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Norman H. Brooks (Department of Civil Engineering, California Institute of Technology, Pasa­
dena, Calif.)--In considering the accelerated motion of spheres in a viscous fluid, the author has 
restricted himself to consideration of only simple harmonic motions of the fluid field and the sphere. 
The author's equation of motion (Eq. 11) for a suspended sphere is true only when the solution yields 
a relative displacement (x- a) which is siousoidal in time. Otherwise, the apparent mass factor k, 
and the damping coefficient A have no meaning, because they are both based on the Stokes solution 
for an oscillating sphere given in LAMB (1945, see References at end of published paper, p. 721}. 
Both k and A are functions of the circular frequency w as they are defined by (1), (2), and (3). 

As an example of the inadequacy of (11) for general purposes, one may consider the effect of 
adding the gravity force -(Mo - M)g to the right side of (11). Using a = a0 sinwt, the solution will 
be just as given in (I2) except for an added term; lhus we get 

x = x0 sin ~t +<X) - ((M0 - M)g/ Aj t 

The superposed settling velocity appears to. be (Mo - M)g/ A where A depends on w. 

This is clearly incorrect, because the settling velocity has a constant value w which is inde­
pendent of the frequency w. This follows directly from the fact that the Navier-Stokes equations 
are linear in pressure and velocity when all velocity product terms (that is, convective accelera­
tion terms) are neglected, according to the Stokes approximation. Thus lhe solution x1 = -wt can 
be superimposed on any other solution (which the author correctly did subsequently in deriving Es). 

TCHEN (1947, chap. 4 and 5} has obtained a general equation of motion which is not based upon 
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any presuppositions about the solution and might be given in place of (11). Tchen started with the 
integra-differential equation for the rectilinear accelerated motion of a sphere derived by BASSE 'IT 
(1888, p. 291] and BOUSSINESQ (1903, p. 238] . Again all velocity product terms were neglected. 
In the author's notation this equation, including the gravity term, may be written as 

t 
(M + M/ 2) x = - 3'71"1-!d [:ic + (d/ 2 "\fii"V{ dt1 x (t1)/ ~] - (M - M) g ......... (21) 

o to o 

where the entire system is at rest until the instant t = t0 • For convenience t0 may be taken as - oo. 
From this, Tchen derived the equation of motion for a small sphere in a moving fluid 

t 
(M

0 
+M/ 2) x = (3/ 2) Ml\- 3?r~-td{x- a+ (dj 2y'7Til).! dt1 [x (t1)-a (t1)]~}- (M0 - M) g .... (22) 

-oo 

He solved this equation for the case of simple harmonic fluid motion and obtained the same result 
as the author's (15). 

By skillful manipulations which eliminated the integral term involving x, Tchen arrived at the 
following linear second-order differential equation for x 

x + 2 Kx + (K2 + rT 2) x = G (t) •................. . . (23) 

where 
' 00 

G (t) = - a
0 

w + a.
0
a (t) + a.1 a (t) + a. 2a (t) -a 3j dt1 a (t- t1)/ Vtl ..... (24) 

0 

The various coefficients in (23) and (24) may be conveniently defined in terms of the two constants 

y = 12 vjd2, s = 3p/ (2ps +p) ..... .• ..•....... .. . (25) 

and are as follows 

a.1 = y s (1 - 2s) 

()(.2 = s 

a.3 = (V3Yl?i') s (s - 1) 

K = y s (1 - 3s/ 2) 

2 22 2 23 
IT = y s - K = 3y s (1 - 3s/ 4) 

...•.. . .•.•.. . .. (26) 

Also w, the Stokes settling velocity, is given by the familiar formula 

The general integral solution of (23) is 

00 

x (t) = (1 / rTlj d 11 e -K11 sin IT 11 G (t -1]) ..••...••••..•. (27) 
0 

Equation (27) will give the correct particle velocity x (t) for any arbitrary fluid velocity a (t), 
provided only that the convective acceleration terms are small, as was originally assumed. 

In the de rivation of (19) for t::m, the author implies that E:m is identical with the coefficient of 
diffusion of fluid particles (let this be called t::0 ) . Fluid particles or molecules in solution are trans­
ported bodily in a fluid element, and, except for a relatively insignificant amount of molecular dif­
fusion, they are carried with the fluid element wherever it goes. But, on the other hand, momentum 
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is continually being transferred from one fluid element to its neighbors by pressure differentials 
and viscous shear. Thus the momentum carried by a parcel of fluid may be expected to vary con­
tinuously during its excursion from one point to another. TAYLOR (1932, p. 685] pointed out the 
variability of momentum due to pressure fluctuations as a weakness of Prandtl's momentum trans­
fer theory when he advocated his vorticity transfer theory to obviate this difficulty. BURGERS 
(1951 , chap. 5] considers the viscous transfer of momentum between adjacent elements more im­
portant than the pressure forces in his derivation of the diffusion coefficient for momentum. 

Because of these two special factors impeding momentum transfer, this writer believes that 
it is quite reasonable to presume that the diffusion coefficient for momentum (Em) is less than the 
diffusion coefficient for particles of the fluid itsell (E0 ). 

Consequently, the author would be nearer to the truth to give (20) as 

€s/ E0 = (xofa) 2 ........... ..... . .... .. .. (28) 

Thus, for sediment in water, Es/ E0 < 1 (since x0 < a0 for Ps > p), but since Em/ Eo< 1 also, it is 
not all clear when 13 = Es/ Em is greater than or less than one. 

But, whether or not (19) should give the diffusion coefficient for momentum (em) or fluid par­
ticles (E0 ), there is some question about the validity of the way in which the author has tried to de­
rive diffusion coefficients from the equation of motion of a suspended particle. The argument the 
author follows on page 719 is based on the concept of a discontinuous mixing process with the use 
of some sort of mixing length, and with the assumption that the fluid elements carry the same con­
centration of sediment as the mean concentration at the s tarting point. This Prandtl type of approach 
is often satisfactory for engineering purposes where the interest is in some average bulk property 
like concentration of sediment. However, it is hardly a good framework in which to utilize detailed 
information about the behavior of individual particles. At best, one can talk only of a loosely de­
fined "average behavior" at some representative frequency of a simplified type of motion; and, aft­
er all, if a body of fluid simply oscillates up and down with a= a0 sinwt, so that the motion of par­
ticles in the fluid is x = Xo sin (wt + CX) - wt, there is certainly no turbulent diffusion. Diffusion oc­
curs only because the turbulent velocities of a fluid element are not periodic in any simple sense. 

To make use of the equations of motions of a small particle in suspension (23) to (26), it seems 
more reasonable to consider diffusion as a continuous process, expressing the diffusion coefficients 
in terms of integrals of Lagrangian correlations. TCHEN [ 1947, chap. 4 and 5] used this approach 
and with (27) calculated the integral of the Lagrangian correlation for the sphere velocity in terms 
of the same integral for the velocity of the fluid surrounding the particle. Neglecting the effect of 
gravity, the integrals are equal for any general type of turbulent motion. 

Tchen's results are reported in detail by BURGERS (1951, chap. 5) who carries the develop­
ment still further. Results of theirs which differ from the author's are summarized very briefly 
here. (1) Es ; e

0 
if the particles generally stay well within their respective fluid elements so that 

the relative motion can be adequately described by (27). This is true regardless of the type or fre­
quency of the fluid oscillations. This assumption is probably quite accurate for silt and clay in sus­
pension. (2) Actually E& < E0 only by virtue of the fact that sediment particles slip from one fluid 
element into another in the course of their motion. The amount of this slippage and the ratio Es/ €0 
depends on the nature of the motion and size of the fluid elements carrying the sediment; this infor­
mation cannot be deduced from the equation of motion which simply relates x to a. (3) Em <E0 , be­
cause of the role of viscous forces transferring momentum between fluid elements. (4) Es>Em 
({3>1) andEs< Em (,(3<1) are both physically plausible cases. For very fine material it is reason­
able to expect Es >Em, because Es ,; E0 • 

Hence this writer is unable to accept (20) which implies that 13 is always less than unity for par­
ticles heavier than the fluid. 

M. R. Carstens (School of Civil Engineering, Georgia Ins titute of T echnology , Atlanta, Ga. , 
Author's closure) --The experimental program reported concerned a s ingle oscillating sphere in a 
fluid at rest. The experimental results are presented graphically in Figures 2 and 3. ln an elemen­
tary m a nner these results were applied to the case of a spherical particle in an oscillating fluid. 
Brooks' remarks are confined to this subsequent analys is and not to the experimental program. 

The mechanism of suspended-sediment transportation is extremely complex. The problems 
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can be classified in three categories: (1) the description of the fluid motion; (2) the relationship 
between the fluid motion and the particle motion; and (3) the description of the particles. The des­
cription of the fluid motion is very incomplete despite the great amount of analytical and experi­
mental work of the past 30 ye~rs. The result is that the present statistical theory of turbulence is 
mainly a qualitative tool. There have been practically no studies correlating the particle motion 
with the fluid motion. A considerable amount of work has been done with the particles in the deter­
mination of the shape, size, surface condition, and other factors. In view of the complexity of the 
suspended-sediment transportation process, it is understandable that simplifications, such as the 
use of the settling velocity to describe the sediment particles and the use of the Fickian diffusion 
concept (16), are extensively employed. 

The very complexity of the suspended-sediment transportation process is an incentive for a 
simultaneous analysis of the three categories. Ultimately, a description of the transporting fluid 
motion will be necessary before a general solution of the mechanism of sediment transportation 
can be considered to exist. Lacking even this knowledge, the research worker is forced to make 
drastic simplifying assumptions. In this case the assumptions of spherical particles, of uniformly 
sized particles, of the absence of adjacent-particle interference, and of simple harmonic motion 
in the vertical direction would appear to preclude a solution of any significance. Although such a 
solution may fail to indicate correct numerical magnitudes, it may correctly indicate the impor­
tance of the individual variables and the order of magnitude of the result. For instance, in the hy­
pothesized situation the value of the amplitude ratio Xo/ a0 and the value of 13 was found to be inde­
pendent of the absolute magnitude of the fluid amplitude. Experimental studies will be needed in 
order to test the validity of this conclusion in more realistic diffusion motions. 

Thus, from this study the conclusion is that the frequency of motion is a prime variable, where-
as the absolute value of the amplitude is of no significance in the determination of the value of {3. In 
the discusser's conclusion (1) the exact opposite statement is presented. A portion of the statement 
is Es ; E0 if the particles generally stay well within their respective fluid elements . . . Such a con­
dition is impossible since a diffusion process is one in which both fluid particles and the· foreign par­
ticles must be transported to other fluid elements or eddies. It is further implied that (27) will be 
indicative that Es : E

0
, whereas it will be by means of (27) that the magnitude of Eg/E0 can be predicted. 

In regard to the discusser's conclusion (2), it is correctly stated that Es -f E0 only by virtue of the 
relative motion of the particle and the surrounding fluid. Thus Es/ E0 is a direct function of the slip­
page between the particle and the fluid. The ratio of the particle amplitude to the fluid amplitude Xo/ a0 
is a measure of this slippage. It can only follow that Es/ E0 must be a function of the amplitude ratio 
xofao· 

The discusser ' s conclusions (3) and (4) are valid. A frequent assumption is that £m; E0 • How­
ever, the experimental studies of CORRSIN [ 1943 J with the diffusion of heat in an axially symmetric 
jet and the studies of HINZE and VANDER HEGGE ZIJNEN [1949] with the diffusion of a gas and heat 
in an axially symmetric jet have indicated that e

0 
is slightly greater than Em· Consequently, the ::a­

tio as used in this paper must be considered to be the ratio of the sediment diffusion coefficient and 
the fluid diffusion coefficient t:s/ E0 • 
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