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Abstract
Image understanding denotes not only the ability to

extract specific, non-numerical information from images,
but it implies also reasoning about the extracted infor-
mation. We propose a qualitative representation for im-
age understanding results which is suitable for reasoning
with Bayesian networks. Our representation is not purely
qualitative but enhanced with probabilistic information to
represent uncertainties and errors in the understanding of
noisy sensory data. The probabilistic information is then
supplied to a Bayesian networks in order to find the most
plausible interpretation.

We apply this approach for the integration of image and
speech understanding to find objects in a visually observed
scene which are verbally described by a human. Results
demonstrate the performance of our approach.

1 Introduction
The representation of image understanding results is an

important issue. With image understanding, we mean the
extraction of symbolic or qualitative, non-numerical infor-
mation from images and the reasoning about the extracted
information. Understanding results are often affected by er-
rors or ambiguities due to noisy data or erroneous interme-
diate results. We propose therefore a qualitative represen-
tation for image understanding results which is enhanced
by probabilistic information characterizing the reliability
of the results. A Bayesian network approach is then ap-
plied using this representation to find the most plausible
result.

We apply this technique to extract relevant qualitative
information from images and speech for the integration of
image and speech understanding in a system for natural
human-computer interaction.

Our scenario is the cooperative assembly of toys using
the wooden toy construction kit Baufix (see Fig. 3 for ob-
jects in our scenario). A human plays the role of an in-
structor and gives verbal instructions to the system. The
system is equipped with a microphone as well as a stereo
camera to observe the scene. Using the information from

both, speech and images, the system should understand the
given instructions, relate them to the objects in the scene,
and carry out the instructions.

Necessary components in the system are

speech understanding,

image understanding,

an inference machine in order to integrate image and
speech understanding for the identification of the in-
tended object1 and the command execution.

We integrate image and speech understanding on a sym-
bolic level. Hence, we extract our probabilistically en-
hanced qualitative descriptions from images and speech
and reason upon them. The qualitative descriptions charac-
terize objects in terms of their type, color, size, and shape
as well as spatial relations relative to other objects. Fig. 1
sketches the components and their interaction in this sys-
tem.

In this paper, we focus on the extraction of qualitative
descriptions from images and explain our inference mech-
anism using Bayesian networks. The following subsection
refers to related work. In Section 2, we explain our rep-
resentation of qualitative descriptions, and Section 3 out-
lines the computation of qualitative descriptions from im-
ages. The Bayesian inference mechanism is described in
Section 4. Important aspects are here not only the network
architecture but also the estimation of the conditional prob-
ability tables. Results and a discussion of our approach
conclude this paper.
1.1 Related Work

Our work was inspired by a number of approaches in-
vestigating the integration of computer vision and natural
language (Wahlster, 1989; Mc Kevitt, 1994; Srihari, 1994)
as well as approaches generating conceptual descriptions

1We call an object which is referred in an instruction the intended
object.
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Fig. 1: Overview of our image and speech understanding system: The image and speech understanding modules derive qualitative de-
scriptions from speech and visual input data. A Bayesian inference machine is used for for object identification and command execution.

from images (Nagel, 1988; André et al., 1988; Toal & Bux-
ton, 1992; Kollnig & Nagel, 1993) and systems which vi-
sually observe the scene to enable natural human-computer
interaction (Tsotsos et al., 1997).

The group around Wahlster (1989) and André et al.
(1988) investigates the integration of vision and natural
language in various systems. An example is the system
SOCCER (e.g André et al., 1988) which simultaneously
analyses and describes short scenes of soccer games like
live radio reports. This involves perceiving and interpret-
ing the locations and movements of the ball and players
in order to select how to describe the game and in what se-
quence. ‘Probability clouds’ and ‘typicalityfields’ are used
to probabilistically describe the image understanding re-
sults.

The PICTION system (Srihari, 1994) uses captions to
identify human faces in an accompanying photograph in
order to explore the interaction of textual and visual infor-
mation. A face locator is used to segment face candidates
from an image at different resolutions of the original im-
age and the edge image. Constraints for the face recogni-
tion are then generated from the semantic processing of the
caption. Picture-specific information is extracted to gen-
erate contextual (e.g., the name), characteristic (e.g., the
gender), and locative or spatial identifying constraints. The
constraints guide the processing of the picture to provide a
semantic interpretation.

XTRACK (Nagel, 1988; Koller et al., 1993; Kollnig &
Nagel, 1993) is an example of an image understanding sys-
tem which performs fully automatically all necessary steps
from low-level image analysis to conceptual descriptions
of moving vehicles in traffic scenes. Trajectories of moving
vehicles are extracted from image sequences and are con-
ceptually described by motion verbs. Fuzzy sets are used to
represent the connections between trajectory attributes and
motion verbs. The admissible sequences of activities of an
agent are modeled by hierarchical ‘situation graphs’.

The goal of the PLAYBOT project (Tsotsos et al., 1997)
is to provide a directable robot which may enable physi-
cally disabled children to access and manipulate toys. The
robot possesses a robotic arm and hand, a stereo color vi-
sion robot head, and a communication panel. The child
gives commands on the communication panel (execute ac-
tions with toys). The system is able to visually explore the
room to perceive objects and their location and to execute
the given commands. The scenarios of PLAYBOT and our
system are similar. However, PLAYBOT is focused on the
visual perception of the environment. The command lan-
guage is rather simple and therefore less attention is drawn
on the representation of understanding results and on in-
ference processes in order to identify the intended object
or action.



2 Representing Qualitative Descriptions
Harnad (1987) declares categories as the basic represen-

tational units, and all qualitative entities result from dis-
cretizations of the continuous signal space in categories.
Following Hanard’s definition, Medin & Barsalou (1987)
distinguish between two different kinds of categories: (1)
all-or-none categories and (2) graded ones. There are two
subtypes of all-or-none categories: (1a) In ‘well-defined’
categories, all members share a common set of features and
a corresponding rule defines them as necessary and suf-
ficient conditions for membership. (1b) In ‘defined’ (but
not well-defined) categories the features do not need to be
shared by all members, and the rule can be an either/or one.
Graded categories (2) are not defined by an all-or-none rule
at all, and membership is a matter of degree.

The boundaries between categories should be placed in
such a way that there are qualitative resemblances within
each category and qualitative differences between them.
But nevertheless, a qualitative property is always more or
less true, or applicable, to a physical object or a set of ob-
jects. The boundaries between categories may show fuzzi-
ness. Therefore, we follow Medin & Barsalou (1987) and
use graded categories as basic representational unit. The
degree of membership is a fuzzy or probabilistic value
which represents a goodness of fit between a category and
the underlying numerical data. However, categories are not
necessarily disjoint; they may overlap, for example, an
object can be colored bluish green. Thus, we character-
ize each property by a finite number of graded categories
(e.g., white, red, yellow, orange, blue, etc.). This leads us
to the definition of qualitative descriptions as representa-
tional scheme:

A qualitative description characterizes an entity
by a set of properties. Each property is described
as a vector of graded categories.

To describe properties more formally, each qualitative
property is a function or :

o or IO RO (1)

for unary relations ( ) and for binary relations ( ) such
as spatial relations. o denotes the object involved in an
unary relation and IO and RO stand for the intended ob-
ject and the reference object in spatial relations (see Sub-
section 3.3). is a vector which represents the fuzzy de-
grees of membership that are assigned to each category of
a property space. characterizes how well category of
property fits for the given object o or object pair (IO,
RO).

Here are two examples:

1. The property color contains the following categories:

color red, yellow, orange, blue,
green, purple, wooden, white

Then is a vector of dimension 8 and

color rhomb-nut

This means that the object rhomb-nut is most likely to
be orange (cf. Fig. 2). The color orange is also some-
what red as well as dark yellow, and thus the degrees
of membership for the categories red and yellow are
higher than for the other color categories.

Fig. 2: A rhomb-nut.

2. The property spatial relation consists of the projective
relations left, right, above, below, behind, and in-front,
and thus

spatial relation
left, right, above, below, behind, in-front

Then is, for example,

spatial relation rhomb-nut socket

This example is taken from Table 5 (IO = 1, RO = 4).
It describes that the rhomb-nut is behind and slightly
left of a socket.

This representation has the following benefits:

The uncertainty from recognition or detection process
can easily be represented.

Overlapping meanings and concurring hypotheses can
be represented.

It captures the degree of membership for each cate-
gory of a property space. No irreversible, strict deci-
sions have to be made to compute the qualitative value
of a property in an early stage of an understanding
process.



Fig. 3: Object recognition results from two scenes: All objects of the simple scene (left image) are recognized correctly, whereas the
object recognition module has more difficulties with the complex scene (right image).

A decision, which single category is chosen in a prop-
erty space, can be postponed to a later stage and taken
using a suitable decision calculus. Furthermore, other
information that might be available later, e.g., about
other properties or the scene context, can be taken into
account in the process of making the decision for the
final qualitative system output.

Object specifications can be of a wide variety. Using
a decision calculus, the understanding of verbal ob-
ject specifications is rather flexible in reacting to the
choice of properties which are specified in an instruc-
tion. Even partially false specifications can be han-
dled.

3 Computation of Qualitative Descriptions
We compute qualitative descriptions of objects from im-

ages in terms of ‘type’, ‘color’, and ‘spatial relations’ rela-
tive to other objects.
3.1 Object Recognition

The most obvious description of an object is naming its
type or object class. In the Baufix domain, there are objects
of 20 different object types. Object recognition is carried
out by a hybrid approach combining neural and semantic
networks (cf. Heidemann et al., 1996). The neural network
generates object hypotheses, which are either verified or
rejected by a semantic network approach (see Socher, 1997
for details).

Two examples of object recognition results are shown in
Fig. 3. Here the best scored results are displayed. The qual-
itative description of the object type captures the scored
recognition results.
3.2 Color

Color is a dominant feature for object descriptions. Sub-
jects prefer to specify the visually most salient feature
(Herrmann & Deutsch, 1976), and this is often the color
of an object. In the Baufix scenario, the objects are colored
with bright and clearly distinct elementary colors.

We use a rather simple color classification approach. A
pixelwise color classification is performed by a polynomial
classifier of 6 degree on HSI color images. Subsequent
smoothing operations and region labeling lead to color seg-
mented images. Currently, the lightingconditions are fixed,
and the limited set of Baufix colors is pretty well distin-
guishable.

The computed color classifications for the image region
of an object are assigned to the qualitative color description
of that object. So far, no classification score is recorded.
Therefore, the qualitative color description is initialized
with the score 1 for the category of the classified color and
with the score 0.01 for all other color categories. The fuzzy
vector is then normalized.
3.3 Spatial Relations

Describing the spatial location of an object is another
means for specifying an object. Our computational model
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Fig. 4: Computation of scored projective relations for object pairs: The principles of the computation are demonstrated for 2D objects in
2D space. An object-specific partitioning of 2D space into 12 acceptance volumes is chosen. As an example the generation of the relation
behind is shown for the objects IO and RO w.r.t. the reference frame ref.

for spatial relations is designed to compute the binary pro-
jective relations left, right, above, below, behind, and in-
front for the intended object (IO) relative to the refer-
ence object (RO) in 3D given a reference frame (Fuhr
et al., 1997). Input data to the computational model is a
3D reconstruction of the scene which is computed from
stereo images based on the results from object recognition
(see Socher, 1997).

Objects in 3D are abstracted by bounding boxes which
are collinear to the object’s principal axes. A finite num-
ber of acceptance volumes is associated with each
object . These are infinite open polyhedra bound to the
sides, edges, and corners of the object partitioning the 3D
space. A direction vector corresponds to each ac-
ceptance volume. It roughly models the direction to which
an acceptance volume extends in space. The object-specific
partitioning is motivated by the assumption that the object
itself may influence the way the surrounding space is per-
ceived independently of specific reference frames.

The computation of relations from objects is a two-
layered process. In the first layer, a reference -independent
spatial representation is computed. Each acceptance vol-
ume induces a binary acceptance relation that ex-
presses whether an object intersects with . Accep-
tance volumes are scored by calculating the corresponding
degree of containment:

(2)

Thus, the relation between two objects and can be
reference-independently expressed by a set of scored ac-
ceptance relation symbols with non-zero degree.

Furthermore, reference-dependent meaning definitions

of relations rel2 w.r.t. certain ROs and a given reference
frame ref left right in-front are also calculated
in the first layer. The meaning definition def(ref,rel,RO) is
given as the set of the symbols of all acceptance relations

whose direction vector differs less than from the
corresponding reference vector . The membership of
an acceptance relation (symbol) to a meaning definition is
scored by its degree of accordance:

rel (3)

These two scored symbolic reference-independent and
reference-dependent descriptions are the basis for the com-
putation of reference-dependent relational expressions for
IO-RO pairs in the second layer. The basic idea is, that the
relation rel is applicable for an IO-RO pair w.r.t. a refer-
ence frame ref if at least one of the acceptance relations
in def(ref,rel,RO) holds between IO and RO. The degree of
applicability rel IO RO of rel varies gradually:

rel IO RO

rel

rel RO IO RO

(4)

Fig. 4 illustrates the steps of this computation. For eas-
ier visualization the steps are shown for 2D objects in 2D
space.

The table in Fig. 5 shows computed degrees of applica-
bility of spatial relations for objects in the depicted scene.
The reference frame is assumed to correspond with the
cameras’ view of the scene. The table demonstrates that the
results are very promising keeping in mind that they have

2rel is a generic representative of the set of spatial relations
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2

1

4

IO RO left right above below behind in-front
2 1 0.17 0.10 0.51 0 0.15 0.09
1 2 0.12 0.01 0 0.86 0.04 0.01
3 1 0 0.60 0.04 0.01 0.39 0
1 3 0.26 0 0.13 0.07 0 0.64
4 1 0 0.20 0.04 0.07 0 0.75
1 4 0.18 0.04 0.03 0.05 0.74 0
3 2 0 0.52 0 0.23 0.32 0
2 3 0.24 0 0.23 0 0 0.65
4 2 0.02 0.06 0 0.17 0 0.79
2 4 0.09 0.03 0.17 0 0.78 0
3 4 0 0.34 0 0 0.65 0
4 3 0.24 0 0.19 0 0 0.66

Fig. 5: Example of computed spatial relations for the numbered objects in the depicted scene: The maximum applicability degree per
RO-IO pair is highlighted in bold. The chosen reference frame takes the position of the camera to allow for an easy verification of the
results from the image of the scene.

been computed from slightly erroneous 3D object poses re-
constructed from real stereo images.

4 Reasoning using Bayesian networks
The computation of qualitative descriptions forms a

transition between numerical input data and symbolic, ab-
stract descriptions. To actually reason upon the qualitative
descriptions and to identify objects referred to by instruc-
tions, we use Bayesian networks. Bayesian networks are
designed to reason under uncertainty. In our application
errors in the recognition process, ambiguities, slips of the
tongue, insufficient specifications, and other inaccuracies,
may corrupt the qualitative descriptions.

The identification of the object(s) in the visible part of
the scene, which are referred to in an instruction, is impor-
tant in our image and speech understanding system. How-
ever, our goal is the integration of image and speech under-
standing as well as the inference of constraints for missing
information in either type of qualitative descriptions and
the generation of object descriptions as feed-back to the
human instruction. Bayesian networks are very well suited
for this task. They offer the possibility of bottom-up, top-
down, and mixed mode reasoning under uncertainty. This
allows us to infer constraints and to deal with data in real
and noisy environments.

In this section, we first describe Bayesian networks and
the design of our Bayesian network for object identifica-
tion. Crucial for Bayesian networks is the modeling of the
conditional probabilities. We estimate them based on prior
domain knowledge (see Subsection 4.2.3). We carried out
a questionnaire on the World Wide Web to investigate the
use of size and shape properties in our domain which is
reported in Subsection 4.2.4.

4.1 Bayesian Networks
Bayesian networks are directed acyclic graphs in which

nodes represent random variables and arcs signify the ex-
istence of direct causal influences between the linked vari-
ables (Pearl, 1988). Bayesian networks are an explicit rep-
resentation of the joint probability distribution of a prob-
lem domain (a set of random variables ), and
they provide a topological description of the causal rela-
tionships among variables. If an arc is estab-
lished then the probability of each state of depends on
the state distribution of .

A conditional probability table (CPT) is associated with
each arc. It provides conditional probabilities of a node’s
possible states given each possible state of the parent
which is linked by this arc. The CPTs express therefore the
strength of the causal influences between the linked vari-
ables. If a node has no parents, the prior probabilities for
each state of the node are given in the CPT.

Three parameters are attached to each node represent-
ing the belief in the state, as well as diagnostic ( ) and
causal ( ) support from incoming and outgoing links, re-
spectively. Beliefs are updated taking into account both
parents and children. We employ the propagation algorithm
for trees suggested by (Russell & Norvig, 1995).
4.2 Object Identification using Bayesian Nets

The design of the Bayesian network for object identifi-
cation was guided by the following requirements:

Decisions should account for uncertainty in the data
as well as uncertainties in the recognition and inter-
pretation processes.

Data and results from psycholinguistic experiments
should be integrated easily.



It should be possible to model lacks of performance
of the recognition modules.

The system should be able to identify objects from
unspecific and even partially false instructions/object
descriptions.

It should be possible to infer constraints for missing
information of any type.

These requirements are satisfied best, when we deter-
mine from all detected objects of a scene the one(s) which
are most likely referred to in an instruction. This means
that the object(s) with the highest joint probability of being
part of the scene, and being referred to, are the intended
object(s). In this way, we can incorporate the uncertainties
which are involved in the recognition as well as the un-
derstanding processes. We can also account for erroneous
specifications as we do not require a perfect match of ob-
served and uttered features but only the highest probability
of a match of these features among all detected objects.
Furthermore, we identify an object in the context of the
scene and of all uttered features, and we do not just pair-
wise compare uttered and observed features.

We designed our Bayesian network (cf. Fig. 6) accord-
ing to these guidelines. It is a tree-structured network. The
root node identified object represents the intended object.
The dimension of this node is 23 as there are 23 different
objects in our domain. Thus, we estimate for each object of
the domain the probability or likelihood of being intended.
The children of the root node represent the scene and the
instruction. The dimension of these nodes is again 23 and
they represent for each object either the probability of be-
ing part of the current scene or of being named in the in-
struction.

The children of the node instruction are instantiated
with the qualitative descriptions resulting from speech un-
derstanding. If a property is not specified in an instruction,
then the diagnostic support of the corresponding node is
set to , where is the dimension of the property. This
means that the vector contains a 1 in every component.

The observed objects are represented by the nodes
object ,..., object . Each node has again dimension 23
and represents for an observed object all possible object
categories and their likelihood of characterizing it. Typi-
cally, one component has a high belief, and the belief for all
other components is low. The qualitative type and color de-
scriptions are used to instantiate the nodes type and color
for each observed object.

4.2.1 Object Identification

The intended object(s) are identified in the following way:
First, after the initialization of the network, only scene

and io are propagated through the network. ( io is the
vector of prior probabilities for the node identified object.
It is set to in every component.) The resulting beliefs
for the objects nodes, prior to normalization, characterize
the certainty of detection in the context of the scene. We
call this value offset and compute it as

offset object object (5)

Incoming evidence is then propagated bottom-up and
top-down through the network. The belief of the scene
node results from incoming evidence as well as from top-
down propagated messages from the node identified ob-
ject. Hence, the belief of the scene node represents for
each domain object the joint probabilityof being part of the
scene and being intended. Messages from the scene node
are propagated top-down to the nodes object ,..., object .

After the propagation of evidence obtained from im-
age and speech understanding, the beliefs of the nodes
object ,..., object are again taken prior to normalization.
We define for each object the possibility of being in-
tended as

object object (6)

For each object, a likelihood value is taken

offset (7)

is the difference of the maximal component of and
the maximal component of offset . This gives us one like-
lihood value for each observed object. The identified object
should be the most likely intended one. Therefore, we use
a little statistical analysis to find this/these object(s). We
compute the mean and the standard deviation of the
set of likelihood values . Objects with likelihood values
below are excluded from the statistical analysis. We
define the selection criterion as

object identified if threshold and
threshold and

(8)

This gives us all outliers with a level of confidence of .
Thus, we get all those objects which have a significantly
higher belief of being intended than the other objects. A
level of confidence of is not too low for our scenario.
We have to cope with noisy and erroneous data. And we
want the system to identify an object rather than to report
“no objects found” even if a lot of uncertainty is involved.
The instructor can correct false identifications, and it is
more convenient to correct once in a while a false identi-
fication than to repeat instructions multiple times until the
system has finally found the intended object.
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Fig. 6: Structure of the Bayesian network for object identification.

4.2.2 Spatial Relations

So far, we have only described how we identify objects
from the unary properties type, color, size, and shape. Bi-
nary, spatial relations are another means for referring to
objects. Especially when there are multiple objects of the
same type in the scene, then it might be the only way to
uniquely specify an object. But a tree-structured Bayesian
network is not well suited to handle binary relations. Fur-
thermore, we envision to model the spatial configuration of
a scene as relation graph such as proposed by Fuhr et al.
(1993). We think that a graph structure is the best way
to handle the complexity of binary or even higher dimen-
sional relations.

We propose therefore at the current state of the system
implementation a very simple method for handling object
identifications that use spatial relations. spat rel is the
qualitative description of the uttered spatial relation(s). The
following steps are executed:

1. Identify all candidates for possible intended objects
(IO) based on type, color, size, and shape, if named.

2. Identify all candidates for possible reference objects
(RO) based on type, color, size, and shape, if named.

3. Compute spatial relations for all IO/RO candidate
pairs as explained in Section 3.3.

(a) Compute for each IO/RO candidate pair the Eu-
clidean distance of the vector of computed spa-
tial relations IO RO and spat rel .

IO RO spat rel (9)

(b) Compute .

4. The IO/RO candidate pair with the greatest is iden-
tified.

4.2.3 Use of prior Knowledge

The conditional probability tables are estimated from re-
sults of psycholinguistic experiments and error analyses of
the understanding modules.

In a first psycholinguistic experiment 10 subjects named
objects verbally. Images of scenes with Baufix objects were
presented to the subjects on a computer screen. In each
image, one object was marked with a pink arrow and the
subjects were told to name this object using an instruction
in the form of an instruction such as “give me the object”
or “take the object”. From this experiment, 453 verbal ob-
ject descriptions were collected. The properties named the
most in these instructions are the type and the color of the
objects. We estimated from this data

(type instruction ) =
type was named when object was shown

object was shown ,

(color instruction ) =
color was named when object was shown

object was shown .

We denote the component of a vector as . We
want to avoid conflicting indices with this notation known
from programming languages.

The second experiment was a questionnaire in the
World Wide Web for size and shape of the objects (see Sec-



tion 4.2.4). It is used for the following conditional proba-
bilities:

(size instruction ) =
size was named when object was shown

object was shown ,

(shape instruction ) =
shape was named when object was shown

object was shown .

The performance of the speech understanding system
was not evaluated here. Therefore, confusions which may
occur in speech understanding are not yet modeled.

Another series of experiments tests the image under-
standing modules. Object recognition was performed on
11 images of different scenes which were taken under con-
stant lighting conditions but with different focal lengths.
The conditional probabilities (type object ) are es-
timated as

(type object ) =
type was detected when object was depicted

object depicted ,

denotes the object in the scene. The conditional prob-
ability tables are the same for all objects.

The color classification performance was also evalu-
ated. This gives us a conditional probability table

color classif. pixel color
color classif. pixel color

with (color classif. pixel color ) = (# color classified
/# pixel with color ). But we need the conditional prob-
abilities (color object ). We estimate these
by using an ideal transition matrix (color object) and
multiplying it with (color classif. pixel color). We set

(color object ) = if the color of object is color and
otherwise, where is a probability near 1 but normalized

so that (color object ) = 1, and is a very small proba-
bility. Therefore,

(color object ) =
color object color classif. pixel color .

The transitions between identified object and scene
and instruction as well as between scene and all objects
object are considered as unbiased and so the conditional
probabilities were set to unit matrices where the zero en-
tries are replaced by very small probabilities:

scene identified object
= instruction identified object

= if
otherwise

object scene if
otherwise

4.2.4 Questionnaire about Size and Shape in the
World Wide Web

So far, we described how to extract the qualitative proper-
ties, type, color, and spatial relations from numerical data.
But what about the size and shape of objects? Size and
shape are not named in the instructions as often as the color
but nevertheless, our system should be able to cope with
size and shape specifications. This leads to the question
whether there are any classification schemes for size and
shape. Are there functions of the metric size and shape of
the objects (e.g., volume, diameter)? Or do other mecha-
nisms apply? We were unable to answer these questions
and decided therefore to start a questionnaire in the World
Wide Web (WWW) in order to collect empirical data about
which size and shape categories subjects associate with the
objects in our domain. The World Wide Web is a means to
reach many people and to acquire large sets of data.

Fig. 7: One page from the questionnaire in the World Wide Web:
The objects are presented in the context of others. The subjects
were asked to select all size and shape categories that characterize
the numbered object.

The main hypotheses or questions for the design of the
questionnaire were:



(a) there is an intrinsic size and shape model for each
object in our domain,

(b) the size and shape depend on the context of the
scene, but how?

After an introduction, a WWW page for each object of
the domain was presented to subjects. On each page, an im-
age of an object and buttons with size and shape categories
were shown, and the subjects were asked to select all those
categories that characterize the depicted object (see Fig. 7
as an example). We designed two different versions of the
questionnaire according to our hypotheses. In the first ver-
sion, we presented images of objects in the context of oth-
ers. The object in question was marked with a number. The
second version contained only images of isolated objects.
Both versions were randomly distributed among the sub-
jects.

For each object, the subjects could choose from the 18
size and shape adjectives: small, big, short, long, medium-
long, medium-sized, thick, thin, narrow, high, round, angu-
lar, elongated, hexagonal, quadrangular, diamond-shaped,
flat, rectangular. We selected the German adjectives from
psycholinguistic studies and translated them into English
to open this study to international participants. We did not
investigate the use of size and shape adjectives in English,
and we purely translated the German adjectives according
to a dictionary. Thus, the usage of certain adjectives might
be different in English and German.

426 subjects with over 20 different native languages
completed the questionnaire. The German version was se-
lected by 274 subjects. 96% of them are native speakers.
The English version was chosen by 152 subjects, 53% of
them are native English speakers. We analyzed the data
with descriptive statistics and a -test.

Analysis

Fig. 8 shows the means (or relative frequencies) for all size
and shape categories for all objects. We use a visualiza-
tion by greyvalues. The darker the square the greater the
value of the mean. Each row corresponds to one category.
In a row, there are four squares per object. These stand for
the relative frequencies in the data sets from the four ver-
sions of the questionnaire (German with context, German
without context, English with context, and English without
context). We see that the choice of applicable categories is
similar for the four different versions of the questionnaire.

We examined the answers of the questionnaires in Ger-
man in greater detail and observed here even greater simi-
larities. We computed the covariance matrices for the four
data sets and used the Frobenius norm to compare the co-
variance matrices. Fig. 9 shows a 3D histogram plot of the
Frobenius norms of the covariance matrices. Despite minor

differences we observe a similar pattern for the uncertainty
in the selection of the categories. Furthermore, a -test
confirms that the influence of the scene context is not sig-
nificant for the choice of size and shape categories in our
scenario.

We consider the observed similarity in the data sets as
a hint for intrinsic size and shape models for our domain.
A Rolls-Royce car is always a big car even when it stands
next to a truck. We think that this is true for the Baufix ob-
jects in the assembly scenario, too. Furthermore, the rele-
vant context consists not only of the visible objects but also
of personal experience, background, association, etc. The
Rolls-Royce is a big car in the context of the knowledge
about cars and other car types.

We use the data from the context version of the German
questionnaire (137 questionnaires) to estimate the condi-
tional probability tables for our Bayesian network for ob-
ject identification as described in Subsection 4.2.3. We
consider all scene contexts in the same way which leads
to satisfying results.

Discussion

Our way of modeling the size and shape of objects models
does not attempt to model cognitive processes. So far, we
model only one aspect of shape and size perception, which
can be captured by an intrinsic size and shape model. But,
obviously there must be cognitive processes which are acti-
vated in order to compare objects within a specific context.
At the beginning of this subsection we raised the question
how the size and shape of an object depends on the context
of the scene. We are still unable to answer it.

Our approach leads to convincing results which means
that we solved the problem of modeling a tool which is
able to interact successfully with humans without trying to
explain complex cognitive mechanisms.

5 Results
The Bayesian network approach for object identifica-

tion has been tested in various ways. We show first some
examples and demonstrate how objects are identified tak-
ing into account an instruction and the objects in a scene.

An analysis with simulated data is used to evaluate our
Bayesian network. We generated scenes and instructions
randomly and analyze the identification results. This is fol-
lowed by experiments with real data from psycholinguistic
experiments where subjects named specific objects which
were presented in images. We compare the identified and
the named objects. This section is concluded with an anal-
ysis of our approach over time.
5.1 Examples

Our approach is first illustrated with three examples. We
take a simple scene with Baufix objects which is depicted
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in Fig. 10. This scene consists of five cubes (two blue, one
red, yellow, and green cube), a 3-holed-bar, and a rhomb-
nut.

Fig. 10: A scene.

First, we use only information about the scene as in-
put data. This means that we instantiate only the nodes for
the objects in the image (object ) and propagate the evi-
dence through the network. The resulting beliefs are shown
in Fig. 11. Fig. 11 shows the situation before any instruc-
tion is given. The object nodes (object ) are not depicted
here. We see that beliefs in the node scene for the cate-
gories of objects that occur in the scene are higher than for
objects which are not there. The belief for the object cate-
gory rim is rather high because of a high confusion prob-
ability between the red rim and the red cube. The beliefs
of the node identified object are identical to those of the
node scene as no incoming evidence from the instruction3

node is available. The propagated beliefs in the instruction
nodes report the constellation of the objects in the scene.
Most of the objects are cubes and therefore the belief for
cube is the highest for the property ‘type’. The belief for
bolt is high as well. This is due to the fact that most of the
objects in the Baufix domain are bolts. Hence, the type bolt
has a high prior probability. This example illustrates that
the propagated beliefs are joint probabilities of observed
evidence and modeled knowledge.

Fig. 12 is a screen-shot of the object identification result
using again the scene shown in Fig. 10 but now including
an instruction which names the the categories object and
blue. In the node identified object, the beliefs for all blue

3This node is not depicted in Fig. 11.

objects are higher than others. The belief for the blue cube
is the highest because an object of this category is part of
the scene. The beliefs for the other blue objects in the node
scene are due to propagation within the network. The blue
cube is clearly the identified object. In this scene, there are
two blue cubes (see Fig. 10), which are both identified. The
identification result is shown by the system through high-
lighting the contours of the identified objects in the image
of the scene. The user also gets audio feedback with a syn-
thetic voice naming the number and the type of the identi-
fied objects.

The speech recognition is done with Hidden Markov
Models and a semantic network approach for the linguistic
analysis of the uttered phrase (Fink et al., 1994). The re-
sult is mapped into a qualitative description. This means
that the recognition of the instruction results in probability
vectors with high beliefs for the recognized categories and
small beliefs for non-recognized categories. The content
of an instruction is mapped on a predefined set of ‘type’,
‘color’, ‘size’, and ‘shape’ categories in our system.

The third example (Fig. 13) shows the object identifica-
tion result for the scene shown in Fig. 10 and a more de-
tailed instruction which specifies cube and blue. Here again
the two blue cubes are identified. The belief distribution is
similar to that in Fig. 12. However, here the belief for the
object category cube blue is even higher due to the unam-
biguous description. In the node type the dominating
belief is the belief for cube, whereas in the node color
small beliefs for the colors red, yellow, and green can still
be observed. This is due to the fact that there are cubes of
all four colors in the scene. This demonstrates well the in-
teraction of evidence from speech and image data in the
network.

In the two latter examples, the two blue cubes are iden-
tified. The system exactly responds to the instruction and
does not use further selection criteria. In order to constrain
the identification to only one object, a more specific in-
struction is necessary. Spatial relations, for example, “the
blue cube behind the red one”, can be used to enable the
selection of only one specific object.

Our system is implemented in C on a cluster of DEC
alpha workstations. A customized framework is used for
the inter-process communication. The processing time in-
cluding the image and speech understanding as well as the
object identification is in the range of one minute.
5.2 Simulated Data

A set of two experiments with simulated data was car-
ried out to evaluate the Bayesian network more generally
than with single trials. We randomly created 1000 scenes
with Baufix objects. For each object and each scene, we
tossed a coin weather this object belongs to the scene or
not. First, we used the same 23 instructions, each describ-



Fig. 11: The belief distribution in the Bayesian network without an instruction, i.e. before any instruction is given.

Fig. 12: The belief distribution in the Bayesian network after specifying the categories object and blue in an instruction: The beliefs are
shown after a complete bottom-up and top-down propagation of all evidence.



Fig. 13: The belief distribution in the Bayesian network after specifying the categories cube and blue in an instruction: The belief
distribution is shown after the propagation of all evidence.

ing one object class uniquely, for all 1000 scenes. Each in-
struction describes one object uniquely, but they are more
or less specific.

The objects were very well identified. The first two lines
of Table 1 report the results. All objects except the socket
and the red, round bolt were always uniquely identified
when they were present in a scene. The problem for the
socket is that its color is not well defined. It is made of
some dark white plastic and the reflections caused by this
material irritate the color classification. The color is in be-
tween white and wooden but obviously not enough clearly
separable that it can be well classified in an own class of
color ivory. Therefore sometimes the socket is detected as
white and sometimes as wooden. Furthermore, the object
recognition as a whole is not very stable for this object.
The confusions are modeled in the conditional probability
tables. However, the object identification prefers well rec-
ognized objects and colors.

The other object which was not always uniquely iden-
tified is the red, round bolt. This is due to the fact that the
categories the used instruction are not specific enough for
this object. This shows that the less specific an instruction
the smaller is the chance to identify an object.

Table 1 describes the identification results if the object
which is intended in an instruction is part of the scene. But,

it is also of interest so see what happens if the intended
object is not there. This means that the set of properties
which are specified do not apply to any of the objects in
the scene. These results can be found in (Socher, 1997).
Confusions occur only between objects which have certain
properties in common, for example, the red cube and the
rim have the same color.

For a larger, second experiment, we randomly generated
200 instructions. These instructions contain for each of the
four property classes (type, color, size, and shape) one or
no specification. It is obvious that not all of these ran-
domly generated instructions make sense, and sometimes
it is hard to distinguish which object is intended. There-
fore, two semi-naive4 subjects independently classified the
meaningful instructions and provided a reference to the ob-
ject which is in their opinion denoted by the instruction.
Those instructions where the subjects agreed on the same
object are considered as intending the respective object. 88
instructions were classified as intending a Baufix object.
All others are considered as nonsense.

The selected 88 randomly generated instructions were
used for all 1000 scenes. We again distinguish the identifi-
cation results whether the intended object(s) is/are part of

4Subjects who are familiar with Baufix objects but not with our object
identification approach.



3-
h-

ba
r

5-
h-

ba
r

7-
h-

ba
r

Cu
be

re
d

Cu
be

ye
llo

w

Cu
be

bl
ue

Cu
be

gr
ee

n

Rh
om

b-
nu

t

Ri
m

Ti
re

So
ck

et

W
as

he
rp

ur
pl

e
W

as
he

rfl
at

Ro
un

d
re

d

Ro
un

d
ye

llo
w

Ro
un

d
or

an
ge

Ro
un

d
bl

ue

Ro
un

d
gr

ee
n

H
ex

ar
ed

H
ex

ay
el

lo
w

H
ex

ao
ra

ng
e

H
ex

ab
lu

e

H
ex

ag
re

en

easy: correct 1 1 1 1 1 1 1 1 1 1 .43 1 1 .69 1 1 1 1 1 1 1 1 1
easy: other 0 0 0 0 0 0 0 0 0 0 .66 0 0 .21 0 0 0 0 0 0 0 0 0
random: correct .65 .79 .93 .87 .84 .85 .55 .55 .74 .42 .63 0 0 .71 .28 .53 .97 .96 .60 .18 .56 .77 .63
random: other .38 .16 .06 .34 0 .36 .38 .61 .27 1.21 .86 0 0 .60 .92 .47 .07 0 .82 .75 .59 .29 .20

Table 1: Line 1 and 3: Relative frequency of correct object identifications from the 23 easy descriptions or the 200 random descriptions,
respectively. All descriptions were applied to 1000 randomly generated scenes. Line 2 and 4: Relative frequency of additionally or
wrongly identified objects when the intended object was present in the scene. These results are obtained when applying the easy and the
random descriptions, respectively. A relative frequency greater than 1 indicates that multiple confusions may occur.

the scene or not. The relative frequency of correct identi-
fications per object are shown in line 3 of Table 1. These
results apply when the intended object is part of the scene.
The relative frequency of additionally or wrongly identi-
fied objects is reported in line 4 of Table 1. Here, a relative
frequency greater than 1 indicates that multiple confusions
occur. Instructions which are intending the two washers
were not contained in the randomly generated test set. The
results are not as good as for the easy descriptions but still
reasonably good. For the three worst cases there are easy
explanations. The randomly generated instructions do not
characterize the objects well enough.

Again, we checked also the case if the intended object
is not part of the scene (Socher, 1997). The range of con-
fusions is wider than for the “easy descriptions”, which is
very much due to the fact that the randomly generated de-
scriptions are not consistent within the named properties.
Not all specified properties really apply to the intended ob-
ject.

The two examples, the easy and the randomly generated
descriptions, can be considered as a good and a bad exam-
ple. They show the range of results which are obtained with
our Bayesian network approach for object identification.
5.3 Real Data

We also carried out experiments with real data. In the
data set described in Subsection 4.2.3, subjects referred to
objects which were shown on a computer screen. We used
this data set in three ways. (1) as it is, (2) we transcribed
the instructions orthographically and used textual input for
our experiment instead of speech, and (3) we ‘idealized’
the real data. This means that we use the orthographic tran-
scription of the instructions and manually generated scene
descriptions instead of images in order to evaluate only the
Bayesian network approach. Errors in the understanding
processes are avoided.

The Bayesian network approach is evaluated by com-
paring the object identification results with the originally

referred, intended objects5. Unfortunately, we also used
these data for the estimation of the conditional probability
tables in the Bayesian network, and due to time constraints
we were not able to acquire another test set.

An identification is correct if the intended object is
found. If additional objects were identified besides the
intended object then it is still considered as correct but
counted for the class additional as well.

The best identification results are achieved with the
‘idealized data’. Errors in speech recognition have the
greatest impact on the overall results. If an instruction is
at least partially understood, then more than 70% of the
objects are correctly identified. When we avoid recogni-
tion errors, then the intended object is correctly identified
for 92.5% of the instructions. False or additional identi-
fications occur here mainly because of inaccurate or im-
precise specifications by the subjects. Another reason for
errors (false/additional) is that the identification criterion
( ) is not adequate for a given instruction and
scene. It is a dynamic threshold, but thresholds may fail.
5.4 Spatial Relations

We collected a second set of instructions under the same
conditions as described in the previous paragraph or in
Subsection 4.2.3. This set is used only for testing. Six sub-
jects had to name marked objects from five different scenes
which were presented on a computer screen. This time, the
subjects were explicitly asked to use spatial relations in ev-
ery instruction. We ‘idealized’ the data again to evaluate
the performance of our identification approach when spa-
tial relations are used. The evaluation is carried out in the
same way as described in the previous paragraph. In addi-
tion to that, we require for this experiment that the object
which is identified by the system must be exactly the same,
i.e. having the same image coordinates as the one which
was named by a subject. It is possible to specify an object

5The subjects described in each instruction one object which was
marked in an image by an arrow.



source # instructions correct additional false nothing
idealized 412 381 (92.5%) 34 (8.3%) 31 (7.5%) 0 (0%)
text 417 360 (86.3%) 34 (8.1%) 40 (9.6%) 17 (4%)
speech 133 93 (70%) 14 (10.5%) 25 (18.8%) 15 (11.2%)

Table 2: Object identification results using ‘idealized data’, textual, and speech input: Correct identifications (may contain additional
objects besides the intended object), identifications with additional objects, false identifications, and cases where no object was identified
(nothing).

uniquely with spatial relations which wasn’t the case with
only the description of the type, color, size, or shape of an
object. The results are reported in Table 3.

The number of false identifications is now higher than
for the experiment shown in Table 2. This is due to the
more severe criterion for a correct identification, but also
because of discrepancies between the computation of spa-
tial relations and the use of spatial relations by the subjects
(Vorwerg et al., 1997).
5.5 Image Sequences

In our targeted applications, the scenes are not chang-
ing very much. The assembly is rather slow compared to
the image frame rate. Furthermore, no actions in the scene
might happen during the time an instruction is uttered.
Therefore, changes in the object hypotheses are more likely
due to recognition errors than to changes in the scene. This
is especially true when the image region characteristics
(i.e. center of mass), which correspond to the recognized
object, are basically constant in subsequent image frames.

We can compensate these errors easily with our Bayes-
ian network. We simply use the beliefs computed for the
object nodes (object ,..., object ) at time as causal
support for these nodes at time . Thus, we predict that the
object category will not change. Fig. 14 shows the results
of two experiments with simulated data. Both experiments
run over 80 time frames. One object node is observed dur-
ing this time. Random noise is added to the object hypothe-
ses. The probability that the object hypothesis does change
is set to 0.25. Hence, the object hypothesis may vary in
a quarter of all time frames. Fig. 14 shows four compo-
nents of the belief vector of the object node. The true object
category is represented by one of these four components.
Fig. 14a shows the results when recursive prediction is ac-
tive. We see the noise in the data, but the belief of the true
object hypothesis is clearly distinguishable from the others.
In Fig. 14b the results are shown of the same experiment
but without prediction. The signal to noise ratio is here al-
most equal to 1. The noise distorts the the belief of the true
object hypothesis significantly.

6 Discussion and Conclusions
We described a representation for image and speech un-

derstanding results and its application in an integrated im-

age and speech understanding system for natural human-
computer interaction. This representation can also be used
for other types of qualitative features and other domains.
The vectorial representation has the advantage of being
suitable for multiple and even contradicting results, as well
as for overlapping categories. A variety of information can
be represented which does not require hard decisions to be
made at early stages of understanding processes. This form
of representation has been proven to work successfully in
our system, and it forms the basis for the integration of
image and speech understanding. It lends itself for proba-
bilistic reasoning upon the represented entities and is not
specifically adapted to specific underlying computational
routines.

Bayesian networks provide a formalism for reasoning
about partial beliefs under conditions of uncertainty. They
are very well suited for integrating different extracted prop-
erties and weigh the influence of them upon the final ob-
ject identification accounting for uncertainties in the data,
the detection processes, and the decision process. Empiri-
cal data and results from psycholinguistic experiments can
be easily incorporated. Our object identification approach
is rather flexible and well suitable for the variety of differ-
ent instructions humans can give to the system.

Comparing related work, we find that representations
used in most computational systems are rather simple and
specifically adapted to the actual task (e.g., André et al.,
1988; Kollnig & Nagel, 1993; Tsotsos et al., 1997). The
goal is, in most cases, to extract specific symbols from im-
ages. Reasoning on these representations or inferring other
results from them is often not considered. Whereas typ-
ical reasoning approaches do not start from sensory data
in most cases but already from high-level special purpose
representations (e.g. Egenhofer, 1991; Hernàndez, 1993).

In the discussion of our approach, we observe the fol-
lowing items:

The Bayesian network approach is a decision calcu-
lus. It determines the object with the highest joint
probability of the named and detected features.
Knowledge is modeled mainly through the condi-
tional probability tables. No generalizing or reason-
ing rules are incorporated. The system is not able to



source # instructions correct additional false nothing
idealized 98 82 (83.5%) 2 (2%) 16 (16.5%) 0 (0%)
text 84 66 (78.6%) 7 (8.3%) 18 (21.4%) 0 (0%)
speech 21 16 (76%) 12 (57%) 5 (24%) 0 (0%)

Table 3: Object identification results for instructions with spatial relations: Correct identifications (may contain additional objects besides
the intended object), identifications with additional objects, false identifications, and cases where no object was identified (nothing).
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Fig. 14: The behavior of the beliefs in an object node over time: Four components of the belief vector are plotted in different greyvalues.
White noise was added to the diagnostic support. (a) With prediction: The belief of the true object hypothesis is always greater than the
others, (b) Without prediction: the signal to noise ratio is close to 1.

generalize or to abstract from named properties. No
hierarchies like

rectangular, diamond-shaped quadrangular
hexagonal angular

are implemented.

The system is more likely to identify an object than
not. If there is at least one object property which
matches an uttered property then the object will be
identified if no other object fits better. It can be as-
sumed that a serious instructor does not want to fool
the system. Instructions should refer to objects in the
scene, and they somehow should make sense. In this
case, it is a good strategy for the system to identify
the best matching object without requiring a perfect
match. Furthermore, it is more likely for the system

to identify only the best fitting object rather than all
possible fits.

The Bayesian network approach takes the scene con-
text into account. However, no topological structure
is considered. Local neighborhoods of objects or sub-
scenes can not be represented. Therefore, an explicit
focus on an object and its local neighborhood can not
be modeled nor recognized. A possibility could be
to model the scene topology with Markov Random
Fields (Geman & Geman, 1984) and to attach them to
the nodes in the Bayesian networks. Then, evidence
would not be derived from the qualitative descriptions
only, but from the qualitative descriptions within the
context of the scene topology.

The identification criterion ( ) is a dynamic
threshold. As for all hard decisions, also this thresh-



old may fail. Future work should investigate learned
identification criteria, for example, neural networks or
other classifiers.
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