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Abstract. An important assumption in many linear mixed models is that the

conditional distribution of the response variable is normal. This assumption

is violated when the models are fitted to an outcome variable that counts the

number of correctly answered questions in a questionnaire. Examples include

investigations of cognitive decline where models are fitted to Mini-Mental State

Examination (MMSE) scores, the most widely used test to measure global cog-

nition. MMSE scores take integer values in the 0-30 range, and its distribution

has strong ceiling and floor effects. This paper explores alternative distribu-

tions for the outcome variable in mixed models fitted to MMSE scores from a

longitudinal study of ageing. Model fit improved when a beta-binomial distri-

bution was chosen as the distribution for the response variable.

1. Introduction

The Mini Mental State Examination (MMSE, [1]) is a test that was originally

designed to provide a brief and standarised assessment of mental status in psychi-

atric patients. However, it has become the most widely used test to assess global

cognition in older individuals. It consists of a set of questions devised to assess cog-

nitive domains such as memory, language, attention and orientation for time and

place. Each of the individual questions is scored as 1 if correctly answered and 0 if

not, and the final MMSE score, an integer in the range 0-30, is calculated adding

up these scores. High values indicate good cognition. Individuals with scores in

the 25-30 range are said to have normal cognitive function, individuals with scores
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between 24 and 10 are said to be cognitive impaired, whilst scores below 10 are

indicative for dementia.

The MMSE is known to have a skewed distribution and strong ceiling and floor

effects [2]. Ceiling effects happen when tests are relatively easy, and a substantive

group of individuals obtain maximum or near maximum scores and cannot demon-

strate their true ability [3]. Floor effects are similar to ceiling effects but at the

other end of the cognitive spectrum. In the presence of floor and ceiling effects,

variability amongst individuals is underestimated as the identification of differences

amongst high or poor scorers is limited.

Examinations of cognitive decline are often conducted by fitting linear mixed

models [4]. Linear mixed models take into account correlated data, are flexible in

handling missing data and permit the investigation of between and within individual

changes. An assumption often made when fitting these models is that, conditional

on the random effects, the response variable is normally distributed. When linear

mixed models are fitted to MMSE scores, this assumption is likely to be violated

due to the discrete nature of the sum scores, their skewed distribution and floor

and ceiling effects. Proposals found in the literature to satisfy the normality as-

sumption of linear mixed models fitted to MMSE scores include transformations

of the scores such as
√

31−MMSE [5] and log(31 − MMSE) [6]. Others have

suggested the analysis of a composite measure obtained from the combination of

z-scores calculated using results from more than one cognitive test [7]. However,

difficulties arising from the interpretation of results from models fitted to trans-

formed scores and the fact that in many studies researchers lack results from more

than one cognitive test, make these proposals unappealing to many investigators.

More importantly, these solutions do not acknowledge the discrete nature of the

cognitive scores.

Linear regression and other regression-based models such as generalised linear

models [8] and generalised additive models [9] assume an exponential family distri-

bution for the response variable. The mean µ of the response variable is modelled as
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a function of explanatory variables, and the variance depends on a constant disper-

sion parameter or on µ. Extensions to mixed-effects models such as linear mixed

models, generalised linear mixed models and generalised additive mixed models

maintain the exponential family distribution assumption for the response variable

and only seldom allow the modelling of the variance as a function of explanatory

variables.

Generalised additive models for location, scale and shape (GAMLSS, [11]) were

developed to incorporate a wide range of regression-based models, and, in addition,

to relax the assumption of the exponential family distribution for the response

variable. GAMLSS allow regression equations for all the parameters of the distri-

bution for the response variable. The equations may include linear functions of

the explanatory variables, additive functions, and random effects. GAMLSS mod-

els have been implemented in the freely available R package gamlss [11], see also

http://gamlss.org.

In this paper we propose to investigate the choice of the conditional distribu-

tion of the response variable in mixed models fitted to longitudinal MMSE scores.

We will show that replacing the often used continuous normal distribution by the

discrete binomial and beta-binomial distributions leads to improved statistical in-

ference. We envisage that similar improvement can be attained in many other

applications in medical statistics where the response variable in a mixed regres-

sion model is discrete and its conditional distribution is poorly approximated by a

normal distribution.

The paper is organised as follows. Section 2 introduces the data from the Cam-

bridge City over 75 Cohort Study. In Section 3, models, estimation, and model fit

are discussed. Section 4 presents the data analysis. Section 5 is the discussion.

2. Data

The Cambridge City over 75 Cohort Study (CC75C) is a prospective study of

a representative population sample of around 2600 people aged 75 years and older



4 G. MUNIZ, A. VAN DEN HOUT, R.RIGBY, AND STASINOPOULOS

at the beginning of the study, in 1985. The study was designed with the aim of

conducting research on topics such as prevalence and incidence of dementia, and the

investigation of risk factors for cognitive decline, neuropsychology and depression.

Originally, all patients registered in six general practices in the city of Cambridge

who were aged 75 years old and over on April 1st, 1985, were considered. One in

three patients from another general practice were also sampled. In this practice,

with the purpose of avoiding sampling bias, it was specially verified that the age of

those sampled and those not sampled were very similar. Patients living in residen-

tial and nursing homes were not excluded. Selected individuals were then invited

to take part in the study by their doctors. The 2611 individuals who accepted

the invitation constituted 95% of those invited. All remaining participants had

a screening interview carried out by a trained interviewer where patients’ details,

family contacts, health status and use of health services were recorded.

The screening interview was followed by a more detailed clinical interview of all

individuals scoring 23 or less on the MMSE and a third of those with scores of 24

and 25 points. Further waves of interviews were carried out to establish incidence

of dementia. After the baseline interview, survivors have had up to six follow-up

interviews conducted, on average, 2, 7, 9, 11,13 and 17 years later. Marital status,

social networks, use of social services, physical abilities, and other sociodemographic

information was collected (see the study’s webpage www.cc75c.cam.ac.uk for more

details) at baseline and other survey interviews. Of the 2075 study participants

with valid scores at baseline, 65% were women, and 50% had a physical disability

at baseline.

For our investigation, we examined data from a randomly selected sample of 360

men aged between 75 and 80 years old at baseline. Sixty-five per cent of the men

left school aged younger than 15 years old. At the different interviews, the number

of men in the sample with MMSE scores of 30 were 24, 16, 9, 7, 3 and 1 individuals,

respectively. Scores above 27 MMSE points were obtained by 248, 127, 60, 39, 12, 6

and 1 person, respectively, at the different study interviews. Table 1 shows further
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Table 1. Number of men interviewed, mean (and standard devi-
ation) of MMSE scores and age of men at each of the seven study
interviews

Years after
initial interview N MMSE Age
Baseline 360 26.7 (2.9) 77.5 (1.3)
2 213 26.2 (2.9) 79.8 (1.3)
7 133 24.9 (4.3) 83.4 (1.3)
9 80 25.0 (4.4) 86.3 (1.3)
11 38 23.5 (5.7) 89.7 (1.4)
13 13 22.7 (8.0) 93.0 (1.0)
17 2 26.5 (3.5) 96.4 (0.6)

Figure 1. MMSE trajectories plotted as a function of age in the
sample of CC75C male study participants aged 75-80 years old at
baseline
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characteristics of the MMSE scores and age of the men in the sample examined

over the study interviews.

Figure 1 shows MMSE scores plotted as a function of age for all men in the sample

and illustrates the features of the MMSE distribution as it shows the substantial

number of individuals with high MMSE scores.

3. Methods

3.1. Models. GAMLSS are formulated with four parameters for the conditional

distribution of the response. As an example, the standard linear regression model
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is included and has two distribution parameters, one for the mean, and one for the

variance. Generalised linear models are also included. The binary logistic model,

for example, has a logit link and one parameter for the binomial distribution for

the binary response.

We start by formulating GAMLSS in a general way. Let yi, i = 1, ..., n, be

conditional independent observations with density function f(yi|θi), with θi =

(θi1, θi2, θi3, θi4) a vector of four distribution parameters (location, scale, and two

shape parameters). Let the index k correspond with these four distribution param-

eters. For each k = 1, ..., 4 a monotonic link function gk(·) can specified relating

the distribution parameter vector θk = (θ1k, ..., θnk) to predictor ηk = (η1k, ..., ηnk).

The four regression equations in GAMLSS are given by

(1) gk(θk) = ηk = Xkβk +
Lk∑

l=1

Zlkγlk for k = 1, 2, 3, 4,

where βk is a vector with regression coefficients for the known design matrix Xk,

Zlk is a known n× qlk design matrix and γlk is a qlk dimensional random variable

the distribution of which is parameterised by a qlk×qlk symmetric matrix that may

depend on hyperparameters.

The vectors γjk could be combined in a single vector with a single matrix, which

would remove the summation in (1). However, in line with the original model

formulation in [11], we maintain the formulation in (1), which also better shows

that different types of random-effects terms can be included in the model.

To obtain the standard linear regression model, θi = (θi1, θi2) = (µi, σi), g1(·) is

the identity link, g2(·) is the log link, η1 = X1β1, and η2 = β2, and f(yi|θi) is the

density of a normal distribution. To obtain the binary logistic model, θi = θi1 = µi,

g1(·) is the logit link, η1 = X1β1, and f(yi|θi) is the probability mass function of

a binomial distribution.

A semiparametric additive model can be expressed by choosing Zjk = In, where

In is a n×n identity matrix, and γjk = hjk(xjk), where xjk for j = 1, 2, . . . , Jk are
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vectors of length n. The function hjk(xjk) evaluates the unknown function hjk at

the design vector xjk. For more details and additional examples, see [11].

In this paper, we consider random-effects GAMLSS where the regression equation

for the location θ1 = µ is given by g1(µ) = η1 = X1β1 +
∑2

l=1 Zl1γl1. Four

different distributions for the response variable will be investigated: the normal

distribution (Model 1), the Student t-family distribution (Model 2), and two discrete

distributions, namely the binomial distribution (Model 3) and the beta-binomial

distribution (Model 4).

In Model 1, g1(·) is the identity link, and g2(·) is the log link for the scale

parameter θ2 = σ. In Model 2 the same links are used plus one extra log link for

the second scale parameter. In Models 3 and 4, g1(·) is the logit link. In Model 4,

g2(·) is the log link for the scale parameter of the beta-binomial distribution. Note

that there is no scale parameter for the binomial distribution.

We elucidate the choice of Models 1 up to 4. Model 1 is the starting point as

this model is often used in analyses of MMSE scores and we want to show that we

can do better. Model 2 with the t-family distribution was chosen in consideration

of the fact that the data may exhibit heavier tails than in the normal distribution.

The normal and t-family distributions in Models 1 and 2 are likely to produce fitted

values outside the range of the MMSE due to the ceiling effects. This introduces

a dependence between residuals and fitted values which is a violation of the model

assumptions. With respect to practice, note that predicted values of MMSE outside

the original range 0-30 do not have a clear interpretation.

Models 3 and 4 appreciate the discrete nature of the response variable. The beta-

binomial distribution can be used if there is overdispersion that is not captured

by the binomial. Hence the extra scale parameter in the beta-binomial. This

distribution is a mixture distribution. First assume that the response variable Y

follows a binomial distribution, Bin(m,π), with m = 30. Then, assume that π has

a beta distribution with parameters α, β > 0. Marginally, averaging over the beta
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distribution for π, Y follows a beta-binomial distribution with density function

p(y|α, β) =




m

y


 B(α + y, m + β − y)

B(α, β)
,

where B(α, β) is the beta function. With definitions µ = α/(α + β) and σ =

1/(α+β), the beta-binomial distribution for Y has first and second moments given

by E(Y ) = mµ and var(Y ) = mµ(1− µ)[1 + (m− 1)σ/(1 + σ)], respectively.

The standard choice of the distribution of random effects in a regression equation

is a multivariate normal. Here, we relax this parameteric assumption and estimate

the distribution by using a non-parametric mixing distribution. For generalised

linear models, this approach is discussed in [14] and [16]. Note that Model 4 is not

a generalised linear model since the beta-binomial model is not a member of the

exponential family.

3.2. Statistical inference. Models were estimated by non-parametric maximum

likelihood (NPML) using the EM algorithm [16] as implemented in the GAMLSS

software. In NPML, the non-parametric mixing distribution for the random effects

is discrete on an unknown finite number K of mass points zk, with masses pk. The

likelihood is given by

p(y) =
n∏

i=1

K∑

k=1

pkp(yi|zk)

Number of components K, mass points zk, and masses (or mixture proportions)

pk are unknown and are estimated from the data. Although K is unknown, it is

treated as fixed when estimating the models. The EM algorithm consists of an

M-step in which the zk and fixed-effects are estimated, and the E-step in which

the probability that an observation comes from component k is estimated for all

observations and all k. Details of the estimation can be found in [11] and [16].

The optimal K is chosen by comparison of global deviance (minus two times

the maximised logliklihood function) and the Akaike’s Information Criterion (AIC)

[15]. These comparisons are made heuristically as large-sample normality of the
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likelihood function is an assumption that fails for mixture likelihoods, see [16],

Section 7.6. Only large differences in the global deviances and the AIC will be

taken into account.

Since there is no satisfactory way of statistically testing competing models, as-

sessment of residuals is used as an additional tool for model comparison. Residuals

are derived from fitted values, and the latter can be assessed at two levels in our

NPML models. We distinguish marginally fitted values that are computed using

the marginal mixture proportions p1, ..., pK , and within-group fitted values that are

computed using individual-specific mixture probabilities.

The term within-group is used in a similar way in parametric mixed-effects models

(cf. [23], Section 4.3). In our case, the group is defined by the observations within

one individual.

Individuals are indexed by j, and the number of observations for individual j

by nj . The mixture probability is denoted wjk and it is the probability that the

observations yj1, ..., yjnj for individual j come from component k. Define m̂jk =
∏nj

r=1 p(yjr|ẑk), where p(yjr|ẑk) is the density defined by the NPML model given

the estimated mass points zk. The estimator of wjk is given by

ŵjk =
p̂km̂jk∑K
l=1 p̂lm̂jl

,

see [16], Section 9.3. The corresponding within-group fitted values are ŷjr =
∑K̂

k=1 ŵjkg−1
1 (η̂jrk), where η̂jrk is the linear predictor defined by component k,

and g1() is the first link function in the GAMLSS formulation. The marginally

fitted values are obtained by replacing ŵjk with p̂k.

The within-group fitted values and the corresponding residuals are not provided

by the current GAMLSS implementation in the package gamlss, but the additional

code can be obtained by contacting the authors.

For Models 3 and 4, randomised quantile residuals [24] are defined using the

observed values and the within-group fitted values. Due to the link function in

these models, assessing directly the difference between observed values and the
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within-group fitted values is of limited value as there is no obvious distribution for

these differences. The randomised quantile residuals, on the other hand, should

follow a standard normal distribution if the model is correct.

4. Analysis

The location of the chosen distribution in GAMLSS for the MMSE scores was

modelled using predictors with linear and quadratic functions of age. Intercept and

the slope for the linear function of age are modelled as random effects using NPML.

For linear mixed models with parametric distributions of random effects, com-

paring linear and quadratic functions of age in a study of cognitive change was also

undertaken in [12]. The analyses in this section extends [12] in two ways: different

choices for the distribution of the response, and relaxing the parametric distribution

for the random effects by replacing it by a discrete mixture distribution.

To be able to interpret the intercept in Models 1 and 2 as the predicted MMSE

at age 75, i.e., the minimum age at the beginning of the study, we substracted 75

from each individual’s age at each interview. Following evidence of the effect of

education on cognitive function in old age [13], we adjusted the model’s intercept

and slope (rate of change per extra year of older age) for education. With this

aim, we created a binary variable that took the value of 1 if the individual had left

school aged younger than 15 years old (average age at which individuals left school

in this study) and 0 otherwise.

For brevity, we only present the formulation of the models where observed scores

are linked to a linear function of age. The extension to quadratic function with a

fixed effect for the quadratic term is straightforward.

Model 2 has an extra equation with the log link for the second scale parameter,

namely g3(νj) = log(νj) = αν .

For Model 4, the equations for the location and scale are given by

g1(µjt) = logit(µjt) = (β1j + β2Educj) + (β3j + β4Educj)Agejt

g2(σj) = log(σj) = βσ.
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where β1j and β3j are the random effects, and Agejt as before. Model 3 has the

same equation for the location, but has no scale parameter.

Although we have use the same notation for the parameters in the equations,

these parameters should of course be interpreted within each of the models.

All models were fitted with the number of mass points K increasing from 4 up

to a maximum of 10 . We limited the number of components fitted to 10 as a model

with more than 10 mixture components would have resulted in a model with several

components with very few individuals and low probabilities. Consistently, Akaike

Information Criterion (AIC) and BIC values corresponding to models where the

location was linked to a linear function of age were lower than those corresponding

to models where the scores where modelled as a quadratic function of age. AIC

is a measure of model fit calculated as AIC = −2Ln(lik) + 2K, where lik is the

maximised likelihood and K the number of model parameters whilst the Bayesian

Information Criterion (BIC) are calcualted as BIC = −2Ln(lik) + Klog(N) with

K as before and N the number of individuals. Hence, given the AIC and BIC

values,we omit results from the quadratic models.

Table 2 shows global deviance (−2×loglikelihood), number of parameters, AIC

and BIC values and the number of iterations required to achieve convergence of

the EM algorithm as implemented in gamlss for each of the models fitted. For

example, Model 1 with the normal distribution and K = 4 has 14 parameters: 4

mass points for the random intercept, 4 mass points for the random slope for age, 2

fixed effects for education, 3 independent parameters for the mixture proportions,

and 1 parameter for the variance.

For the continuous distributions in Table 2 there is a considerable drop in global

deviance when K is increased from 4 to 6. However, the real gain is by switching to

a discrete distribution. According to the AIC, an eight-component beta-binomial

model fitted the data best. Figure 2 shows the estimated marginal means of the

K = 8 classes for this model. Note that the curve that has a steep decline has a very

small weight, namely 0.005. The BIC value corresponding to an eight-component
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Table 2. Summary statistics for NPML Models 1 up to 4 with
increasing number of mixture components.

Number of Number of Global
Distribution K iterations parameters Deviance AIC BIC
Normal 4 62 14 4607.2 4235.2 4701.6

6 175 20 4584.5 4624.5 4719.4
8 28 26 4556.0 4608.0 4731.3
10 86 32 3993.0 4057.0 4208.4

t-Family 4 10 15 3959.0 3989.0 4060.0
6 16 21 3905.7 3947.7 4047.1
8 23 27 3867.2 3927.2 4069.1
10 13 33 3867.2 3939.3 4106.6

Binomial 4 12 13 3846.7 3872.7 3934.3
6 34 19 3764.1 3802.1 3991.9
8 21 78 3827.4 3877.4 3995.7
10 23 31 3737.5 3799.5 3946.1

Beta 4 20 14 3816.0 3844.0 3910.2
Binomial 6 32 20 37740 3814.2 3908.8

8 27 26 3741.5 3793.5 3916.5
10 21 32 3734.1 3798.1 3949.5

beta-binomial model is not the lowest, although the difference in BIC values between

the eight component and the models with the next lowest BIC values is not large.

The advantage of using discrete distributions is supported by the inspection of

the residuals plots in Figure 3. The residuals for the normal model with K =

10 show a dependency on fitted values: for predicted values in the range 28-29,

residuals are smaller than for instance in the range 20-25. It is also clear that the

residuals are not standard normally distributed.

For the randomised quantile residuals for the binomial with K = 10 and the beta-

binomial model with K = 8, Figure 3 show that residuals are standard normally

distributed and the plots illustrate good fit for these models.

Estimated masses, and estimated mass points for the intercept and slope are

presented in Table 3 for the best fitting models for each of the four distributions

considered. Specifically, Table 3 shows results from a 10 components normal and
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Figure 2. Estimated marginal means for the beta-binomial model
with K = 8 components and the corresponding mixtures propor-
tions. The two top lines correspond to the bottom two proportions.
Means smoothed with respect to the effects of education.

75 80 85 90 95

0
5

10
15

20
25

30

Age

P
re

di
ct

ed
 M

M
S

E

0.005
0.079
0.056
0.14
0.255
0.325
0.124
0.016

binomial models and 8 components Student’s t and beta-binomial models. The

table shows the adjustment for the intercept and slope for each of the mixture

components. For instance, to obtain the intercepts of the different components

of the beta-binomial model, the values 1.40, −0.70, and other values listed under

the column β1j of the results corresponding to the beta-binomial model, should

be added to 2.06. As a result, the intercept of the second component would be

calculated as 3.46 = 2.06 + 1.40, and the intercept of the third component would

be 1.36 = 2.06− 0.70. A similar procedure should be used to calculate the slope of

the different components of the models.
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Figure 3. Residuals for the normal model with K = 10, and ran-
domised quantile (NQ) residuals for the binomial with K = 10 and
the beta-binomial model with K = 8, respectively. Corresponding
QQ-plots at the right-hand side.
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Table 3. Estimated NPML parameters (standard errors) and
probabilities of best fitting models for each of the normal, Stu-
dent’s t, binomial and beta-binomial models

Normal(K = 10) t-family (K = 8)
Masses (pk) Mass points (zk) Masses (pk) Mass points (zk)

α1j α3j α1j α3j

0.002 49.31(11.59) -12.54(3.68) 0.028 20.15(0.48) -0.13(0.07)
0.009 -25.29(11.63) 11.19(3.69) 0.065 9.39(0.56) -1.35( 0.09)
0.069 -16.86(11.60) 10.85(3.69) 0.058 5.52(0.57) -0.20(0.09)
0.040 -27.76(11.60) 12.21(3.69) 0.172 8.94(0.50) -0.42(0.07)
0.089 -22.80(11.60) 12.03(3.68) 0.340 8.94(0.48) -0.11(0.07)
0.167 -19.58(11.60) 11.93(3.68) 0.234 8.73(0.49) 0.06(0.07)
0.250 -20.38(11.59) 12.29(3.68) 0.099 9.17(0.53) 0.14(0.08)
0.365 -20.67(11.59) 12.49(3.68) 0.004 9.17(4.05) 0.14(0.50)
0.004 -20.67(11.71) 12.49(3.69) - - -
0.000 -20.68(60.50) 12.49(8.79) - - -
α2 -0.90(0.24) α2 -0.78(0.18)
α4 0.013(0.03) α3 -0.01(0.02)

Binomial (K = 10) Beta-Binomial (K = 8)
Masses (pk) Mass points (zk) Masses (pk) Mass points(zk)

β1j β3j β1j β3j

0.004 2.06( 0.46) -0.86(0.20) 0.005 2.06(0.47) -0.85(0.21)
0.003 1.38(0.86) -0.02(0.31) 0.079 1.40(0.48) 0.53(0.21)
0.048 -0.76(0.46) 0.78(0.20) 0.056 -0.70(0.47) 0.76(0.21)
0.086 1.33(0.47) 0.54(0.20) 0.140 0.19(0.47) 0.74(0.21)
0.129 0.07(0.46) 0.75(0.20) 0.255 1.22(0.47) 0.70(0.21)
0.245 1.20(0.46) 0.70(0.20) .325 1.01(0.47) 0.78(0.21)
0.354 1.02(0.46) 0.78(0.20) 0.124 1.20(0.49) 0.83(0.21)
0.113 1.25( 0.48) 0.84(0.20) 0.016 1.42(0.84) 0.98(0.24)
0.014 1.45(0.82) 0.99(0.24) - -
0.000 1.54(4.03) 0.99(0.75) - -
β2 -0.52(0.07) β2 -0.54(0.08)
β4 0.02(0.01) β4 0.03(0.01)
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For predictive purposes, it may be useful to describe model results obtained using

an alternative representation. For instance, for a man aged 75 at study entry, with

good education, results obtained from the normal model may be expressed as:

logit(µjt) =





2.06− 0.85Agejt p = 0.005,

3.46− 0.32Agejt p = 0.079,

1.36− 0.09Agejt p = 0.056,

2.25− 0.11Agejt p = 0.140,

3.28− 0.15Agejt p = 0.255,

3.07− 0.15Agejt p = 0.325,

3.26− 0.02Agejt p = 0.124,

3.48 + 0.13Agejt p = 0.016,

Further results from the model indicate that individuals with poor education

have lower cognitive function than individuals with better education (β̂2 = −0.54,

with estimated standard error = 0.08, p-value <0.00) and faster rate of decline

(β̂4 = 0.03, with estimated standard error 0.01, p-value=0.002). The logarithm of

the variance was estimated at −6.02 (0.69).

With regard to interpretation it is important to realise that the binomial dis-

tribution for the MMSE is an approximation. It is not the case that the MMSE

questions are independent Bernoulli trails. However, we can use a fitted binomial

model to get a general idea of the effect of age by assuming that the questions are

independent, and that µ is the probability of a correct answer. This approximation

is the same for the beta-binomial model and will be used in what follows.

Of the eight mixture components identified in the beta-binomial model, two (first

and eighth) have very low probability. The first component shows that the esti-

mated odds of answering a question correctly multiplies by 0.42 (= exp(−0.85)) per

extra year of age after age 75 years with probability 0.005. The eighth component

shows that the odds of correctly answering a question increases by 14 per cent per

extra year of older age with very low probability (0.016). These two components
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describe trajectories of individuals whose MMSE either dropped markedly (first

component) or show some improvement (eighth component).

Components four, five and six suggest that, with total probability of 0.72 (=

0.14+0.26+0.32), there is about 12% decrease in the odds of correctly answering a

question per extra year of older age whilst the second mixture component indicates

that these odds decrease by 28% with probability 0.07. The remaining components

capture MMSE scores of individuals for whom the odds of correctly answering a

question do not decrease very markedly with increasing age.

5. Discussion

With the aim of analysing longitudinal data for the Mini-Mental State Exami-

nation (MMSE), we fitted generalised additive models for location, scale and shape

(GAMLSS). In these models, a non-parametric distribution was used for the random

effects. We considered four distributions for the MMSE as response variable: nor-

mal, t-family, binomial and beta-binomial. Our results show that the beta-binomial

distribution yielded the best fit to the data.

Traditional approaches to examine change in cognitive function consist of fitting

linear random-effects models using the normal distribution for the response. How-

ever, due to the distributional properties of the MMSE such as floor and ceiling

effects and its skewed distribution, these models may not be appropriate. Re-

searchers could initially be inclined to consider discrete mixture models to account

for non-normal random effects, as conditional upon components, a normal distribu-

tion of the random effects may be defendable. However, within components ceiling

effects might still operate and the bounded sample space for the outcome will still

be present.

Tobit growth models have been proposed to account for ceiling and floor ef-

fects [17, 18]. Tobit models are extensions of growth models for censored outcome

variables. Wang [19] compared the performance of tobit growth models to listwise

deletion and to a method where ceiling data were considered as missing data to
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deal with ceiling effects and concluded that tobit growth models performed best in

terms of making best use of ceiling data information. An undesirable effect of tobit

models is that they may produce values outside the range of the response variable.

For instance, in the case of the MMSE, tobit growth models may fit or predict a

score larger than 30 and such a score would lack meaningful interpretation in terms

of cognitive function.

An alternative to using the MMSE sum score as the response variable is using

the scores on the individual MMSE questions and fit item response theory (IRT)

models [25], where the performance on the test is explained by a latent ability which

is assumed to follow a normal distribution across individuals. The advantage is that

the data are used at a more informative level, and that the ceiling effects in the

MMSE are not a problem with regard to the choice of distributions, see Fox [26],

Chapter 6, for an application. The disadvantage is that the ability which underlies

the MMSE performance is latent (and on a arbitrary scale) and that straightforward

interpretation of estimated ability and/or covariate effects is not possible.

The choice of a discrete distribution for the MMSE scores means that fitted and

predicted scores are in the range of the original scale. Binomial models fitted the

data better than models with the normal distribution or a t-family distribution.

Further improvement in fit was obtained using the beta-binomial model which has

an extra scale parameter to capture heterogeneity that cannot be described by the

binomial distribution.

Non-parametric maximum likelihood (NPML) estimation for mixed models was

initially proposed for generalised linear models in the presence of overdispersion.

The estimation of overdispersed models with normal random effects requires Gauss-

ian quadrature because the likelihood function does not have a closed form. How-

ever, results are sensitive to the parametric form of the mixing distribution of the

random effects [20]. To overcome this limitation, NPML uses a discrete distribution

on a finite number of mass points[4, 22].
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Aitkin [14] discussed advantages and limitations of NPML. Advantages include

the fact that it is relatively easy to increase the number of mass points, and that

the mass points do not need to be restricted to a grid. Limitations include the fact

that, in general, the mixture components do not have substantive meaning but are

a discrete version of the variation usually regarded as continuous.

An advantage of the work in the current paper is that model fitting can be un-

dertaken using a freely available and very flexible software package. The GAMLSS

package allowed us to examine a series of models that are not within the standard

specification of the most commonly used statistical packages.

Possible extensions of our work include investigation of more complex models for

scale, skew and kurtosis parameters.
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