 

I I I I I I 
0 2 4 6 8 I0 

r (secs) 
FIG. 11. Millikan Building Response: h~(T), k~(r), and l~(r). The computed first-order kernels for the 

EW direction which correspond to the time window [3-43] sec, the time window [43-83] sec, and a 
l-rain length of ambient data, respectively. 
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FIG. 12. Millikan Library. This figure shows a comparison between the observed EW ground motions at 
the roof and those computed using a linear model of the system. 

Model responses for the [43-83] EW window as for the NS direction together with the 
spectra of the measured responses, the linear model responses, and the nonlinear model 
responses will be deferred until the second part of this study. Many of the discrepancies 
between the linear model response and the measured response will be resolved to a 
large extent when the corresponding nonlinear kernels of the system are computed and 
their contribution to the total response is determined. This is done in part  I I  of this study. 
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For example, the second-order kernel h2('t 'l, "c2) and its associated integral 

~S h2('q, z2)x(t- z~)x(t- z2) dTldz 2 

measure naturally the second harmonic nonlinear response and will therefore account 
for some of the high-frequency ripples present in the measured response but not exhibited 
by the linear model response. 

DISCUSSION 

The purpose of this paper was to develop and evaluate a suitable nonlinear identifica- 
tion method for studying the dynamics of structural systems. The technique has been 
shown to be simple and the results obtained, so far, quite encouraging. The method allows 
a simple visualization of the dynamic system in terms of a linear element and nonlinear 
elements, so that the relative extent of the linear and nonlinear contributions to the total 
response can be studied. 

Time Window [3-45] :  m I(T) 

I 0 [ / ~  Time Window [45-85]: n I (r) 

oL 
I I I I t l I I [ & f 
O I 2 5 4 5 6 7 8 9 IO 

FIG. 13. Millikan Building Response: m~(T) and na(r). The computed first-order kernels for the NS 
direction which correspond to the time windows [3-43] sec and [43-83] sec, respectively. 

However, the method utilized leads to some difficulties in terms of computer time and 
storage. The computation time increases approximately exponentially with the order of 
the kernel, whereas the higher-order kernels seem to require very large computer storage. 
While the second problem can be easily tackled through the use of virtual machine 
memory, the first one seems to be rather difficult to circumvent using the current 
algorithms. The use of multidimensional Fast Fourier transforms in computing the 
higher-order correlations is being currently investigated. This would not only drastically 
reduce computation costs, but it would make it possible to process the data in real time. 

Of a slightly more fundamental nature is the assumption of a white-noise input. To 
illustrate this point, the first-order kernels for the NS direction were computed for both 
time windows ([3-43] and [43-83] sec) and have been displayed in Figure 13. The two 
kernels denoted as ml(z ) and nl(T ) (corresponding to the time windows [3-43] and 
[43-83], respectively) show contamination by a lower frequency component. This has 
been attributed to the nonwhite nature of the input signal which appears to have a 
considerable concentration of energy around 0.75 Hz. q-hese figures illustrate the limita- 
tions of the white-noise approach, indicating a necessary improvement or extension of the 
technique (cf., part II). The Fourier transform approach appears to be more advan- 
tageous here, although it suffers from other problems such as high-frequency noise. 
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Consider, for instance, the linear system 

y(t) = ~o h(t)x( t-  z) dz. 

Taking transforms on either side of the equation, we have 

?(o9) = P(~o)~7(~o)  

i where Y,/~, and)~ are the transforms ofy(t),  h(t), and x(t) and, 

IH( o)l- I • 

Assuming the acceleration spectrum of the earthquake to have the form 

~2 

[;Z(~o)l-  ~2+~o ~ 

a small perturbation 3y(t) in the output whose Fourier transform is 

1 
, ~  ?(~o) = - 

N 
N < o )  < N + I  

= 0 otherwise 

would lead to a perturbation 6H(~o) in the determination of the kernel, given by 

~ 2 + ~ 2  

We then have the problem, that although the noise 

I,SNy{ -- I,~ ?(o9) I --, 0 as N ~ oo, 

as 

The problem is ill posed, and large inaccuracies would arise in the determination of 
/~(co) if we went to high frequencies--a situation described as high-frequency noise. 
Furthermore, unlike the cross-correlation technique, this method is extremely sensitive 
to noise perturbations in both the input and output records as well as noise perturbations 
created by ignored inputs as discussed earlier. 

The linear kernels (Figures 10 and 12) computed show some interesting features in that 
they do not appear to be zero at z = 0 as would be expected for a causal physical system 
with finite speeds of signal propagation. This may be a consequence of  the unknown 
initial conditions of the system which is being studied, together with its very low damping 
(resulting in a long memory). This problem would have persisted, it may be noted, even 
if the accelerograph record analyzed had started from zero time, for the structure would 
have been already vibrating when the accelerograph was triggered. However, the main factor 
which appears to cause such a displacement of the h 1 function is the presence of feedback. 

The feedback model (Figure 1) which was described shows that the output of system 
between the node points p and r is fed back through the element A back to the input. 
To clarify this effect let us consider A to be unity (i.e., the output at r is fed back directly, 
although possibly with a time delay, into node p). Then the output at time ( t -  td) where 
td will take into account the time delays in the system, will be fed back into the input at 
time t, so that x( t )y( t -  ta) is not zero for all positive values of td, because x(t) would be 
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composed, in part, of y ( t -  ta). The extent of this feedback effect would depend on the 
level of the output at r as compared with the input and the nature of modification the 
signal undergoes as it passes through the element A (Figure lb). 

An interesting aspect which emerges from this model is that even if the true input (i,) 
were white in the open-loop case, the feedback which causes the output of the filter 
elements to be mixed with the white input prevents it from being white. However, as 
pointed out earlier, so long as the input spectrum is sufficiently flat (equation 13), this 
does not pose a serious problem to the applicability of the general theory. Also, the fact 
that the kernel estimation is insensitive to contaminating noises, as was shown by the 
earlier analysis in the section on experimental applicability, makes the general technique 
quite efficacious. 

CONCLUSIONS 

Wiener's general theory of nonlinear system identification has been applied to the 
dynamic identification of a structural system from input-output data obtained during 
an earthquake and during an ambient vibration test. Before the method could be applied, 
the general zones where the system remained time-invariant were determined using a 
moving-window analysis technique. It was found that the method is practically applicable 
to structural systems provided certain minimum conditions exist. These can be ascertained 
through certain preliminary considerations and analyses. These include such items as 
(a) a rough knowledge of the system memory to determine the extent to which the kernels 
should ~e estimated, (b) estimation of the required length of the test for a certain accuracy, 
(c) choice of the bandwidth of the input excitation, and others. In addition, the effect of 
contaminating noise signals upon the kernel estimates is considered, and it is shown 
that the cross-correlation techniques used greatly reduce these unwanted effects. It was 
found that computer storage and time are two critically important factors to be considered. 
In this part of the study (part I) only the linear Wiener-Kernel model was estimated out 
to 10 see for the earthquake data and up to 20 sec for the ambient data. 

The studies indicate that the kernels computed for the two different time windows 
and the ambient EW experiment are quite different from each other in their frequency 
content, their equivalent damping ratios and their general amplitude levels. The building's 
first-order kernel showed time varying characteristics. The variations in time (although 
possibly caused in part by the fact that the ambient test was a low-level test) seem to 
indicate, in concurrence with previous investigations (Udwadia and Trifunac, 1975), the 
presence of a gradual "healing" process after the strong shaking caused by the San 
Fernando event. 

The building response to the earthquake excitation in the EW direction was computed 
using the estimated linear kernels (cf., part II) and it was compared with the measured 
building response. It was found that the two responses were quite close but that some 
discrepancies existed. These discrepancies will be partly resolved by the introduction of 
the higher-order nonlinearities in the model, thereby providing a better system character- 
ization, in part II. 
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