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Finite-Frequency Kernels Based on Adjoint Methods

by Qinya Liu and Jeroen Tromp

Abstract We derive the adjoint equations associated with the calculation of
Fréchet derivatives for tomographic inversions based upon a Lagrange multiplier
method. The Fréchet derivative of an objective function v(m), where m denotes the
Earth model, may be written in the generic form dv � � Km(x) d ln m(x) d3x, where
d ln m � dm/m denotes the relative model perturbation and Km the associated 3D
sensitivity or Fréchet kernel. Complications due to artificial absorbing boundaries
for regional simulations as well as finite sources are accommodated. We construct
the 3D finite-frequency “banana-doughnut” kernel Km by simultaneously computing
the so-called “adjoint” wave field forward in time and reconstructing the regular
wave field backward in time. The adjoint wave field is produced by using time-
reversed signals at the receivers as fictitious, simultaneous sources, while the regular
wave field is reconstructed on the fly by propagating the last frame of the wave field,
saved by a previous forward simulation, backward in time. The approach is based
on the spectral-element method, and only two simulations are needed to produce the
3D finite-frequency sensitivity kernels. The method is applied to 1D and 3D regional
models. Various 3D shear- and compressional-wave sensitivity kernels are presented
for different regional body- and surface-wave arrivals in the seismograms. These
kernels illustrate the sensitivity of the observations to the structural parameters and
form the basis of fully 3D tomographic inversions.

Introduction

Seismic tomography is transitioning from classical ray-
based tomography to finite-frequency tomography. The new
approach incorporates travel-time effects associated with
wavefront healing and recognizes the inherent frequency de-
pendence of the body-wave travel time or surface-wave
phase. For layercake or spherically symmetric Earth models,
sensitivity or Fréchet kernels may be calculated based on
surface-wave Green’s functions (Marquering et al., 1999),
normal modes (Zhao et al., 2000), or asymptotic, ray-based
methods (Dahlen et al., 2000; Hung et al., 2000; Zhou et
al., 2004). Simple 3D travel-time kernels for phases like P
and S are shaped like bananas with a doughnutlike cross
section, and thus the kernels are commonly referred to as
“banana-doughnut” kernels. Such kernels were recently im-
plemented for compressional-wave tomography by Montelli
et al. (2004).

To go beyond 1D reference models, that is, allowing for
laterally heterogeneous reference Earth models, requires
fully 3D numerical simulations. Zhao et al. (2005) demon-
strate that 3D finite-frequency sensitivity kernels for 3D ref-
erence models may be obtained by calculating and storing
3D Green’s functions for all earthquakes and stations of in-
terest. An advantage of this approach is that it gives access
to both the gradient and the Hessian of the misfit function
in the tomographic inverse problem. A disadvantage is the

formidable storage requirements associated with saving the
entire Green’s function as a function of space and time for
all sources and receivers. Alternatively, Tromp et al. (2005)
demonstrate that the gradient of a misfit function may be
obtained based on just two numerical simulations for each
earthquake: one calculation for the current model and a sec-
ond “adjoint” calculation that uses time-reversed signals at
the receivers as simultaneous, fictitious sources. The main
benefit of the adjoint approach is that the Fréchet derivatives
of the misfit function may be obtained based on two 3D
simulations for each earthquake. Because one needs simul-
taneous access to both the regular wave field and the adjoint
wave field during the construction of the kernel, the ap-
proach doubles the memory requirements, but there is no
need to store wave fields as a function of space and time. A
disadvantage is the fact that the Hessian is unavailable,
which leads to the use of iterative, for example, conjugate-
gradient, methods in the inverse problem.

In this article we introduce a Lagrange multiplier
method from which the adjoint wave equations and the re-
lated finite-frequency kernel expressions follow naturally.
We apply the adjoint method to regional phases, first, for
educational purposes, to a simple homogeneous half-space
model, and then to a realistic 3D integrated southern Cali-
fornia model. The method can be readily extended to include
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numerous phases per seismogram, as well as many seismo-
grams per earthquake. This facilitates the rapid calculation
of the gradient of a very general misfit function with respect
to the model parameters.

Lagrange Multiplier Method

In this section we use a Lagrange multiplier method to
derive the adjoint seismic-wave equations and the associated
finite-frequency sensitivity kernels. This approach comple-
ments the results obtained in (Tromp et al., 2005) and clearly
demonstrates the origin of the adjoint seismic-wave equation
and the related sensitivities to perturbations in structure and
source parameters.

Suppose we seek to minimize the least-squares wave-
form misfit function:

T1 2v � � s (x , t) � d (x , t )� dt, (1)� r r�2 0r

where the interval [0, T] denotes the time series of interest,
s(xr, t) denotes the synthetic displacement at receiver loca-
tion xr as a function of time t, and d(xr, t) denotes the ob-
served three-component displacement vector. In practice,
both the data d and the synthetics s will be windowed, fil-
tered, and possibly weighted on the interval [0, T]. In what
follows we will implicitly assume that such filtering opera-
tions have been performed, that is, the symbols d and s will
denote processed data and synthetics, respectively. As dem-
onstrated in Tromp et al. (2005), one may choose to mini-
mize any number of misfit functions, for example, cross-
correlation travel-time measurements or surface-wave phase
anomalies, but for the purpose of this discussion we will use
the waveform misfit function (1). Different measures of mis-
fit simply give rise to different adjoint sources. We will seek
to minimize the misfit function (1) subject to the constraint
that the synthetic displacement field s satisfies the seismic-
wave equation, as we discuss next.

Let us consider an Earth model with volume X and outer
free surface dX. In Appendix A we consider the complica-
tions associated with regional Earth models, which have
both a free surface and an artificial boundary on which en-
ergy needs to be absorbed. The synthetic wave field s(x, t)
in (1) is determined by the seismic-wave equation:

2q� s � � � T � f, (2)t

where q denotes the distribution of density. In an elastic
medium, the stress T is related to the displacement gradient
through Hooke’s law:

T � c: �s , (3)

where c denotes the elastic tensor. On the Earth’s free sur-
face �X the traction must vanish:

n̂ � T � 0 on �X , (4)

where n̂ denotes the unit outward normal on the surface. In
addition to the boundary condition (4), the seismic-wave
equation (2) must be solved subject to the initial conditions

s (x, 0) � 0, � s(x, 0) � 0 . (5)t

Finally, the force f in (2) represents the earthquake. In the
case of a simple point source it may be written in terms of
the moment tensor M as

f � �M � �d (x � x )S(t), (6)s

where the location of the point source is denoted by xs,
d (x � xs) denotes the Dirac delta distribution located at xs,
and S(t) denotes the source-time function. The complications
associated with a finite source are discussed in Appendix B.

Our objective is to minimize the misfit function (1) sub-
ject to the constraint that the synthetic displacement field s
satisfies the seismic-wave equation (2). Mathematically, this
implies the minimization of the constrained action

T1 2v � [s(x , t) � d(x , t)] dt� r r�2 0r
T

2 3� k � (q� s � � � T � f) d x dt, (7)t� �
0 X

where the vector Lagrange multiplier k(x, t) remains to be
determined. On taking the variation of the action (7), using
Hooke’s law (3), we obtain

T
3dv � [s (x , t) � d(x , t)]d(x � x ) � ds (x, t) d x dt� r r r� �

0 X r

T
2 3� k � [dq� s � � � (dc:�s) � df ] d x dtt� �

0 X

T
2 3� k � [q� ds � � � (c:�ds)] d x dt. (8)t� �

0 X

Upon integrating the terms involving spatial and temporal
derivatives of both s and the variation ds by parts, we obtain
after some algebra

T
3dv � [s(x , t) � d(x , t)]d(x � x ) � ds(x, t) d x dt� r r r� � r0 X

T
2 3� (dqk � � s � �k:dc:�s � k � df) d x dtt� �

0 X

T
2 3� [q� k � � � (c:�k)] � ds d x dtt� �

0 X

T 3� [q(k � � ds � � k � ds)] d xt t 0�
X

T
2� k � [n̂ � (dc:�s�c:�ds)] – n̂ � (c:�k) � ds d x dt,� �

0 �X

(9)
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where the notation means f(T) � f(0), for any func-T[f ]0

tion f. Perturbing the free-surface boundary condition (4)
implies n̂ • (dc: �s � c: � ds) � 0 on �X, and perturbing
the initial conditions (5) implies that ds (x, 0) � 0 and
�tds(x, 0) � 0. Thus we obtain:

T
3dv � [s(x , t) � d(x , t)]d(x � x ) � ds(x, t) d x dt� r r r� �

0 X r

T
2 3� (dqk � � s � �k:dc:�s � k � df) d x dtt� �

0 X

T
2 3� [q� k � � � (c:�k)] � ds d x dtt� �

0 X

3� [q(k � � ds � � k � ds)] d xt t T�
X

T
2� n̂ � (c:�k) � ds d x dt, (10)� �

0 �X

where the notation [f]T means f(T).
In the absence of perturbations in the model parameters

dq, dc, and df, the variation in the action (10) is stationary
with respect to perturbations ds provided the Lagrange mul-
tiplier k satisfies the equation

2q� k � � � (c:�k) � [s(x , t) � d(x , t)]d (x � x ),t � r r r
r

(11)

subject to the free surface boundary condition

n̂ � (c: �k) � 0 on �X, (12)

and the end conditions

k(x, T) � 0, � k(x, T) � 0 (13)t

More generally, provided the Lagrange multiplier k is de-
termined by equations (11)–(13), the variation in the action
(10) reduces to

T
2 3dv � � (dqk � � s � �k: dc: �s � k � df) d x dt.t� �

0 X

(14)

This equation tells us the change in the misfit function dv
due to changes in the model parameters dq, dc, and df in
terms of the original wave-field s determined by (2)–(5) and
the Lagrange multiplier wavefield k determined by (11)–
(13).

To appreciate the nature of the Lagrange multiplier
wave field, let us define the adjoint wave field s† in terms of
the Lagrange multiplier wavefield k by

†s (x, t) � k(x, T � t), (15)

that is, the adjoint wave field is the time-reversed Lagrange
multiplier wave field k. Then the adjoint wave field s† is
determined by the set of equations

2 † †q� s � � � T �t

[ s (x , T � t) � d(x , T � t)] d (x � x ), (16)� r r r
r

where we have defined the adjoint stress in terms of the
gradient of the adjoint displacement by

† †T � c:�s . (17)

The adjoint wave equation (16) is subject to the free surface
boundary condition

†n̂ � T � 0 on �X, (18)

and the initial conditions

† †s (x, 0) � 0, � s (x, 0) � 0. (19)t

Upon comparing (16)–(19) with (2)–(5), we see that the ad-
joint wave field s† is determined by exactly the same wave
equation, boundary conditions, and initial conditions as the
regular wave field, with the exception of the source term:
the regular wave field is determined by the source f, whereas
the adjoint wave field is generated by using the time-
reversed differences between the synthetics s and the data d
at the receivers as simultaneous sources.

In terms of the adjoint wave field s†, the gradient of the
misfit function (14) may be rewritten in the form

T
3 † 3dv � (dqK � dc ::K ) d x � s � df d x dt,q c� � �

X 0 X

(20)

where we have defined the kernels

T
† 2K (x) � � s (x, T � t) � � s (x, t) dt, (21)q t�

0

T
†K (x) � � �s (x, T � t) � s(x, t) dt. (22)c �

0

Realizing that dc and Kc are both fourth-order tensors, we
use the notation in (20).dc::K � dc Kc ijkl cijkl

The perturbation to the point source (6) may be written
in the form

df � �dM � �d(x � x )S(t) � M � �d(x � x � dx )S(t)s s s

� M � �d(x � x )dS(t) � M � �d(x � x )S(t), (23)s s
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where dM denotes the perturbed moment tensor, dxs is the
perturbed point source location, and dS(t) is the perturbed
source-time function. Upon substituting (23) into the gra-
dient of the misfit function (20), using the properties of the
Dirac delta distribution, we obtain

3dv � (dqK � dc::K ) d xq c�
X

T
†� dM: e (x , T � t)S(t) dts�

0 (24)
T

†� M:(dx � � ) e (x , T � t)S(t) dts s s�
0

T
†� M:e (x , T � t)dS(t) dt,s�

0

where e† � 1⁄2[�s† � (�s†)T] denotes the adjoint strain ten-
sor and a superscript T denotes the transpose.

In an isotropic Earth model we have cjklm � (j � 2⁄3
l)djk dlm � l(djl dkm � djm dkl), where l and j denote the
shear and bulk moduli, respectively. Thus we may write

dc::K � d ln l K � d ln j K , (25)c l j

where the isotropic kernels Kj and Kl represent Fréchet de-
rivatives with respect to relative bulk and shear moduli per-
turbations d ln j � dj/j and d ln l � dl/l, respectively.
These isotropic kernels are given by

T
†K (x) � � 2l(x)D (x, T � t):D(x, t) dt, (26)l �

0

T
†K (x) � � j(x) [� � s (x, T � t)] [� � s(x, t)] dt,j �

0

(27)

where

1 1TD � [�s � (�s) ] � (� � s)I,
2 3 (28)
1 1† † † T †D � [�s � (�s ) ] � (� � s )I,
2 3

denote the traceless strain deviator and its adjoint, respec-
tively.

Finally, we may express the Fréchet derivatives in an
isotropic Earth model in terms of relative variations in den-
sity d ln q, shear-wave speed d ln b, and compressional-wave
speed d ln � based on the relationship

d ln q K � d ln l K � d ln j Kq l j

� d ln q K� � d ln b K � d ln � K , (29)q b �

where

K� � K � K � K , (30)q q j l

4 l
K � 2 K � K , (31)b l j� �3 j

4j � l
3

K � 2 K . (32)� j� �j

In later sections we will see numerous examples of shear-
and compressional-wave kernels for various body- and
surface-wave arrivals.

Spectral-Element Method

The spectral-element method (SEM) has been used ex-
tensively to simulate seismic-wave propagation on both
global and regional scales (e.g., Komatitsch and Tromp,
1999, 2002a,b; Chaljub et al., 2003; Komatitsch et al.,
2004). The method combines the geometric flexibility of the
finite-element method with an accurate representation of the
wave field in terms of high-order Lagrange polynomials. It
is straightforward to incorporate surface topography, ba-
thymetry, and topography on internal discontinuities into the
spectral-element mesh. Due to the choice of Lagrange inter-
polation in combination with Gauss–Lobatto–Legendre
quadrature, the mass matrix is exactly diagonal and, there-
fore, it is relatively straightforward to implement the SEM
on parallel computers (Komatitsch et al., 2003).

Our calculation of synthetic seismograms for earth-
quakes in southern California is based on the SEM, which is
described in detail by Komatitsch et al. (2004). The com-
bination of a detailed crustal model and an accurate numer-
ical technique results in generally good fits between data and
synthetic seismograms on all three components at most sta-
tions in the Southern California Seismic Network at periods
of 5 sec and longer (Komatitsch et al., 2004). This provides
us with a good starting point for further improvement of the
3D wave-speed model. A typical 3D simulation for 3-min-
long seismograms takes approximately 40 min on a 72-node
PC cluster. Time shifts of up to 5 sec are needed to align the
data and the synthetics on the transverse component, sug-
gesting significant deviations of the model shear-wave speed
from reality, that is, significant improvements may be
achieved through further inversions. The adjoint methods
discussed in this article makes 3D inversions based on highly
heterogeneous initial models feasible.

Numerical Implementation of the Adjoint Method

From the kernel expressions (30), (31), and (32), it is
obvious that to perform the time integration, simultaneous
access to the forward wave field s at time t and the adjoint
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Figure 1. During the construction of the finite-
frequency sensitivity kernels (30), (31), and (32), one
needs simultaneous access to the forward wave field at
time t and the adjoint wave field at time T � t, where
T denotes the duration of the numerical simulation. In
our implementation this is accomplished by recon-
structing the forward simulation backward in time by
solving the backward wave equations (33)–(35).

wave field s† at time T � t is required, as illustrated in
Figure 1.

This rules out the possibility of carrying both the for-
ward and the adjoint simulation simultaneously in the
spectral-element simulation, where both wave fields would
only be available at a given time t. One apparent solution is
to run the forward simulation, save the whole forward wave
field as a function of space and time, and then launch the
adjoint simulation while performing the time integration by
accessing the time t slice of the adjoint wave field and read-
ing back the corresponding T � t slice of the forward wave
field stored on the hard disk. However, this poses a serious
storage problem because the complete forward field s(x, t)
can be very large when saved at every timestep and every
grid point, especially when the problem is large enough that
parallel computing is involved. One remedy might be to in-
troduce a highly efficient compression scheme to reduce the
storage requirements.

In the absence of attenuation, an alternative approach is
to introduce the backward wave equation, that is, to recon-
struct the forward wave field backwards in time from the
displacement and velocity wave field at the end of the simu-
lation. The backward wave field is determined by

2q� s � � � (c:�s) � f in V, (33)t

s(x, T) and � s(x, T) given , (34)t

n̂ � (c:�s) � 0 on X. (35)

This initial and boundary value problem can be solved to
reconstruct s(x, t) for T � t � 0 the same way the forward
wave equation is solved. Technically, the only difference
between solving the backward wave equation versus solving
the forward wave equation is a change in the sign of the
timestep parameter Dt. (In an attenuating medium, solving
the backward wave equation is numerically challenging be-
cause one needs to “undo” the effects of attenuation. We are
currently experimenting with a number of implementations.)

If we carry both the backward and the adjoint simulation
simultaneously in memory during the spectral-element simu-
lation, as illustrated in Figure 1, we have access to the for-
ward wave field at time t and the adjoint wave field at time
T � t, which is exactly what we need to perform the time
integration involved in the construction of the kernels (30),
(31), and (32). A great advantage of this approach is that
only the wave field at the last timestep of the forward simu-
lation needs to be stored and read back for the reconstruction
of s(x, t) and the construction of the kernels.

For regional spectral-element simulations, because of
the limited size of the computational domain, absorbing
boundary conditions are applied to mimic wave propagation
in a semi-infinite medium. By saving the forward wave field
on the absorbing boundaries at every timestep, we can add
back the absorbed wave field in the backward simulation that

follows the forward simulation. Therefore, by saving the
wave field on the absorbing boundaries and the entire wave
field at the end of the forward simulation, we can reconstruct
the forward wave field in reverse time by solving the back-
ward wave equation, reinjecting the absorbed wave field as
we go along. In the parallel simulation, only those mesh
slices that involve a part of an absorbing boundary need to
access the absorbed field, and obviously the storage require-
ments are relative modest compared with saving the entire
forward field at every timestep. For more details about the
implementation of absorbing boundary conditions in the ad-
joint method, refer to Appendix A.

Application to a 3D Homogeneous Model

For educational purposes, we first implement our ad-
joint method for a 3D homogeneous model, as shown in
Figure 2. The adjoint experiments presented in this section
are the 3D complement to some of the 2D experiments dis-
cussed in Tromp et al. (2005).

The 3D model box has dimension of 500 km � 500 km
on the surface and 60 km in the vertical direction. A hypo-
thetical source and receiver are located at a subsurface depth
of 40 km at a mutual distance of 100 km. For simplicity, we
use a point force with a Ricker wavelet source time function
with a half-duration of 2 sec. Synthetic seismograms, ob-
tained from a spectral-element simulation accurate to a
shortest period of 2 sec, are recorded at the receiver, as il-
lustrated in Figure 3a for an SH (transverse) source and in
Figure 3b for a P-SV (vertical) source. During the forward
simulation, absorbing boundary contributions are saved to
the hard disk, and at the end of the forward simulation the
displacement and velocity of the last time frame are also
recorded on the disk. Next, the adjoint simulation is
launched, and its source is created by cutting the arrival of
interest out of the recorded seismogram and time-reversing
it, as illustrated in Figure 3. The backward equation is solved
simultaneously with the adjoint simulation, starting from the
last frames of displacement and velocity that were saved,
and reinserting the absorbing boundary contribution from
the appropriate timestep. The time integration involved in
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Figure 2. Geometry of the experiment for a homogeneous half-space model with a
compressional-wave speed of 6.3 km/sec and a shear-wave speed of 3.2 km/sec. For
educational purposes, the source and the receiver are located at a depth of 40 km at a
mutual distance of 100 km. The direct P and S rays as well as the surface-reflected SS,
SP, and PS rays are labeled for reference.

the construction of the finite-frequency sensitivity kernels
(30), (31), and (32) is performed on the fly, based on si-
multaneous access to the forward wave field s(x, t) and the
adjoint wave field s†(x, T � t).

Based on this approach, we have computed Fréchet ker-
nels relating finite-frequency travel-time anomalies of P, S,
SS, and PS�SP arrivals to structural perturbations. These
kernels are discussed individually in the next few sections.

S Kernel

The S-wave Fréchet kernel Kb, given by (31), exhibits
a distinctive hollow cigar shape, as shown in Figure 4. Note
the minimal sensitivity along the geometrical ray path as
dictated by the hole in the cigar. Note also that the kernel
has negative sensitivity some distance off the ray path, as
indicated by the red/yellow ring, implying that a positive
anomaly off the ray path causes advance in the finite-
frequency (cross-correlation) travel time. The width of the
related first Fresnel zone is approximately given by kL�
(Dahlen et al., 2000), where k denotes the wavelength and
L the distance between the source and the receiver.

SS Kernel

Similar to the S phase, the Kb Fréchet kernel for the SS
arrival delineates its geometrical ray path, as illustrated in
Figure 5. The kernel displays nearly zero sensitivity kernels
along the geometrical ray path, except near the surface re-
flection point where the two legs of SS fold on top of each
other. Besides the expected sensitivity along the geometric
ray path, an elliptical-shaped locus of points of diffraction
shows up faintly in the source–receiver vertical cross sec-
tion, delineating the points that have the same travel time as

the SS arrival. This illustrates one of the differences between
calculating sensitivity kernels based on an adjoint method
versus an asymptotic ray-based calculation: the adjoint ker-
nels involve all possible regions of sensitivity that contribute
to the arrival of interest, whereas a ray-based sensitivity ker-
nel calculation will only pick out the sensitivities along the
geometrical ray path. Note, however, that the kernel oscil-
lates rapidly in the locus of diffraction points, and this tends
to average out the associated travel-time anomalies.

P Kernel

The Fréchet kernel K� for the P phase, given by (32)
and shown in Figure 6, looks very similar to that of the S
phase (see Fig. 4), except, because of the longer wavelength
of the P phase, the width of the Fresnel zone is larger than
that of the S phase, in accordance with the scaling relation
width .� kL�

PS�SP Kernel

The left column in Figure 7 shows the Fréchet kernels
for the PS phase in terms of density Kq, shear modulus Kl,
and bulk modulus Kj, whereas the right column shows the
Fréchet kernels parameterized in terms of density Kq�, S-
wave speed Kb, and P-wave speed K�. Notice that although
the density kernel Kq defined by (21) shows a strong negative
sensitivity when we use a model parameterization in terms
of density, shear modulus l, and bulk modulus j, the density
kernel Kq� given by (30), corresponding to a parameterization
in terms of density, shear-wave speed b, and compressional-
wave speed �, is practically zero. This reflects the fact that
the travel time is controlled by the wave speed and not the
density. Notice that the Fréchet kernel for the P-wave
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Figure 3. (a) Left column. (Top) Synthetic transverse seismogram for the source–
receiver geometry shown in Figure 2. The direct S and the surface-reflected SS arrival
are indicated. (Middle) Adjoint source for the S arrival. This adjoint source is obtained
by differentiating the S arrival in the top seismogram. (Bottom) Adjoint source for the
SS arrival. (b) Right column. (Top) Synthetic vertical component seismogram in which
the P, PS�SP, and SS arrivals are labeled. (Middle) Adjoint source for the P arrival
obtained by differentiating the P arrival in the top seismogram. (Bottom) Adjoint source
for the PS�SP arrival.

speed is most pronounced along the P legs of the PS�SP
ray path, whereas the kernel for the S-wave speed is mainly
sensitive around the S legs of the PS�SP ray path. This
example illustrates that the adjoint approach can be used to
invert waveforms that consist of multiple arrivals, because
the resulting kernel will clearly reflect the main contributions
to the waveform.

Application to a 3D Southern California Model

In this section we use the adjoint method to calculate
finite-frequency sensitivity kernels for a 3D integrated south-
ern California model. The model consists of a detailed Los
Angeles basin model developed by Süss and Shaw (2003)
embedded in the Hauksson (2000) regional tomographic
background model. This model was evaluated extensively
by Komatitsch et al. (2004) and is currently used for centroid
moment-tensor inversions based on the 3D source inversion
technique introduced by Liu et al. (2004). The synthetics

produced by this model generally fit the data reasonably well
at periods of 5 sec and longer throughout the entire region,
and up to 2 sec and longer within the Los Angeles basin.

We will be studying Fréchet kernels for body- and
surface-wave arrivals generated by the 3 September 2002,
Yorba Linda earthquake, which occurred at a depth of
6.8 km (Liu et al., 2004). Figure 8 shows a topographic map
of southern California with major late Quaternary faults in-
dicated by black lines. The blue boxes indicate the range of
the detailed Los Angeles basin model developed by Süss and
Shaw (2003) and the Salton Trough model developed by
Lovely et al. (2006), which are embedded in the Hauksson
(2000) regional model. Red triangles indicate the stations for
which body-wave and surface-wave kernels are presented.

P Kernels

Three-dimensional P-wave Fréchet kernels and corre-
sponding model cross sections are shown in Figure 9 for
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Figure 4. S sensitivity kernel Kb for the ray geometry shown in Figure 2. (Top left)
Combined vertical and horizontal cross sections through the source and receiver illustrating
the hollow cigar-shaped kernel. (Top right) Vertical cross section perpendicular to the middle
of the source–receiver line illustrating the “doughnut hole” in the middle of the kernel.
(Bottom left) Vertical cross section through the source and receiver showing the cigar shape
of the kernel. (Bottom right) Horizontal cross section through the source and receiver. All
the kernels shown in this article have the unit of 10�12 sec/m3.

Figure 5. SS sensitivity kernel Kb for the ray geometry shown in Figure 2. (Top left)
Combined vertical and horizontal cross sections through the source and receiver looking up
to the free surface. (Top right) Vertical cross section perpendicular to the middle of the
source–receiver line illustrating the “doughnut hole” in the middle of the kernel. (Bottom
left) Vertical cross section showing the “folded-over cigar” shape of the kernel. (Bottom
right) Horizontal cross section at the surface.
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Figure 6. P sensitivity kernel K� for the ray geometry shown in Figure 2. (Top left)
Combined vertical and horizontal cross section through the source and receiver. (Top
right) Vertical cross section perpendicular to the middle of the source–receiver line
illustrating the doughnut hole in the middle of the kernel. (Bottom left) Vertical cross
section showing the cigar shape of the kernel. (Bottom right) Horizontal cross section
through the source and receiver.

stations DLA and OLP. The P arrival at station DLA, which
is about 32 km from the epicenter, consists primarily of the
direct P wave, and therefore its sensitivity kernel shows the
characteristic, simple banana-doughnut shape with some mi-
nor variations caused by 3D heterogeneity. In stark contrast,
the P arrival at station OLP, at an epicentral distance of
165 km, is the Pnl wave train, that is, the combination of the
Pn and PL phases (Helmberger and Engen, 1980). Most of
the Pnl sensitivity is along the Pn ray path, which dives down
from the source to the Moho, runs along the Moho, and then
comes up to the receiver. The magnitude of the sensitivity
kernel is largest along the upgoing and downgoing legs of
the ray path and relatively small along the refracted portion
the ray path. Notice in the model cross section that the Moho
slopes toward the receiver, which is reflected in the sloping
sensitivity kernel. Another noticeable feature is near-surface
sensitivity to the left of the receiver, indicating body-to-
Rayleigh-wave conversions. This example illustrates that
fully 3D numerical methods must be used in the construction
of finite-frequency sensitivity kernels for complicated Earth
models.

S Kernels

Three-dimensional S-wave sensitivity kernels for sta-
tions GSC and HEC are shown in Figure 10. Because it is
more difficult to isolate a clean S arrival for the adjoint
source than the P wave, the S kernels are generally not as
clean and sharp as those for the P wave. At station GSC, at
an epicentral distance of 176 km, the Moho-reflected SmS
phase and the Moho-refracted Sn phase arrive very close to
each other. Therefore, the kernel for the S wave includes
contributions from both phases, which cannot be separated

from each other. At station HEC, at an epicentral distance
of 165 km, the S-wave kernel is mainly composed of the SmS
phase. These kernels serve as an illustration of one of the
main advantages of computing sensitivity kernels using ad-
joint methods: by simply selecting a waveform of interest in
the seismogram as the adjoint source we automatically de-
termine all the structural parameters that affect it without
prior knowledge of the contributing phases nor their ray
paths.

Surface-Wave Kernels

Unlike the homogeneous model with buried source and
receiver shown in Figure 2, the 3D southern California
model generates surface waves along the free surface. These
waves are mostly sensitive to near-surface structure between
the source and the receiver, as illustrated in Figure 11 for
Rayleigh and Love waves recorded at station HEC at an
epicentral distance of 165 km from the 3 September 2002,
Yorba Linda earthquake. Notice the large 3D variations on
the surface along the path connecting the surface projections
of the source and receiver due to both topographic and wave-
speed variations. Although the kernels shown in Figure 11
are simple finite-frequency surface-wave kernels, it is
straightforward to make frequency-dependent phase and am-
plitude measurement for these wave trains and generate
Fréchet sensitivity kernels for individual phase measure-
ments, as discussed by Zhou et al. (2004).

Tomographic Inversions

The adjoint approach introduced in this article may be
used to relate changes in a misfit function, dv, to relative



2392 Q. Liu and J. Tromp

Figure 7. PS�SP sensitivity kernels for the ray geometry shown in Figure 2. (Top
left) Kl sensitivity kernel defined by (26). This kernel reflects the S legs of the PS�SP
arrival. (Middle left) Kj sensitivity kernel defined by (27). This kernel reflects the P
legs of the PS�SP arrival. (Bottom left) Kq sensitivity kernel defined by (21). This
kernel shows large negative values related to the model parameterization in terms of
density, shear modulus l, and bulk modulus j. (Top right) Kb sensitivity kernel defined
by (31). This kernel reflects the S legs of the PS�SP arrival. (Middle right) K� sen-
sitivity kernel defined by (32). This kernel reflects the P legs of the PS�SP arrival.
(Bottom right) Kq� sensitivity kernel defined by (30). This kernel shows hardly any
sensitivity to density perturbations because we are measuring travel-time anomalies
and the model is parameterized in terms of density, shear-wave speed b, and compres-
sional-wave speed �. The nearly-zero Kq� reflects the fact that the travel time is not
affected by density but rather by wave speed.

model perturbations, d ln m � dm/m, through a general re-
lationship of the form

3dv � K (x) dln m(x) d x, (36)m�
where Km denotes the associated 3D sensitivity or Fréchet
kernel. As discussed extensively by Tromp et al. (2005), the
misfit kernel Km may be thought of as a weighted sum of
banana-doughnut kernels, with weights determined by the
measurements, for example, cross-correlation travel-time
anomalies.

It is important to recognize that in the adjoint approach
we do not need to calculate individual banana-doughnut ker-
nels for each measurement. If Nevents denotes the number of
earthquakes, Nstations the number of stations, and Npicks the
number of measurements at that station, such an approach

would require Nevents � Nstations � Npicks simulations, that
is, one simulation for each banana-doughnut kernel corre-
sponding to one particular pick. For a given earthquake,
the adjoint approach is to measure as many arrivals as pos-
sible on three components at all available stations. Ideally,
every component at every station will have a number of
arrivals suitable for measurement, for example, in terms of
frequency-dependent phase and amplitude anomalies. Dur-
ing the adjoint simulation, each component of every receiver
will transmit its measurements in reverse time, and the in-
teraction of the so generated adjoint wave field with the for-
ward wave field results in a misfit kernel for that particular
event. This “event kernel” is essentially a sum of weighted
banana-doughnut kernels, with weights determined by the
travel-time anomaly, and is obtained based on only two 3D
simulations, the forward simulation and the adjoint simula-
tion, which carries both the adjoint wave field and the back-
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Figure 8. Topographic map with shaded relief of
southern California showing the range of the 3D in-
tegrated model used for the spectral-element simula-
tions. The major late Quaternary faults (Jennings,
1975) are indicated by the black lines. The blue boxes
indicate the medium- and high-resolution Los Ange-
les basin models developed by Süss and Shaw (2003)
and the Salton Trough model developed by Lovely et
al. (2006), which are embedded in the Hauksson
(2000) regional model. The epicenter and the source
mechanism of the 3 September 2002, Yorba Linda
earthquake are indicated by the beach ball (Liu et al.,
2004), and the stations for which finite-frequency ker-
nels are calculated are indicated by red triangles.

reconstruction of the forward wave field, and in total takes
approximately three times the computation time of a regular
forward simulation. By summing these event kernels one
obtains the “summed event kernel,” which highlights where
the current 3D model is inadequate and enables one to obtain
an improved Earth model, for example, based on a conjugate
gradient approach. The number of 3D simulations at each
conjugate gradient step scales linearly with the number of
earthquakes Nevents but is independent of the number of re-
ceivers Nstations or the number of measurements Npicks. Every
iteration of the conjugate gradient method requires one for-
ward and one adjoint calculation for each earthquake to ob-
tain the value of the misfit function and its gradient for the
current model, and one forward simulation for each event
for a “trial” model, that is, a model in the direction of the
gradient, to obtain the value of the misfit function at this trial
location. A quadratic polynomial may then be used to de-
termine the minimum of the misfit function in the search
direction, which forms the starting point of the next iteration.
Thus one conjugate gradient iteration requires a total of
3Nevents spectral-element simulations. Alternatively, at the

cost of Nevents more adjoint simulation, one may choose to
evaluate both the misfit function and its gradient at the trial
location. In that case a cubic polynomial may be used to
determine the minimum of the misfit function in the search
direction, and a total of 4Nevents spectral-element simulations
is required. Both conjugate gradient approaches are dis-
cussed in detail for 2D problems in Tape et al. (2006).

Conclusions

Based on a Lagrange multiplier technique, we have de-
veloped and implemented an adjoint method for the calcu-
lation of finite-frequency sensitivity kernels for 3D reference
Earth models. We have demonstrated that such Fréchet ker-
nels may be obtained based on just two 3D simulations: one
forward simulation to determine the current fit of the syn-
thetic seismograms to the data, and a second, adjoint simu-
lation in which a measurement of the remaining differences
between the data and the synthetics is used in reverse time
to generate a wave field that originates at the receiver(s).
The interaction between the regular and adjoint wave fields
determines the sensitivity kernels.

The main advantages of our adjoint approach are five-
fold. First, the kernels are calculated on-the-fly by carrying
the adjoint wave field and the regular wave field in memory
at the same time. This doubles the memory requirements for
the simulation but avoids the storage of Green’s functions
for all events and stations as a function of space and time.
One only has to store the final frame of the forward simu-
lation plus the wave field that is absorbed on the artificial
boundaries of the domain. (At the scale of the globe there
are no absorbing boundaries and thus one only needs to store
the final frame of the forward simulation.) Second, the ker-
nels can be calculated for fully 3D reference models, some-
thing that is critical in highly heterogeneous settings, for
example, in regional seismology or exploration geophysics.
Third, the approach scales linearly with the number of earth-
quakes but is independent of the number of receivers and
the number of arrivals that are used in the inversion. Thus
one should use all available stations and make as many mea-
surements as possible. Fourth, any time segment where the
data and the synthetics have significant amplitudes and
match reasonably well is suitable for a measurement. One
does not need to be able to label the phase, for example,
identify it as P or SSS, because the adjoint simulation will
reveal how this particular measurements “sees” the Earth
model, and the resulting 3D sensitivity kernel will reflect
this view. Finally, the cost of the simulation is independent
of the number of model parameters, that is, one can consider
fully anisotropic Earth models with 21 elastic parameters for
practically the same numerical cost as an isotropic simula-
tion involving just two parameters. Soon, we plan to use the
adjoint method developed and implemented here to perform
3D tomographic inversions.
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Figure 9. (a, top) Vertical source–receiver cross section of the P-wave finite-
frequency sensitivity kernel K� at station DLA station at an epicentral distance of 32 km
from the 3 September 2002, Yorba Linda earthquake. Red colors denote negative sen-
sitivity and blue colors denote positive sensitivity. The locations of the source and
receiver are indicated by white circles. At this relatively short epicentral distance the
kernel looks like a classical “banana-doughnut” kernel. (Bottom). Vertical source–
receiver cross section of the 3D P-wave velocity model used for the spectral-element
simulations (Komatitsch et al., 2004). The locations of the source and receiver are
indicated by the white circles. (b) The same as (a) but for station OLP at an epicentral
distance of 165 km. At this relatively larger distance the P-wave kernel reflects a
combination of the Pn and PL waves.

Figure 10. (a, top) Vertical source–receiver cross section of the S-wave finite-
frequency sensitivity kernel Kb for station GSC at an epicentral distance of 176 km
from the 3 September 2002, Yorba Linda earthquake. (Bottom) Vertical source–
receiver cross section of the 3D S-wave velocity model used for the spectral-element
simulations (Komatitsch et al., 2004). (b) The same as (a) but for station HEC at an
epicentral distance of 165 km.
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Figure 11. (a) Map view of the finite-frequency K� kernel for the Rayleigh wave
at station HEC (indicated by the white circle) generated by the 3 September 2002,
Yorba Linda earthquake. (b) Map view of the finite-frequency Kb kernel for the Love
wave at HEC for the same earthquake.
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Appendix A

Absorbing Boundaries

A regional Earth model has both a free surface R and
an artificial boundary C, such that the model volume X has
a boundary �X � R � C. On the artificial boundary C,
energy needs to be absorbed to mimic a semi-infinite me-
dium. In an isotropic medium, this may be accomplished
based on a paraxial equation (Clayton and Engquist, 1977;
Quarteroni et al., 1998):

n̂ � T � q[�(n̂n̂) � b(I � n̂n)ˆ ] � � s � B � � s on C,t t

(A1)

thereby defining the tensor B. The unit outward normal to
the absorbing boundary is denoted by n̂, � denotes the P-
wave speed, b denotes the S-wave speed, and I denotes the
3 � 3 identity tensor. The absorbing boundary condition
(A1) perfectly absorbs waves impinging at a right angle to
the boundary, but is less effective for waves that graze the
boundary (Clayton and Engquist, 1977). A much more ef-
fective absorbing boundary may be obtained based on the
perfectly matched layer (PML) methodology (Bérenger,
1994; Collino and Tsogka, 2001; Komatitsch and Tromp,
2003; Festa and Vilotte, 2005). The PML approach amounts
to solving an alternative wave equation in a thin shell sur-
rounding the artificial boundary C that perfectly absorbs en-
ergy leaving the model domain X. One can obtain the adjoint
equations associated with the PML region, but this is beyond
the scope of this article. For the purposes of the present
discussion the simpler one-way condition (A1) will suffice.

In the variation of the action (9) the boundary integral
represented by the last term needs to be split in terms of
contributions from the free-surface R and the absorbing
boundary C:

T
2k � [n̂ � (dc:�s � c:�ds)] � n̂ � (c:�k) � ds d x dt� �

0 �X

T
2� k � [n̂ � (dc:�s � c:�ds)] � n̂ � (c:�k) � ds d x dt� �

0 �

T
2� k � [n̂ � (dc:�s � c:�ds)] � n̂ � (c:�k) � ds d x dt.� �

0 C

(A2)

Perturbing the free-surface boundary condition (4) implies
n̂ • (dc: �s � c: �ds) � 0 on R, and perturbing the absorbing

boundary condition (A1) implies n̂ • (dc: �s � c: �ds) �
dB • �ts � B • �tds on C. Without loss of generality, we are
of course free to choose our artificial boundary C such that
the perturbation dB vanishes: dB � 0, for example, by ta-
pering the perturbed model parameters to zero. Upon inte-
grating the temporal integration on the absorbing boundary
C by parts we obtain

T
2k � [n̂ � (dc:�s � c:�ds)] � n̂ � (c:�k) � ds d x dt �� �

0 �X

T
2 2� n̂ � (c:�k) � ds d x dt � [k � B � ds] d xT� � �

0 � C

T
2� [n̂ � (c:�k) � B � � k] � ds d x dt. (A3)t� �

0 C

Thus we see that for the action (10) to vanish the Lagrange
multiplier field is subject to the free-surface condition

n̂ � (c:�k) � 0 on �, (A4)

and the absorbing boundary condition

n̂ � (c:�k) � �B � � k on C, (A5)t

where we have used the end conditions (13). This implies
that the adjoint wave equation (16) is subject to the free-
surface boundary conditions

†n̂ � T � 0 on �, (A6)

and the absorbing boundary condition

† †n̂ � T � B � � s on C. (A7)t

We deduce that the adjoint wave field is determined by ex-
actly the same equations as the regular wave field, with the
exception of the source term.

Appendix B

Finite Source

In the case of a finite fault plane Rs, the source term may
be written in terms of the moment-density tensor m as

f � �m (x , t) � �d(x � x ) on � . (B1)s s s

The perturbation to the finite source (B1) may be written in
the form

df � �dm � �d(x � x ) � dh m � [m̂ � ��d (x � x )],s s

(B2)
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where dm denotes the perturbed moment-density tensor and
the fault plane mislocation dh in the direction of the faultdhm̂

normal . Upon substituting (B2) into the gradient of them̂
misfit function (20), using the properties of the Dirac delta
distribution, we obtain

3dv � (dqK � dc::K ) d xq c�
X

T
† 2� dm(x, t):e (x, T � t) dx dt (B3)� �

0 �s

T
† 2� dh(x)m(x, t):[m̂ (x) ��]e (x, T � t) dx dt.� �

0 �s

This result may be used to improve finite-fault models of
large earthquakes. Note that if one is not concerned about
perturbations in Earth structure, one only needs to track the
time dependence of the adjoint strain e† in the vicinity of the
fault plane.
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