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VECTORS 

2. l The Characterization of a Vector 

Familiarity with such vector quantities as velocity and force gives 

us what is usually called an "intuitive" notion of vectors. We are familiar 

with the fact that such vector quantities possess both magnitude and direc­

tion, as contrasted with scalar quantities which possess only magnitude. 

In physics, a vector quantity in three dimensions is frequently represented 

by a directed line segment, the length of which is proportional to the mag­

nitude of the vector quantity, and the direction of which corresponds to the 

B 

c 

Fig. 2. l 

direction of the vector. The simplest prototype vector is given by the dis­

placement between two fixed points in space. Two successive displacements 

A to B then B to C will be represented by a vector drawn from the original 

starting point to the final point (AC in Fig. 2.1) and this vector is defined as 

the "sum" of the two displacement vectors AB and BC. Such a definition of 

addition insures the commutativity of vector addition, i.e. , 

a+ 1J = 1J +-a (2. 1 l 
It is usual in vector analysis to permit vectors to be moved anywhere in 

space, provided their direction and length are preserved. Such vectors ar e 

called free vectors. In mechanics, the line of action of a force vector is 

important, and a vector constrained to act along a given line is called a 
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bound vector or a sliding vector. We shall direct our attention primarily 

to free vectors. Multiplication by a positive scalar stretches or contracts 

the length of the vector without changing its direction or sense. Such multi­

plication by a scalar is distributive, i. e. , 

..... ..... _. ..... 
N (a + b) = N a + Nb (2. 2) 

Multiplication by the scalar N = 0 produces a zero vector, a vector of length 

zero; whereas a multiplication by a negative scalar N = -M stretches the 

length of the original vector by M and reverses its sense. 
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Fig. 2. 2 

Not all directed quantities which might be represente d by directed 

line segments are vectors. For example, an angula r displacement of a 

rig id body can be uniquely represented by a line paralle l to the axis of 
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rotation, of length proportional to the angle of rotation. The final orienta­

tion of a body subjected to two successive rotations about non-parallel axes 

will, in general, be dependent on the order in whic h the rotations are p e r­

formed and will not b e equal to the rotation obtained by vector addition of 

the two directed quantities representing each rotation as illustrated in 

Fig. 2. 2. It is important, the refore, to be sure that a set of directed 

quantities obeys the laws of vector addition before being t reated as vectors. 

2. 2 Vector Algebra 

Addition. We have seen that vectors in thr ee dimensions are added 

by the p a rallelogram or triangle method; i. e., if the tail of one vector is 

placed at the tip of the other, then a vector drawn from the tail of the first 

h, ~he tip of the sec ond is defined as the sum or r esultant of the two original 

vectors (Fig. 2.1 ). It should b e noted that two vectors are coplanar with 

Fig. 2.3 

their sum. More t han two vectors can be added by first adding a pair, then 

adding a third to the r esultant of the first t wo, and so on. The s a me result 

is obtained by c onstructing a space polygon as shown in Fig. 2. 3 . 

Equality. Two vectors a r e d efined as equal if they have the same 

magnitude, direction and s e nse, even if they do not lie in the same straight 

line. 

Absolute Value. The a bsolute value of a vector in three dimensions 

i s defined as a scalar numerically e qual to the length of the vector. 

Multiplication by a Scalar. Multiplication of a vector by a scalar 

y i e lds a new vector a long t he same line as t h e original vector, b ut with the 
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magnitude changed by the product of its length by the magnitude of the 

scalar multiplier. The sense remains the same, or is reve rsed, depend­

ing on whether the multiplier is positive or negative. 

Scalar Product. The scalar product of two vectors is a number 

equal to the product of the absolute values of e ach of the vectors multiplied 

by the cosine of the angle between them. The most common notation in the 

U. S. is that of Gibbs (other notations are discussed at the end of this 

chapter), which represents the scalar product by a dot placed between the 

vectors. It should be noted that 

(2. 3) 

the result of "dotting" a with b is to form the product of the magnitude of 

the projection of a in the direction of b with the magnitude of b. (Fig. 2. 4). 

Fig. 2. 4 

Suc h scala r products are frequently 

met in mecha nics: if a i s a forcer 

acting on a partic le a t 0, and b a linear 

displacement of the particle , then 

a. b = r. b is just the product of the com-
_. _. 

ponent of f in the b direction by the dis -

placement, hence the work done on the 

particle by the for c e fin moving through 

the distance b. 
..... _. 

If a =f is a forc e and 

b = v a velocity vector' a. b = r. v represents the rate r is doing w ork in the 

:;:; dir e ction. 

If two vectors are perpendicular, the scalar product vanishe s. Con­

v ersely, the vanishing of the s c alar product of tw o n on-v anishing vectors 

insures their perpendicularity. 

Vector Product. The v e ctor produc t of two vectors is defined as a 

vector perpendicular to the plane define d b y the tw o original v ectors when 

translated to a common origin, and of magnitude e qual to the product of the 

absolute values of the original vectors multiplied by the sine of the angle 

b e t w een the m. The sense of the produc t vector is given by the r ight hand 

s c rew rule, i.e. , the direction of prog ression of a right h a nd s c r ew w h en 

turned from the first to the se c ond term of the produc t (Fig. 2. 5 ). 
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-+ .... , ..... ,, .... , ..... ax-b = a b sin (a, b) v (2. 4) 

ca xb"J 

where vis a unit vec tor perpendicular 

to the plane containing a and b, the 

sense of which is given by the direc­

tion of progression of a right hand 

Fig. 2. 5 

AI 
Fig. 2. 6 

..... ..... 
screw when turned from a to b. From 

this definition it follows that 

-+ -+ .;:-+ -t 
a x-b = -ox a (2. 5) 

A familiar example from mechanics 

arises in evaluating the linear velocity 

of a point in a rotating solid body. If 

the body is rotating about the axis A 

(Fig. 2. 6) with angular velocity w, and 

r represents the position vector of the 

point P with respect to any prescribed 

point 0 on the axis of rotation, then 

the linear velocity of P will be given 

by v= wxr. 
Multiplication is Distributive. All three types of multiplication are 

distributive, provided that the order of terms is retained for the vector 

product. The proof follows readily from the geometric interpretations of 

the various types of products. 

Division. Division of a vector by a scalar is covered by the definition 

of multiplication by a scalar. Division of one vector by another is not 

defined. 

Triple Products. 
..... ..... ..... 

Given three vectors a, b, and c , there are three 

types of triple products which have meaning in vector analysis. 

1. The dot product can be formed for any pair and the resulting scalar 

multiplied into the third vector: a("b. c), a vec tor in the direction of a. 
2, The cross product can be formed for any pair and the resulting vector 

dotted into the third vector: a• ("bx-c), a scalar. This is called the ---scalar triple product and is sometimes written (ab c ). 
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3. The cross product can be found for any pair and the resulting vector 

crossed into the third vector: (aXb) xc, a vector. This is called the 

vector triple product. 

EXERCISES
1 

2. 1 Show by vector methods, that is, without using components, that the 

diagonals of a parallelogram bisect each other. 

2. 2 Show by vector methods that the line which joins one vertex of a 

parallelogram to the middle point of an opposite side trisects the 

diagonal. 

2. 3 The vectors a and f) extend from the origin 0 to the points A and B. 

1 

Determine the vector c which extends from 0 to the point C which 

divides the line segment from A to B in the ratio m: n. Do not use 

components. 

2. 4 Without using components, show that 

.... ,.... -+r _. .... ,. ..... _.,....2 
(axb) ·(ax o) =(a· a)(o. o)- (a. b) 

for any vectors "i: and b. 

2. 5 A natural way to attempt to define division by a vector would be to 

seek the vector b such that the equality axb = c holds when a and 2 
are given nonparallel vectors. Show that this equation does not 

define b uniquely. 

2. 6 Without using components, show 
-t ;+ :-t _, 

a. Vector addition is commutative. a+ o = b +a 

b. Vector addition is associative. ("i:+b)+c=a+(b+c) 
.... ..... -+ ,.... 

c. Multiplication by a scalar is distributive. N(a+ o) = Na+ Nb 

d. The scalar product is commutative. a. b = S. a 
-t ~ -+ .... 

e. The vector product is not commutative, but aXb = -bx a 
-+ ~ _., -t ,. ..... -+ 

f. The scalar product is distributive. a. (b + c)= a. o +a. c 

Many important results are included only in the problems and the reader 
should familiarize himself with the r e sults even whe n he does not work 
a ll of the problems. 
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2. 7 Show that for two nonvanishing vectors: 

a. b = 0 is the condition that a is perpendicular to b 
axb = 0 is the condition that a is parallel to b 

2. 8 Show that a. (bX c) is the volume of the parallelopiped, the edges of 

which are the vectors a, b and c. From this geometrical fact 

establish the relation 

a·hxc=b·cxa=c·axG 

2. 9 Show that the vector product is distributive . 
..... ..... -+ ..... ~ ..... _. 
ax (b + c)= a xb +a X c 

2. 10 Show that 
..... !"'"to ..... ..... ..... s ~ ..... -+ (axb)Xc=(a•c) -(o•c)a 

and 
..... -+ ..... -+ ~::-+ -+ .......... 
a X (b X c) = (a • c J b - (b • a) c 

2. 3 Differentiation of a Vector 

If a vector is a function of a scalar variable such as time, then for 

each instant the magnitude and direction will be known. Between two 

successive instants the vector will 

change by an amount !:::.a (Fig. 2. 7), 

while the time changes by an amount 

f:::.t. The vector 

(2. 6) 

Fig. 2. 7 
is defined as the derivative of a with 

respect tot if the limit exists. The 

ordinary rule for differentiation of a product is valid, as can easily be 

demonstrated by a pplying the definition of differentiation coupled with the 

rules of multiplication to such a product, but c are must be taken not to 

interchange the order of the factors if cross products are involved. For 

example 
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EXERCISES 

2, 11 A vector of a of constant length (but varying direction) is a function 

of time, Show that da/dt is perpendicular to a. 

2. 12 Show that if F is a force directed along rand if Fxdr /dt = 0 at all 

times, the vector r has a constant direction, r is the position vec tor 

from the origin to the point in question, 

2. 4 Space Curves 

Each point of a space curve C (Fig. 2, 8), whether plane or skew, 

can be des c ribed by means of the position vector r from a fixed origin 0. 

Fig. 2. 8 

In the cartesian coordinates of the fi gure we c an w rit e 

...... ....... _...... ...... 
r=ix +jy+kz (2. 8) 

If now, 

X= f(t) y = g(t) z = h(t) (2. 9) 

where f(t), g(t) and h(t) are continuous functions oft for t
0

s:t:s:-t
1

, the c urve 

can be e xpressed in terms of the parameter t as 

.... .... .... 
r = r(t) = if(t) + jg(t) + kh(t) (2. 1 0) 

The curves most frequently met in physic al problems are c ontinuous, 

rectifia ble (i.e,, the ir l e ngth c a n b e measured) and m a d e up of s egments 
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of finite length, each of which has a continuously turning tangent. For the 

moment we shall confine our attention to portions of suc h curve s without 

singularities and with a continuously turning tang ent. 

The length s along the arc of the c urve, n1.easured f rom some fixe d 

point P, c a n be used as the parameter for the analyti c d e scription of the 

and 

r= r(s) 

Fig. 2. 9 

curve 

(2. 11 ) 

If we consider the points P 1 and P 2 
(Fig. 2. 9) where P 

1 
is given by the 

positio n vec tor r and P 2 by (r +6r) 

we see that 6r will be a v e ctor equal 

in length of the chord of the c urve 

between P
1 

and P
2 

and for a smooth 

curve 

..... 

16r I= 1 .:::.s (2. 12) 

ds dr [(df)
2 

(d )
2 

(dh\
2

]

112 

ill = I d t I = dt + * + ill) (2. 13) 

if f'(t), g'(t) and h'(t) exist. We shall assume that thes e derivatives do not 

a ll vanish simultane ously on C; hence !dr / d t I:/: 0 on C. 

At a ny interior point on a spac e curve of the type we h ave bee n 

describing we can define a set of three orthogonal unit vectors : (a) the unit 

tang ent vector u; (b) the unit pr i ncipa l normal v ector n; and (c ) the unit 

binormal vector b, perpendicular to both u and n. This triple of orthogo­

nal unit v ectors (u, n, b) is calle d the principal triad of the c urve , a n d will 

be ch o s e n t o form a right-hande d system in the orde r g iven. 

(a) The unit tangent v ector u. The vector dr /dt is tang ent to the 

c urve, henc e we c an d e fine the unit t a ngent v ector a s 

dr 
..... Cit dr dt dr u---------

- dr - dt ds - ds 

'Cit' 

(2. 14 ) 
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(b) The unit prinicpal normal n. If we consider the unH t.an~ent 

vectors at the points P
1 

and P
2 

of Fig. 2.10, it appears as if, i n the limit 

Fig. 2. 10 

as ,6.s ... O, .6.u will be perpendicular to 

lt. This is readily shown analytically 

from the fact that u • u = 1; hence 

du/ds•u+u·du/ds=O. Except in the 

case in which du/ds = 0 (the curve is a 

straight line) this insures the perpen­

dicularity of i::i and du/ds, and defines 

a unique normal direction to the curve. 

(In the case of a straight line there is no way in which to define a unique 

normal from the intrinsic properties of the curve.) The unit principal 

n0:::-mal is defined as 

This ca:;:1 be written in the form 

d\7 ... 
ds = (Kn) 

(2. 15) 

(2. 16) 

where K: is the principal curvature of the c urve at the point at which du/ds 

is evaluated, and p = 1 /K: is called the principal radius of curvature. From 

the mode of definition of the unit principal normal, we see that the e leme nt 

of the curve adj acent to P
1 

is contained in the plane defined by the vectors 

u and n. This is called the osculating plane for the curve at that point 

..... 
(c) The unit binormal vector b. The unit binormal, the third vector 

of the principal triad, is defined as being perpendic ular to both u and nand 
........... 

in such a sense as to form a right-handed system in the order (u, n, b), hence 

we must have (Fig. 2.11) 
_, .... .... 
b = [uxn] (2. 17) 

The Frenet-Serret Formulas. The derivatives of the unit vectors ... ... ... 
u, n, and b with respect to s are related to the vectors themselves by the 

Frenet-Serret formulas 

d\7 ... 
dS=n (2. 18) 
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dr; 
ds = Tb- K:~ 

.... 
db .... 
ds = -Tn 

K: has already been defined as the principal curvature (Eq. 2. 16). 

(2. 18) 
cont . 

T is 

called the torsion and is a measure of tendency of the curve to "twist•• out 

of the osculating plane. For a plane curve, bat any point on the curve will 

be parallel to its value at any other point, hence db/ds, and consequently T, 

will vanish. Its reciprocal 1/T is called the radius of torsion. The first 

of Eqs. 2. 18 has already been established. To establish the other two 

z 

X 

Fig. 2. 11 

.... --equations we first differentiate the equation b = uxn and substitute the known 

value for du/ds. 

db du - .... dii - - - d~ .... d~ 
ds = ds Xn+uxds =K:nxn+uxds =uXds 

Next we differentiate n = bx u to obtain 

.... 

dii db .... .... du db .... .... .... db .... .... 
-=- x u+ bx- =-Xu+ (bxn)K =-xu- K:u ds ds ds ds ds 

Now since b is a unit vector -i.e., it can change direction but not 

(2. 1 9) 

(2. 20) 

magnitude- db/ds must lie in a plane p e rpendicular to b; hence it can be 

expressed as a linear combination of~ and ii. Hence 

db - .... 2 2 ds = a.u + 13n ( • 1) 
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where a and (3 are numbers which we wish to tlcterrnjne. J>uUing t-hi 1:1 vahH' 

for db/dH into F.::q. 2. 20 we obtain 

d~ ..... ..... ..... ..... ..... 
ds =(au+ (3n)xu- Ku = -(3b-K:u (2. 22) 

Introducing Eq. 2. 22 into Eq. 2. 19 we obtain 

db ..... -- ..... ..... ds =ux(-(3b-Ku)=(3n (2.23) 

This shows that db/ds is, indeed, parallel to~. We arbitrarily define 

(3 = -T, giving the third of the Frenet-Serret formulas. Inserting this value 

for (3 in Eq. 2. 22 we obtain the second of the formulas 

dn - ..... ds = Tb-K:u (2. 24) 

Examples 

1. Fo:r a straight line, du/ds = 0, the curvature is zero, the radius of 

curvature infinite and b and n are not defined. 

2. For a circle of radius a, the curvature is 1/a and the torsion is zero. 

3. Consider the curve given by the set of parametric equations 

z 

z 
X= 3t-t3 

2 
y = 3t 

3 
z = 3t + t 

(2. 2 5) 

bJ=======~:-- y This curve starts from the origin at 

Fig. 2. 12 

t=O, moves into the first octant, and 

then penetrates the y-z plane when 

t = ./'3 (0, 9, 6 /3 ), remaining in the 

octant in which y and z are positive 

and x negative for all subsequent positive t. We can use the parametric 

Equations 2. 2 5 to calculate ds /dt 

2 2 2 2 
( ds) = (dx) + (~) + (dz) 
dt ,dt dt dt (2. 2 6) 

-+ ~ "'-:t -+ -+ 
Since r = lX + JY + kz, we can calculate u from Eq. 2. 14 
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(2,27) 

From Eq. 2, 16 

dti ..... du dt -2t .... 
ds = Kn = dt ds = 3 i + 

3(l+t2 ) 

(2, 2 8) 

whence 

(2. 2 9) 

and 

1 
K = -~-2_,.,..3 

3(l+t ) 
(2, 3 0) 

From Eqs. 2, 27 and 2, 29 we find 

b = uxn=- (l-t2) f_ J2tT+J21< 
/2 ( 1 +t 2 ) 1 +t 2 2 

(2. 3 1) 

Comparing Eqs, 2, 27 and 2, 31 we see that the only components which vary 

along the curve have · opposite signs, hence we can conclude that for this 

c urve 

(2, 32) 

hence T = IC, so that the torsion and curvature are equal, 

EXERCISES 

2, 13 (a) Describe the space curve whose parametric equations are 

x=acost , y=asint , z=ct 

where a and c are constants, Compute the unit tangent vector, the 

unit principal normal and the unit binormal. 

(b) Find the radius of curvature, the radius of torsion and the angl e 

between the unit tangent vector at any point and the positive z -axis. 
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2. 14 (a) A particle of mass m moves along the curve C whose vector 

equation is -; = -;(t), where tis time. Compute the velocity and 

acceleration vectors in terms of the unit tangent vector, the prin­

cipal normal vector and the binormal vector for C. 

(b) Suppose C is the helix of Problem 2.13(a). Compute the force 

vector F which must act on the particle in order to produce the 

observed motion. 

2. 5 Surfaces 

A surface is a two-parameter system, which can be defined 

vectorially by 

........ 
r = r (u, v) (2. 3 3) 

For the sake of this discussion, we shall confine our attention to intervals 

on u and v throughout which r(u, v) is single-valued. Let (u0~u ~ u 1 ; 

v 0~ v ~v 1 ) b e such an interval. If vis held constant and u permitted to 

range from v
0 

to v 1, rwill swee p out a spac e curve (Fig. 2.13) lying in 

the surface. Similarly if u is held constant and v permitted to vary. Since 

the c urves u = const. and v = const. lie in the surface, we can c onstruct two 

--+/ .... / tangent vectors to the surface 8r 8u and 8r 8 v . Thes e v e cto rs will not, in 

general, be perpe ndicular to one another nor will they be unit vectors, 

u =con st. 

Fig. 2. 13 
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although normalization is readily accomplished by dividing by the absolute 

value. There is an infinite number of tangent vectors to a smooth surface 

at any point, but the direction of the normal is uniquely defined, although 

some convention must be adopted to define the sense. A vector normal to 

S can readily be constructed by taking the cross product of the two tangent 

vectors already obtained, normalizing it to obtain the unit normal vector v 
where 

,ar xar, 
au av 

Example. Consider the paraboloid of revolution 

2 2 
x + y = 2z- 2 

In vector form this can be written as 

Tangents are obtained by taking the partial derivatives 

z 

1 

a; :-- .... 
ay = J + ky 

The normal is 

and the unit normal 

.... .... .... 
.... -ix-jy+k \) = --

/"x2 +y2 + 1 

(2. 34) 

(2. 3 5) 

(2. 3 6) 

(2. 3 7) 

(2. 3 8) 

(2. 39) 

r----------Y In this case the normal points toward 

the z-axis: to the interior of the sur­

face if we think of it as a cup. 

X 

Fig. 2. 14 
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2. 6 Coordinate Systems 

Any pair of non-parallel intersecting surfaces will in general 

intersect in a space curve. If a third surface intersects the curve in a 

single point, then these three surfaces can be used to denne that point. 

A family of such surfaces can be used as a curviline ar coordinate system: 

the term "curvilinear" arising from the fact that the three curves formed 

by the intersections of the surfaces in pairs will pass through the point. 

The reader should already be familiar with the three sets of coordinates 

shown in Fig. 2. 15. In Fig. 2.15(a) we have rectangular coordinates in 

which the coordinate surfaces are three planes, parallel respectively to 

the y-z, x-z, and x-y planes. Their curves of intersection are lines paral­

lel to the coordinate axes. The coordinate surfaces for cylindrical coordi­

nates, Fig. 2.15(b), are cylinders (r =canst.), half planes (cp = canst., 

O<cp ~ 2TI), and planes (z =canst.). The curves of intersection are readily 

seen in the figure. For spherical coordinates (Fig. 2.15(c)) the surfaces 

a re sphe res (r =canst.), half-cones (9 =canst., 0~ 9~1T) and half planes 

(cp= canst., 0< cp s:21T). Again the curves of intersection can be seen in the 

figure. At the point of intersection of three surfaces a triad of unit normal 

vectors can be defined uniquely except for sense. Such triads a re shown 

in Fig. 2.15(a), (b), (c), with a standard conve ntion r e garding sense. As 

long as these unit ve c tors are not coplana r, any v ector quantity can be 

described in terms of its components along these three normal v e ctors. 

They do not have to be ort hogonal. 

z z 

-+ 
i 

;---+--/;L----Y 
/ 

X 

Fig. 2. 15(a) Fig . 2. 1 5 (b) 
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z 

r----Y 

Fig. 2. 15(c) 

Suppose we are given the three sets of surfaces 

f(x,y,z)=u 

g(x,y,z)=v 

h(x, y, z) =w 

(2. 40) 

If these are non-parallel surfaces, each pair of which interse c ts in a space 

curve for some range of values of u, v, and w, then a point will be defined 

for each allowable triple of values of (u, v, w). Since any point in space can 

be uniquely described in terms of its cartesian coordinates (x, y, z), then if 

the three numbers (u, v, w) represent a point we would expect it to be pos­

sible to invert the Equations 2. 40 and solve the m for x , y and z as functions 

of u, v, w. This is not always possible to do explicitly even when such a 

relationship theoretically exists. We can, however, establish criteria 

which tell us when such an inversion is theoretically possible. To explore 

this in the neighborhood of a given point we shall take a linear approxima­

tion, using the first terms in the Taylor expansion, assuming that the 

various functions are continuous and possess the required derivative s. To 

do this we must calculate ox/ou, oy/ou, etc., from Eqs. 2. 40. Differentia­

ting these equations with respect to u we obtain 



Solving for ax/au we ob tain 

8z 
au= 

1 a£ a£ 
ay a; 

0 £.g_£.g_ 
ay a z 

0 a h ah 
ay az 

a£ a£ a £ 
ax ay az 

£.g_£.g_£.g_ 
ax ay az 

ah ah ah 
ax ay az 

-18-

a (g, h) 
= a(y, z) 

a(£, g, h) 
a(x,y,z) 

a (v, w) 
= a(y, z) 

a(u, v, w) 
a(x, y , z) 

(2. 41) 

where the notation on the right of Eq. 2. 4 1 is a shor t -hand notation for the 

determinants s h own. Such determina nts are called Jacobians. The other 

partials can be similarly obtained. In all of them the denominator will be 

the same: the Jacobian of (u, v, w) with respect to (x, y, z). This Jacobian 

must not vanish for the inversion to exist. 

Unit Vectors_. If we have a set of coordinate surfaces u 1 =canst., 

Fig. 2. 16 

u
2 

=canst., u
3 

= const. which are 

non-parallel, then at any point of 

intersection we can set up the triad 

of non-coplanar unit normal vectors 
.... .... .... 
e 

1
, e 2 , e. Another logical triad of 

unit vectors which can be associated 

with e a c h point will be tangent to the 

coordinate cur ve s i\. i 2 , i
3 

in Fig. 

2.16. These will coincide with e
1

, 

e2, e3 only if the coordinates are 

orthogonal. 
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Element of Length. If the unit normals i
1

, f 2 , f
3 

are non-coplanar, 

Fig. 2. 17 

any vector can be expressed in 

terms of its components in 

these three directions. In 

particular, if a curve passes 

through the point P associated 

with this particular triad of 

unit vectors, we can express 

the element of length along the 

c urve, ds, in terms of such 

components: 

ds = h 1 du{i 1 + h 2 du2i 2 + h 3du/3 
(2. 42) 

(It should be noted that it is possible to express a vector in terms of its 

c omponents with respect to any non-coplanar set of directions. Since the 

unit vectors of a curvilinear coodrinate system will, in general, change 

direction from point to point we will have to specify the point at which the 

basic vector triad is defined. In the case of a space c urve, it is most 

convenient to use the triad associated with the point being examined.) 

If r= r(ul' u2' u3) and we allow r to travel along the curve c of 

Fig. 2.17, we can write 

Now 8r /8u. will be a vector in the i. direction, hence we can write 
l l 

ar' = h.T. 
au. l l 

l 

(2 . 4 3) 

(2. 44) 

If We noW put r =xi+ yj + Zk and think Of X, y, Z as functions of Ul, u 2 , u 3 , 

we have 

ox i+ .£.y_ -J.+ oz k h _,. 
au. au. au. = i\ 

(2. 45) 
l l l 

Dotting this vector with itself we obtain 
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(i ::-:: 1' 2' 3) (2. 46) 

which is valid whether the coordinate system is orthogonal or not. 

Element of Volume. With the same notation as us ed in the previous 

section, an element of volume associated with a curvilinear parallelepiped 

bounded by the c oordinate surfaces ul, ul+ dul; u2, u2+ d u2; u3, u3+ du3 will 

be 

(2. 47) 

If the system is orthogonal this reduces to 

(2. 48) 

If not, we can obtain an a nalytic expressio n by considering 

-+ 
i 

-+ 
j 

-+ 
k 

(2. 49) 

Since rows a nd columns can b e interchanged i n a determinant without chang­

ing its value, w e see that the d eterminant i s just t he Jacobian of the trans­

formation or 

(2 . 50) 
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Variation of Unit Vectors. In a <.~ urvilincar coordinate systen1 the 

direction of the unit ve c tors will depend on their position, <• nd we 111~ed to 

know j ust how they vary from point to point:. Since 

(2. 51) 

then 

(2. 52) 

Differentiating the first and second of these equations with respect to u 2 and 

u 1, respectively: 

(2. 53) 

Equating the two mixed partials 

(2 . 54) 

This equation is valid whether the coordinates are orthogonal or not. In 
..... ..... ..... 

case they are orthogonal, (CH 
1 

/8u
2

) will be parallel to i
2 

and (8i2 /8u
1

) will 

be parallel to 7.
1

. For orthogonal coordinates, i. =e., so we can write 
1 1 

(2. 55) 

By cyclic permutation we can fill out the table to obtain 

ae"l I 8h3 -
------e. 8u

3 
- h 

1 
8u 

1 
3 ' 

(2. 56) 
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(2. %) 
cont. 

For the terms with the same subscript on the vector and coor dinate we take 

advantage of the relations of the type e
3 

= e l X e
2

. For example, 

(2. 57) 

(2.58) 

It should be kept in mind that Eqs. 2. 55-2. 58 are valid only for orthogonal 

sets ·of coordinates . 

EXERCISES 

2. 15 (a) Find the scalar products of the unit vectors~ j and k with each 

other. 

(b) Find the vector products of these unit vectors with each other. 

2. 16 Show that, in cartesian coordinates, 

a a a 
X y z 

-..~-+ -t b .... 
b b b (abc)=a.( xc)= 

X y z 

c c c 
X y z 

of the unit vectors t r. k. 
(a) Find the scalar product of the vector a= a f+ a j +a k with each 

X y Z 
2. 17 

(b) Find the vector product of a with each of these unit vectors. 
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2. 18 If e , ee· e are mutually perpendicular unit vectors in the r, e. q) r cp 
directions for a set of spherical polar coordinates, 

(a) Find the scalar products with each other 

(b) Find the vector products with each other. 

2. 19 Using the notation of Prob. 2.18 find the vector product of two vectors 

when expressed in terms of components in spherical polar coordinates 

.... .f1 _. ... .... _. ..... .... 
a X o = (a e + a S e S + a e ) X (b e + b S e S + b e ) . rr epep rr epep 

2. 20 Cylindrical coordinates r, ep, z are defined as shown in Fig. 2.15(c). 

(a) Show that the time derivatives of the unit vectors are 

de 
r ...!+ • ....., 

--=e =epe dt r ep 

~ ..... 
t: =-epe ep r 

. ft = 0 
r 

(b) Show that the velocity of the displacement vector 

is 
dr _. . _. . ~ . ._. 
-=v=re +repe +ze dt r ep z 

(c) Show that the acceleration is given by 

.... 2 .... 
.... dV d r (.u • 2) ( .• 2 • • ).... .., .... a= dt = -:-:-z- = L -rep e + rep+ rep e + :Ge 

dt r ep z 

2. 21 A particle is moving in the x-y plane, and r is the vector from the 

origin to the particle. Show that the components of the velocity dr /dt 

along, and perpendicular to, the radius vector are e dr /dt and 
r 

e rdep/dt. 
ep 

2. 22 Show that in spherical coordinates 

~ = ee+e + cP sin ee r ep 

~e = -9 E! + q:, cos e e r ep 

.;. • -+ • • -+ 
e = -epcos eee- epsln ee ep r 
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2, 22 (continued) 

-+ •• _., ..... ...... 
v = f' = r e r + r 9 e e + r cP sin 9 e cp 

+ (2fe+ rr:f- rq} sin 9 cos eree 

+ (2f¢ sine+ rep sine+ 2r 91$ cos 9)e 
cp 

2. 23 Calculate the h' s for cylindrical coordinates from Eq. 2, 46. 

2, 24 For spherical coordinates 

X = r Sin 9 C 0 S Cj) y = r sin e sin cp z = r cos 9 

2, 25 One can define an elliptic cylindrical coordinate system (cr, T, z) in 

which x= 2A cosh cr c osT, y = 2A sinh cr sin T, z = z. 

(a) Show that the system of coordinates is orthogonal, and that 

(b) Sketch the surfaces cr= const., T = const., z = c onst., and give the 

permissible range of variation of each coordinate to define a unique 

coordinate system. 

2, 7 Line and Surface Integrals 

Line Integrals, In discussing the scalar product in Section 2 . 2 we 

saw that it is useful in giving a n analytic expression for many quantities 

met in mechanics; e . g., the scalar product of a forc e vector with a dis­

placement vector gives work, and the scalar product of fo r ce and velocity 

vectors gives rate of doing work. If the magnitude and directions of the 

vectors in such a produc t change, however, we must introduce the concept 

of the line integral in order to obtain physically meaningful quantities. 
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.... 
F(P) 

Fig. 2. 18 

If a particle is constrained to move along a curve C (Fig. 2.18) and 
.... 

is acted upon by a force F(P) which depends on the point P, then the work 

required to move the particle from P to P+.D.P will be approximately 

-+ I ~ 

.6 W = F(P ) • .6r (2. 59) 

where P' is a point on C between P and P+.D.P. The work required to move 

the particle from P
1 

to P
2 

will be approximately 

(2. 60) 

i 

where the summation covers the length of the curve from P
1 

to P 2 • We 

define the line integral as the limit of this sum as the largest of the incre­

ments .6r. approaches zero, and write 
1 

p r 2.... .... 
W = ··p F· dr 

1 

(2. 6 1) 

This definition of the line integral can be applied to any vector point function 
.... 
F(P). The value of the integral will, in general, depend on the path chosen 

between P 
1 

and P
2

• The actual evaluation of such an integral will require 
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F and r in terms of some convenient parameter, As an example, let \18 

consider the line integral of the vector F ::: F e (where e j a the rudial unit 
o r r 

vector in spherical polar coordinates) along two different paths in Fig. 2,19. 

z 

X 

Fig. 2 . 19 

Path A is a line from the origin to the point (0, 2, 2). 

and 

p2 2.JT 

I F . dr = r F dr = 2 /2 F 
' P Jo o o 

1 

On A we have dr= e dr 
r 

(2. 62) 

Path B will be taken along the x-axis to the point (2 /2, 0, 0) and then along a 

circular arc from this point to P
2

. We see that the result will b e the same 

as we already obtained, since the integral along the x-axis is identical with 

that of Eq. 2. 62, and along the circular arc F will always be perpendicular 

to dr, hence the scalar product F. dr will vanish. 

EXERCISES 

2. 26 Given the force field 

-- 2 .... -- 2r­F = (y +1 )zi+ 2xyzj + xy 1< 
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2. 26 (continued) 

(a) Calculate the work done in moving a particlt.) from the point (0, 0, 2) 

to the point (0, 0, -2) along a semicircle lying entirely in the positive 

x half of the xz -plane. 

(b) Calculate the work done in moving a particle from the point (0, 0, 2) 

to the point (0, 0, -2) along the z -axis. 

2. 27 If we form the scalar product of both sides of Eq. 2.14 with the unit 

tangent vector u we find 

Whence u. dr = ds. 

Using this expression, find the length of the curve expressed para­

metrically in Eq. 2. 25 between the origin and the point at which it 

penetrates the xz plane. 

-t ..... ..... ~ -+ 

2. 28 Find the line integral ofF. dr from (1, 0, 0) to (1, 0, 4) ifF= xi- yj + zk 

(a) along a line segment joining the end points; 

(b) along the helix x = cos 2Tit, y = sin 2Tit, z = 4t. 

Surface Integrals. The flux of a vector point function (such as mass 

flow) through a surface can be obtained by a surface integral of the form 

. I IF . dS = I IF . v dS (2. 6 3) 

s s 

where Vis the unit normal to the surface. Since the integrand is a scalar 

z 

X Fig. 2. 20 

quantity, such an integral can be reduced 

to a double integral over an appropriately 

chosen pair of parameters. For example, 

if we have an incompressible fluid of 

density p, flowing with a velocity 

v=v -e +-e _. [a-+ r-+ J 
0 r r a e ' 

what is the flux through the curved sur­

face of the cylinder of Fig. 2. 20? Here 

we must evaluate the surface integral 
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We can readily obtain ds+from the cross produc t of two line e lements: 

.... a:r a:r 
dS = ae x acp d9 d cp 

The surface in question has the vector equation 

Hence 

r =a esc ee 
r 

= (-a c tn 8 esc 8e +a esc 8e
8

) X (ae ) d8 dcp 
r cp 

2 .... 2 .... 
= a e sc 8 ctn 9e e +a esc Ser 

The integral becomes 

-1 

Ss 
t a n ath 2iT ( 2 2 ) 

pv. ds = p J J ~a c s c e c tn e + ~a c s c e d cp de 

S TI/2 0 

Since r sin 8 = a this reduces to 

-1 
2 rtan 

a PJ 
iT/2 

-1 
2 I": 1 ] tan a/h 

= 2Tia ple- 2 
2 sin 8 TI/2 

2 2 
2 ~ -1 a iT a +h 1 J = 2TI a p tan h- 2- 2 + 2 

· 2 a 

EXERCISES 

2. 29 Find the flux of the vector field define d by the expression 

-+ -+ -+ .,.... 

F = x i+ yj + zK 

(2. 64) 

(2. 6 5) 

(2.66) 

(2. 67) 

(2. 68) 

through the closed surface c onsisting of the c oordinate pla nes a nd the 

first octant of the sphe r e x 2+y2 + z 2 = a 2 , first by direct calcula t i on 

using cartesian c oordina t e s a nd then using s pherical pola r coordinate s. 
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2. 8 The Directional Derivative and the Gradient. 

In many physical problems we shall be interested in the rate of 

change of some scalar point function in a particular direction. For exan1pJe, 

the rate of flow of heat across an element of surface is proportional to the 

rate of change of temperature normal to that surface. If the element of sur­

face in question lies in one of the coordinate surfaces, the required rate of 

change will be related to the appropriate partial derivative. Since this will 

not be generally the case, we must extend the notion of partial derivatives. 

Consider a scalar point function cp(P) which is continuous and varies 

smoothly in every direction from any point interior to some region R. Let 

-+ 
e us consider the variation of ci>(P) in the 

direction of an arbitrary unit vector e 
(Fig. 2. 21 ). If we start from the point P, 

let .6-P be the distance along e to a neigh-
e 

boring point P + .6-Pe. Then we define 

Fig. 2. 21 

lim 
.6-P _.o 

e 

<I>(P+ .6-Pe)- <P(P) 

.6-P .... e 
(2. 69) 

as the directional derivative of cp(P) in the e direction. We see that this is 

a direct extension of the usual definition of a partial derivative. 

If we had taken .6-P along a smooth curve C passing through P 

(Fig. 2. 21) where e is tangent to the curve at P, then .6-Pe R=ll.6.sl 

lim .6-Pc- lim 1.6.8 1-1 
.6-P .... o .6-Pe- .6-P ........ O .6-Pe -

c e 

(2. 70) 

w e can consider Eq. 2. 69 as giving us the directional derivatives along the 

curve C. If we now consider a set of coordinate curves in an orthogonal 

curvilinear coordinate system, we will have ,6,s = h . .6.u. e.' and the directional 
1 1 1 

derivative in the e. direction will be 
1 

lim 
.6-s.-+0 

1 

cp(P+h . .6.u.)- ci>(P) 
1 1 

h . .6.u . 
1 1 

(2. 71) 
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It is possible to construct an infinite number of dire c tional derivatives 

of <I>(P) at any point, but these are by no means independent of each other . 

In fact, we can construct a unique directional derivative, called the gradient, 

which, when treated as a vector, has the property that its component in any 

Fig. 2 . 22 

lim 
RQ' ..... o 

4>(P)=C+L).C 

<P(Q')- <I>(R) l1"m 
RQ' = RQ' .... O 

direction is just the directional deriva­

tive in that direction. Consider two 

neighboring surfaces 4> (P) = C and 

<I>(P)=C+L).C (Fig. 2.22). Such sur ­

faces are frequently called level 

surfaces of the function <J>(P). The 

directional derivatives of <I>(P) in the 

direction RQ ', evaluated at the point R, 

will be 

(C+L).C)- C = 
RQ' 

L).C 
lim RQ' 

RQ'-.0 
(2. 72) 

Let 6.r b e the distance between the two surfaces along the normal to 4> (P) = C 

erected at R, and let \)be a unit vector in the direction of that normal. Then 

RQ' = L).\) sec ct where a. is the angle between RQ and RQ', except for terms of 

higher order than L).\J, and /::;,\!will represent the minimal distance between 

the two surfaces. This means that the directional derivative normal to 

<l>(P) = C at R will be the maximal directional derivative at R. Furthermore, 

the normal direction can be defined uniquely relative to a surface at a point 

on the surface. This gives us the possibility of defining a unique directional 

derivative. We shall define the gradient of the function <I>(P) as a vector in 

the direction of the normal to <P(P) = C, equal in magnitude to the directional 

derivative in this normal direction 

gradient <P= grad <I>= 'il <I>= lim ~!v 
.6n .... o 

Since RQ' = L).\! sec ct, we find that 

(2. 73) 

If we let n be a unit vector in the RQ' direction, n. \)=cos ct, and we have the 

result that 
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D «,'[> =grad cp. T: = 'i74> • T: 
n 

(2. 7 4) 

In fact, the directional derivative of a function in any direction will be given 

by the s c alar proclut:t of a unit vector in that direction with the gradient of 

the function. We c an use this property to construct the gra dient vector in 

any coordinate system, whether orthogonal or not, 

For any curvilinear coordinate system with the line element 

(2. 7 5) 

the directional derivatives in the three directions normal to the coordinate 

surfaces will be 

(2. 7 6) 

and the gradient will be 

(2. 77) 

Since the vector \7cp is normal to the surface cp = const. , we can 

obtain the unit normal from the gradient 

(2. 78) 

By the operation of finding the gradient of a scalar field we have 

derived a related vector fi e ld. We can hardly expect all vector fields to be 

derivable as gradients of scalar point functions, so we might expect that 

such vector fields will possess certain special characteristics. For 

example, consider the line integral of grad F between two points P and Q 

P r0 
aF jp grad F. ds = .lp as ds = F{Q)- F(P) (2. 79) 

This result depends only on the value ofF at the end points, a nd is inde­

pendent of the path of integration, A further consequence of this fact is 

that the line integral of suc h a vector field around a closed path will vanish. 
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EXERCISES 

2. 30 Using the general definition of the directional derivative, show that 

the directional derivative of the radius vector r is unity in the 

direction r. Check by using the expression for the directional deri­

vative in cartesian c oordinates and the fact that r = (x2+y2+z2 )1/
2

. 

2. 3I Show that 

(a) In cartesian coordinates 

(b) In cylindrical coordinates 

a <I? ... I a<P ... a<P -'i74> = -e + - -e + -e . ar r r acp cp az z 

(c) In spherical polar c oordinates 

'ii'<P = ~e + .!.. acp e + I a<P-
ar r r 89 9 r sin 9 a cp ecp 

2. 3 2 Given F(x, y, z) = x 2+y2+z2 = r2 

-+ -+ .,... ._. 
grad F = 2xi + 2yj + 2zK = 2re 

r 

(a) Evaluate th e line integral of grad F a long the path indicated in 

the sketch. 

(b) Evaluate the line integral of grad F between the same limits 

along the r a dius v ector. 

(c ) Evaluate the line integr a l of grad F b e tween the s ame limits 

using Eq. 2 . 7 9 . z 
(I, I, 2) 

X 
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2. 9 Divergence 

The divergence of a vector field can probably be most easily illus­

trated by considering the example of fluid flow. Suppose that we have a fluid 

flowing in a region R such that the velocity at any point P and at time t is 

.... 
dS 

Fig. 2. 23 

given by the vector v(P, t). Let us 

consider a small closed volume V 

(Fig. 2. 23) and write the expression 

for the net inflow or outflow of fluid 

from that volume. If we represent an 

element of the surface of V by the 
.... 

vector dS directed normally outward 

from the enclosed volume, the net 

flow of fluid through that surface ele­

ment per unit time will be dS. ( pv) 

where p i .s the mass density of the fluid. The net outflow or inflow from the 

volume V will be given by the integral over the entire bounding surface of 

this scalar expression 

Flux= Sl dS· (pv) 
s 

and the average flux per unit volume throughout the volurr1e V will be 

v 

(2. 8 0) 

(2. 81) 

We define the divergence of the mass flow at the point P by the 

expression 

divergence (pv) = div (pv) = v . ( pv) = lim 
D..V .... O D..V 

(2. 82) 

where, in the limiting process D..V--0, the point P remains interior to D..V, 

and the greatest distance from P to any point on the surface of D. V approaches 

zero with D..V. The expression represents the net outflow (or inflow) of 

mass per unit volume at the point P. If the density p is constant, this flux 
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must come from sources and/or sinks located at P. If p is not constant, 

such a flux could arise from a local density change. if no ~:~ourcea or sinks 

are present we can write 

Sl .... .... ap 
dS • pv = - at ..6.. V 

s 
(2. 83) 

where (ap/8t) represents the average value of (8 p /8t) over the small volume 

..6..V. In the limit this becomes 

". ( pV) =-w (2. 84) 

If, of course, the density is constant with time we have 

". < pv) = o (2. 8 5) 

The concept of the divergence of a vector field is readily generalized ... 
to define the divergence of a vector point function F by the equation 

(2. 86) 

if this limit exists when, in the limiting process, the shape of ..6..V is not 

restricted except that P be interior to ..6.. V and the greatest distance from P 

to any point on the surface of ..6.. V must approach zero as ..6.. V -+0. 

Gauss's Theorem or the Divergence Theorem. Equation 2. 86 can be 

rewritten in the form 

Sf ........ -+ 
dS· F = 'V· F..6..V+ C..6..V 

lim C = 0 
..6.,V-.O 

For a finite volume, which can be broken up into n cells ..6.. V., we have 
1 

n n n 

I JJ ciSi. F =I"· ~..6..Vi +I Ci..6..Vi 

i=l i=l i=l 
... 

(2. 87) 

(2. 88) 

If F is continuous and possesses continuous first derivatives throughout V 

and if the bounding surface S of V is c ontinuous and pie c ewise smooth, we 
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get as a limit 

II dS. F = JJJ 'J· FdV (2, 89) 

s v 

This is known as Gauss's Theorem or the divergence theorem. The condi­

tions on F and S can be somewhat relaxed, but no simple catalogue will 

suffice, and the conditions enumerated will be satisfied in most physical 

situations arising in classical field theory, 

The definition of the divergence given by Eq. 2. 86 should make clear 

the fact that the divergence is a property of the original vector field, and 

does not depend on the coordinate system in which the vector field is des­

cribed. Since many physical laws relate the value of a field quantity at a 

point to the values at neighboring points, we might expect to take advantage 

of expressions such as Eq. 2. 86 to permit us to obtain rather general 

mathematical formulations of such laws. We shall illustrate this with a for­

mulation of the laws of heat conduction in which we shall be concerned with 

the temperature as a scalar point function, 

Heat Conduction, The formal laws of heat conduction and their 

mathematical formulation can be stated as follows : 

(l) If the temperature of a body is changed by an increment of 

temperature .6-T, then the change in the heat content of an element of volume 

of the body is given by 

.6-q = cp .6-V .6-T v 
(2. 90) 

where c is the specific heat at constant volume, p the density, and the bar 
v 

represents the average value over .6-V. Both c and p will usually depend on 
v 

T . If the temperature changes by .6-T in time .6-T, then 

(2. 91) 

Since q is the amount of heat in the volume element tl V (Ll V does not vary 

with time) we can put q = tlQ and sum up over a large body. In incremental 

form 

(2. 92) 


