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VECTORS

2,1 The Characterization of a Vector

Familiarity with such vector quantities as velocity and force gives
us what is usually called an "intuitive' notion of vectors., We are familiar
with the fact that such vector quantities possess both magnitude and direc-
tion, as contrasted with scalar quantities which possess only magnitude.

In physics, a vector quantity in three dimensions is frequently represented
by a directed line segment, the length of which is proportional to the mag-

nitude of the vector quantity, and the direction of which corresponds to the
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direction of the vector, The simplest prototype vector is given by the dis-
placement between two fixed points in space. Two successive displacements
A to B then B to C will be represented by a vector drawn from the original
starting point to the final point (AC in Fig. 2.1) and this vector is defined as
the '""sum'' of the two displacement vectors AB and BC, Such a definition of

addition insures the commutativity of vector addition, i, e.,

d+B=b+a (2. 1)
It is usual in vector analysis to permit vectors to be moved anywhere in
space, provided their direction and length are preserved, Such vectors are
called free vectors., In mechanics, the line of action of a force vector is

important, and a vector constrained to act along a given line is called a



bound vector or a sliding vector, We shall direct our attention primarily
to free vectors, Multiplication by a positive scalar stretches or contracts
the length of the vector without changing its direction or sense. Such multi-

plication by a scalar is distributive, i, e,,
N(z+b) = N3+ Nb ‘ (2.2)

Multiplication by the scalar N =0 produces a zero vector, a vector of length
zero; whereas a multiplication by a negative scalar N=-M stretches the

length of the original vector by M and reverses its sense.
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Not all directed quantities which might be represented by directed
line segments are vectors, For example, an angular displacement of a

rigid body can be uniquely represented by a line parallel to the axis of



rotation, of length proportional to the angle of rotation. The final orienta-
tion of a body subjected to two successive rotations about non-parallel axes
will, in general, be dependent on the order in which the rotations are per-
formed and will not be equal to the rotation obtained by vector addition of
the two directed quantities representing each rotation as illustrated in

Fig. 2.2. It is important, therefore, to be sure that a set of directed

quantities obeys the laws of vector addition before being treated as vectors.

2.2 Vector Algebra

Addition. We have seen that vectors in three dimensions are added
by the parallelogram or triangle method; i, e,, if the tail of one vector is
placed at the tip of the other, then a vector drawn from the tail of the first
te the tip of the second is defined as the sum or resultant of the two original

vectors (Fig. 2,1), It should be noted that two vectors are coplanar with

Fig., 2.3

their sum, More than two vectors can be added by first adding a pair, then
adding a third to the resultant of the first two, and so on. The same result

is obtained by constructing a space polygon as shown in Fig, 2,3,

Equality. Two vectors are defined as equal if they have the same
magnitude, direction and sense, even if they do not lie in the same straight

line,

Absolute Value, The absolute value of a vector in three dimensions

is defined as a scalar numerically equal to the length of the vector,

Multiplication by a Scalar, Multiplication of a vector by a scalar

yields a new vector along the same line as the original vector, but with the



magnitude changed by the product of its length by the magnitude of the
scalar multiplier, The sense remains the same, or is reversed, depend-

ing on whether the multiplier is positive or negative.

Scalar Product. The scalar product of two vectors is a number

equal to the product of the absolute values of each of the vectors multiplied
by the cosine of the angle between them, The most common notation in the
U. S. is that of Gibbs (other notations are discussed at the end of this

chapter), which represents the scalar product by a dot placed between the

vectors, It should be noted that
a-B=1|2||F|cos(a,b) =F-7 (2.3)
the result of "dotting” 2 with b is to form the product of the magnitude of
the projection of 2 in the direction of b with the magnitude of b. (Fig. 2.4).
Such scalar products are frequently
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direction,
If two vectors are perpendicular, the scalar product vanishes, Con-

versely, the vanishing of the scalar product of two non-vanishing vectors

insures their perpendicularity,

Vector Product, The vector product of two vectors is defined as a

vector perpendicular to the plane defined by the two original vectors when
translated to a common origin, and of magnitude equal to the product of the
absolute values of the original vectors multiplied by the sine of the angle
between them, The sense of the product vector is given by the right hand
screw rule, i, e,, the direction of progression of a right hand screw when

turned from the first to the second term of the product (Fig. 2. 5).



axb = |a||b|sin(a,b) ¥ (2. 4)

where J is a unit vector perpendicular
to the plane containing a and B, the
sense of which is given by the direc-
tion of progression of a right hand
screw when turned from 2 to 5’ From

this definition it follows that

axb = -Bxa (2.5)

A familiar example from mechanics
arises in evaluating the linear velocity

of a point in a rotating solid body, If
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the body is rotating about the axis A
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(Fig. 2. 6) with angular velocity o, and

T represents the position vector of the

point P with respect to any prescribed

point O on the axis of rotation, then

A/ the linear velocity of P will be given
Fig. 2.6 by V=W XT,

Multiplication is Distributive, All three types of multiplication are

distributive, provided that the order of terms is retained for the vector
product. The proof follows readily from the geometric interpretations of

the various types of products,

Division., Division of a vector by a scalar is covered by the definition
of multiplication by a scalar, Division of one vector by another is not
defined,

Triple Products, Given three vectors a, ‘t?, and ¢, there are three

types of triple products which have meaning in vector analysis,
1. The dot product can be formed for any pair and the resulting scalar
multiplied into the third vector: 5.'(5’- ©), a vector in the direction of B
2, The cross product can be formed for any pair and the resulting vector
dotted into the third vector: 2 . (E.Kg), a scalar, This is called the

scalar triple product and is sometimes written (;E'Z)_
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The cross product can be found for any pair and the resulting vector
crossed into the third vector: (@xB)xc, a vector. This is called the

vector triple product,

EXERCISES !

Show by vector methods, that is, without using components, that the

diagonals of a parallelogram bisect each other,

Show by vector methods that the line which joins one vertex of a
parallelogram to the middle point of an opposite side trisects the

diagonal,

The vectors a and b extend from the origin O to the points A and B.
Determine the vector ¢ which extends from O to the point C which
divides the line segment from A to B in the ratio m:n. Do not use

components,

Without using components, show that

(BB @l (2 SHE-B) - (8517
for any vectors a and B,

A natural way to attempt to define division by a vector would be to
seek the vector b such that the equality axB=C holds when 2 and ¢
are given nonparallel vectors, Show that this equation does not

define B uniquely.

Without using components, show

. Vector addition is commutative, a+b=b+a

. Vector addition is associative, (5+ By+c=2+ (F+¢<)
Multiplication by a scalar is distributive. N(Z+B)=N3z+ Nb

. The scalar product is commutative, z.5b=b.2

l—h(DQ-n'OO"Q’

The vector product is not commutative, but axb = -bx3a
—
F- 1

X
. The scalar product is distributive. a. (‘5'+ E) = B+a.c

Many important results are included only in the problems and the reader
should familiarize himself with the results even when he does not work
all of the problems,



2.9

2.10

Show that for two nonvanishing vectors:
2.b=0 is the condition that 2 is perpendicular to b

axb =0 is the condition that a is parallel to b

Show that a- (Bx ) is the volume of the parallelopiped, the edges of
which are the vectors a, b and ¢. From this geometrical fact
establish the relation

b —_ =

a-BXc:b-ch::E‘-é'xg

Show that the vector product is distributive,

ax(b+c)=axb+axc

Show that

(5XB)X€:(§o )b - (B« D)a
and

ax(bx) = (3B -(b.3)7T

2.3 Differentiation of a Vector

If a vector is a function of a scalar variable such as time, then for

each instant the magnitude and direction will be known, Between two

successive instants the vector will
change by an amount Az (Fig. 2. 7),

while the time changes by an amount

2% b2 Az At. The vector
z g?a = lim ‘ﬁTa 2.6)
At-0
Fig, 2.7 is defined as the derivative of a with

respect to t if the limit exists, The

6rdinary rule for differentiation of a product is valid, as can easily be

demonstrated by applying the definition of differentiation coupled with the

rules of multiplication to such a product, but care must be taken not to

interchange the order of the factors if cross products are involved. For

example

4
dat

(UAx V) —ﬁ'xgz+9‘—l_-.x€r’—ffx
- dt dt -



EXERCISES

2.11 A vector of a of constant length (but varying direction) is a function

of time, Show that da/dt is perpendicular to 2.

2.12 Show that if F is a force directed along T and if Fxdr/dt=0 at all
times, the vector T has a constant direction, ¥ is the position vector

from the origin to the point in question,

2.4 Space Curves

Each point of a space curve C (Fig. 2, 8), whether plane or skew,

can be described by means of the position vector T from a fixed origin 0.

2 Q(t:tl)
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In the cartesian coordinates of the figure we can write

-

F:ix+?y+1?z (2.8)

If now,
x=£(t) ; y=g{t) ; =z=h{t) (t <tst)) (2.9)

where f(t), g(t) and h(t) are continuous functions of t for t ststl, the curve
o
can be expressed in terms of the parameter t as

r=r(t) =1if(t)+jg(t) + Kh(t) (2. 10)

The curves most frequently met in physical problems are continuous,

rectifiable (i, e., their length can be measured) and made up of segments



of finite length, each of which has a continuously turning tangent. For the
moment we shall confine our attention to portions of such curves without
gingularities and with a continuously turning tangent.

The length s along the arc of the curve, measured from some fixed
point P, can be used as the parameter for the analytic description of the

curve

P ¥=7(s) T=T(s) (2.11)
" If we consider the points P1 and PZ

% - (Fig. 2. 9) where Pl is given by the
position vector T and P, by (T +AT)

we see that AT will be a vector equal

3!

in length of the chord of the curve
Fig. 2.9 between P1 and P2 and for a smooth
curve

. AT
lim ——-l =1 (2. 12)
Ag=0 I2s

and

- 2 2 2 12
-1 [ () (@]
if £'(t), g’(t) and h'(t) exist., We shall assume that these derivatives do not
all vanish simultaneously on C; hence ld?/dtl #0 on C,

At any interior point on a space curve of the type we have been
describing we can define a set of three orthogonal unit vectors: (a) the unit
tangent vector d; (b) the unit principal normal vector n; and (c) the unit
binormal vector E’, perpendicular to both 4 and n, This triple of orthogo-

nal unit vectors (1—1', n, 'E’) is called the principal triad of the curve, and will

be chosen to form a right-handed system in the order given,

(a) The unit tangent vector U. The vector dT/dt is tangent to the

curve, hence we can define the unit tangent vector as

dr
-__dt _drdt _dTf
UE s o Tdtds T ds A 13
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(h) The unit prinicpal normal n. If we consider the unit tangent

vectors at the points P] and P2 of Fig, 2,10, it appears as if, in the limit

as As—0, AU will be perpendicular to
U, This is readily shown analytically
from the fact that G-u= 1; hence

dd/ds G+ T-di/ds =0, Except in the

el

case in which du/ds =0 (the curve is a
straight line) this insures the perpen-

dicularity of U and du/ds, and defines

a unique normal direction to the curve,
(In the case of a straight line there is no way in which to define a unique

normal from the intrinsic properties of the curve,) The unit principal

normal is defined as

du
— dS
ds
This can be written in the form
da -,
As = (Kn) (2.16)

where K is the principal curvature of the curve at the point at which d@'/ds
is evaluated, and p=1/k is called the principal radius of curvature. From
the mode of definition of the unit principal normal, we see that the element
of the curve adjacent to P1 is contained in the plane defined by the vectors

U and 1. This is called the osculating plane for the curve at that point

(c) The unit binormal vector B. The unit binormal, the third vector

of the principal triad, is defined as being perpendicular to both U and n and
in such a sense as to form a right-handed system in the order (u,n, ‘5'), hence

we must have (Fig. 2.11)

b=[uxn] (2.17)

The Frenet-Serret Formulas, The derivatives of the unit vectors

— o
4, n, and b with respect to s are related to the vectors themselves by the

Frenet-Serret formulas

Qalm
N E=H1
1]
=F]

(2.18)



=] T

%’-‘- = Tb - ku
= (2.18)
- -ont,
d_b‘__ _TH con
ds ~

Kk has already been defined as the principal curvature (Eq. 2. 16). T is
called the torsion and is a measure of tendency of the curve to '"twist'" out
of the osculating plane., For a plane curve, b at any point on the curve will
be parallel to its value at any other point, hence df)./ds, and consequently T,
will vanish, Its reciprocal 1/T is called the radius of torsion. The first

of Eqs. 2, 18 has already been established, To establish the other two

1
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Fig. 2. 11
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equations we first differentiate the equation b=0xn and substitute the known

value for du/ds.

db dU¥ =, +.dn o> o - dn - dn
E_d—SXn+ux$_Kan+ux—-S—_ux—s (2.19)

Next we differentiate n=bx1 to obtain

do _dB -, p dd _db -, o o = o
'd—s—=agxu+b)<—s:d—s—xu+(b)(n)f{'—"—SXu—Ku (2.20)

-

Now since b is a unit vector — i, e,, it can change direction but not
magnitude — db/ds must lie in a plane perpendicular to B; hence it can be

. & , End e d
expressed as a linear combination of u and n, Hence

db _ i+ (2.21)
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where a and f are numbers which we wish to determine, Putting this value
for db/ds into Eq. 2. 20 we obtain

B = (o + pH) x T - kT = -pB-kT (2. 22)

Introducing Eq, 2,22 into Eq. 2. 19 we obtain

db

3o = Ux(-pb-ku) = pa (2.23)

This shows that db/ds is, indeed, parallel ton, We arbitrarily define
B=-T, giving the third of the Frenet-Serret formulas, Inserting this value

for B in Eq, 2, 22 we obtain the second of the formulas

dﬁ' _ = —
K =Tbh-Ku (2. 24)

Examples

1. For a straight line, du/ds =0, the curvature is zero, the radius of

- - 3 = -
curvature infinite and b and n are not defined,
2, TFor a circle of radius a, the curvature is 1/a and the torsion is zero,

3, Consider the curve given by the set of parametric equations

Z‘ 3

Pra x=3t-t
s
% 2
z=3t+ t3
—— —— This curve starts from the origin at
i t=0, moves into the first octant, and
then penetrates the y-z plane when
t=/3(0,9,6/3), remaining in the
2 Fig. 2.12

octant in which y and z are positive
and x negative for all subsequent positive t. We can use the parametric

Equations 2,25 to calculate ds/dt

(%ti)z = (g{g)z * (%E i + (g—-f-)z - 18(142)° (2.26)

Since T = ?x+3.y+1?z, we can calculate U from Eq. 2. 14
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- - 2
- dr dr dt 1-t T’+ 2t T+ _I_E

e T c— — —

= = = = i j
ds ~dt ds = 1 (1442} 2 (14t2) L2

From Eq. 2. 16

- - 2
di g oada -2t o (-tf) -
s t ds 3 3
3(1+t2) 3(1+t%)
whence
- = 2 -
8- -2t 7y UoB)3
(1+t%) (1+t%)
and
W
3(1+t2)
From Eqs. 2,27 and 2,29 we find
o S S 2 - b
Bogxds - U=t ) 3 f25j+[-2§-12

g (1+t2) 1+t

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

Comparing Eqs, 2,27 and 2, 31 we see that the only components which vary

along the curve have opposite signs, hence we can conclude that for this

curve

ab _ _du
ds ds

hence T=1%, so that the torsion and curvature are equal,

EXERCISES

2,13 (a) Describe the space curve whose parametric equations are

x=acost , y=asint , zZ=ct

(2.32)

where a and c are constants, Compute the unit tangent vector, the

unit principal normal and the unit binormal,

(b) Find the radius of curvature, the radius of torsion and the angle

between the unit tangent vector at any point and the positive z-axis,
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2.14 (a) A particle of mass m moves along the curve C whose vector
equation is ;:?(t), where t is time, Compute the velocity and
acceleration vectors in terms of the unit tangent vector, the prin-

cipal normal vector and the binormal vector for C,

(b) Suppose C is the helix of Problem 2,13(a). Compute the force
vector F which must act on the particle in order to produce the

observed motion,

2,5 Surfaces

A surface is a two-parameter system, which can be defined

vectorially by
r=7(u,v) (2.33)

For the sake of this discussion, we shall confine our attention to intervals
on u and v throughout which T(u, v) is single-valued., Let (uosusul :
VSV SVI) be such an interval. If v is held constant and u permitted to

range from v, tov,, r will sweep out a space curve (Fig, 2,13) lying in

1’
the surface, Similarly if u is held constant and v permitted to vary, Since
the curves u=const, and v=const, lie in the surface, we can construct two
tangent vectors to the surface 8?/811 and 8?/8v, These vectors will not, in

general, be perpendicular to one another nor will they be unit vectors,

V:Vl

u = const,

v = const,

Fig, 2,13
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although normalization is readily accomplished by dividing by the absolute
value, There is an infinite number of tangent vectors to a smooth surface
at any point, but the direction of the normal is uniquely defined, although

some convention must be adopted to define the sense, A vector normal to
S can readily be constructed by taking the cross product of the two tangent

vectors already obtained, normalizing it to obtain the unit normal vector v

where
ar 8T
o 9u ” 9v (2.34)
dTr _ of
u X 57|
Example, Consider the paraboloid of revolution
2d g = 2 B (2. 35)
In vector form this can be written as
- — — - - — X2+ 2
F=Txt Jy+ Rz = e Jy+ B(EEE41) (2.36)
Tangents are obtained by taking the partial derivatives
9T =~ 9 7, =~
E{-ul'i'l?x s gy =itky (2.37)
z
The normal is
— -
9 w2 Fe. pal (2.38)
x y
y and the unit normal
K4 - =
< - ~ix-jy+k
1 P (2.39)
fx2+y2+l
y In this case the normal points toward

the z-axis: to the interior of the sur-

face if we think of it as a cup.
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2.6 Coordinate Systems

Any pair of non-parallel intersecting surfaces will in general
intersect in a space curve, If a third surface intersects the curve in a
single point, then these three surfaces can be used to defince that point,

A family of such surfaces can be used as a curvilinear coordinate system:
the term '"curvilinear' arising from the fact that the three curves formed
by the intersections of the surfaces in pairs will pass through the point,
The reader should already be familiar with the three sets of coordinates
shown in Fig. 2,15, In Fig. 2.15(a) we have rectangular coordinates in
which the coordinate surfaces are three planes, parallel respectively to
the y-z, x-z, and x-y planes, Their curves of intersection are lines paral-
lel to the coordinate axes, The coordinate surfaces for cylindrical coordi-
nates, Fig., 2,15(b), are cylinders (r = const.), half planes (p=const.,
O<p<2w), and planes (z = const.), The curves of intersection are readily
seen in the figure, For spherical coordinates (Fig., 2,15(c)) the surfaces
are spheres (r = const,), half-cones (f=const,, O<8<w) and half planes
{(p=const., O<p<2rw), Again the curves of intersection can be seen in the

figure, At the point of intersection of three surfaces a triad of unit normal

vectors can be defined uniquely except for sense. Such triads are shown

in Fig, 2,15(a), (b), {c), with a standard convention regarding sense, As
long as these unit vectors are not coplanar, any vector quantity can be
described in terms of its components along these three normal vectors,

They do not have to be orthogonal,

// //
T
|
|
l

Fig. 2.15(a) Fig. 2.15(b)



o [ =

Fig. 2.15(c)

Suppose we are given the three sets of surfaces

f(X, Vs Z) =u
g(x,y,z)=v (2. 40)
h(x,y,z)=w

If these are non-parallel surfaces, each pair of which intersects in a space
curve for some range of values of u, v, and w, then a point will be defined
for each allowable triple of values of (u,v,w), Since any point in space can
be uniquely described in terms of its cartesian coordinates (x, y, z), then if
the three numbers (u, v, w) represent a point we would expect it to be pos-
sible to invert the Equations 2, 40 and solve them for x,y and z as functions
of u, v, w. This is not always possible to do explicitly even when such a
relationship theoretically exists., We can, however, establish criteria
which tell us when such an inversion is theoretically possible., To explore
this in the neighborhood of a given point we shall take a linear approxima-
tion, using the first terms in the Taylor expansion, assuming that the
various functions are continuous and possess the required derivatives, To
do this we must calculate 8x/8u, 9y/8u, etc., from Eqs, 2,40, Differentia-

ting these equations with respect to u we obtain
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of bx , bf By , Of Bz _,
8x 8u By du 9z du
9g 9x  Og 8y , 9g 9z _
8x8u+8y8u+az Bu_o .21
oh 8x , Bh dy , 8h 9z _,
9x du 8y du Bz du
Solving for 8x/8u we obtain
| BE Bf
oy 9z
o 92 8g
oy 0z
o 8hdh|  dgh)  B(v,w)
8z _ oy 8z | _ _o(y,z) _ _0(y, =)
6u ~ 9f of of | ~ 8(f,g,h) T 9(u,v,w)
9x 9y 9z d(x,y,z) 98(xv,z)
9g 9g 8g
9x 0y 0z
oh 9h dh
9x 9y 0z

where the notation on the right of Eq, 2. 41 is a short-hand notation for the
determinants shown. Such determinants are called Jacobians, The other
partials can be similarly obtained. In all of them the denominator will be

the same: the Jacobian of (u, v, w) with respect to (%, y, z). This Jacobian

must not vanish for the inversion to exist,

Unit Vectors, If we have a set of coordinate surfaces uy = const, ,

> = const, , ugy = const. which are

u
non-parallel, then at any point of
intersection we can set up the triad
of non-coplanar unit normal vectors
—e"l, 32’ €. Another logical triad of
unit vectors which can be associated
with each point will be tangent to the
- -

=
coordinate curves il’ iz, 13 in Fig,

2,16, These will coincide with 51,

82,’ 33 only if the coordinates are

orthogonal,

Fig. 2.16
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are non-coplanar,

Element of Length, If the unit normals ?1, ?2’ ?3
any vector can be expressed in
terms of its components in
these three directions, In
particular, if a curve passes
through the point P associated
with this particular triad of
unit vectors, we can express

the element of length along the

=4 .
curve, ds, in terms of such

Fig. 2,17 components:
ds = hlduli  Phydu,is, + h3du3i3 (2. 42)

(It should be noted that it is possible to express a vector in terms of its
components with respect to any non-coplanar set of directions. Since the
unit vectors of a curvilinear coodrinate system will, in general, change
direction from point to point we will have to specify the point at which the
basic vector triad is defined. In the case of a space curve, it is most
convenient to use the triad associated with the point being examined,)

If ¥= ?(ul, u,, u3) and we allow T to travel along the curve C of
Fig. 2.17, we can write

-

ds = ¥ du, + —ar—~du + —a—?—du
Bul 1 Buz 2 8u3 3
(2.43)
- = -
= hllldu1 + h212du2 + 1'1313du3
Now E)I"/Bui will be a vector in the Ti direction, hence we can write
o =
'511—' = hlli (2_ 44)
i
If we now put =%+ y?|.+ zK and think of x, y,z as functions of Uy, Uy, U,
we have
9x », 9y » 0z -
Bui1+ SuiJ+ 8uiE"hili (2.45)

Dotting this vector with itself we obtain
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2

2 2 ,
S N TR

which is valid whether the coordinate system is orthogonal or not.

Element of Volume, With the same notation as used in the previous

section, an element of volume associated with a curvilinear parallelopiped

bounded by the coordinate surfaces uy, ugt dul; u,, u,+ du?.’ U, Ugt du3 will

be
av =h T du; « [h,T,du, xh,T,du, = h (hohodu duydw T [T, | (@047)
If the system is orthogonal this reduces to
‘dVH:h1h2h3du1du2du3 (2. 48)
If not, we can obtain an analytic expression by considering
aT aT ar
dVE:au dul'[ﬁﬁ"duzx_““du3]
1 2
i J k
ox = By - 9x 0y 09z
Bu 1t + ] 9u, du, Odu dulduzdu3
9x 0Oy 9z
8u3 8113 8113 (2. 49)
9x 0Oy 0z
Bul Bul 8u1
9x 8y 0=z
= du,du,du
auz Buz Buz 1772773
9x 0Oy 0z
8u3 8u3 3u3

Since rows and columns can be interchanged in a determinant without chang-
ing its value, we see that the determinant is just the Jacobian of the trans-

formation or

9 (x

Ve e

du (1112(1113 (2. 50)

§» Bs U3
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Variation of Unit Vectors, In a curvilinear coordinate system the

direction of the unit vectors will depend on their position, and we need to
know just how they vary from point to point, Since
P e = = -
ds:hldu111+h2du212+h3du313 (2.51)
then
98 - 98 - 98 =
= s = = = 2 2
u; ~M'0 By, TP2l2’ By TPals a2l

Differentiating the first and second of these equations with respect to u, and

u,, respe ctively:

gzga = g (1)) = zhl'i'ﬁhl 211
u ul u2 uz 1.12
. (2. 53)
2’8 9 " )_ahz-i» o B
u Bu, - By, 212/ = du; 2" "2 By
Equating the two mixed partials
oh 9i, ©oh o1,
1= 1 2= 2
B 1 . SPSE  E, T - X (2. 54)
Buz 1 1 Buz 8u2 2 2 Bul

This equation is valid whether the coordinates are orthogonal or not, In
- —
i i

> and (8 2‘/8111) will

case they are orthogonal, (Eﬁ_i.1 /8112) will be parallel to
For orthogonal coordinates, ?i =e;, SO we can write

be paraliel to i

3
a'é’z _Lahl_’
u;, ~ h, du, Sy
. (2. 55)
Bey ¢ By
Bu2 - -E—Iaul ©2

By cyclic permutation we can fill out the table to obtain

8e1 _“L_ah?,g . 883_~L—8h1_e‘
8u3 1 Bul 3 aul h3 8u3 1

(2. 56)
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€27 Bu, " h, ou ‘“ZJ cont,

[a2]
2.1 i
[SSI H3S)

For the terms with the same subscript on the vector and coordinate we take

advantage of the relations of the type 5'3 = é’lxgz, For example,
pe, 8¢ o€, oh oh
3 l,- , = 2 1 - - - 1 3=
_—= Xe, +te. X == [e, Xe, [+ e, Ne=—uerm
80.3 8u3 2 1 8u3 hl Sul 1772 1 hZ 8112 3
(2.57)
- __Lah3g __L_ah?’g
h1 Bul 1 h, ou, "2
Bt WS s TR W B
ou, h, du, "2 h3 8u3 3
. (2. 58)
..aiz_ = w ._1._ ﬁ.z_g _1_ ahz g
ou, h1 8111 1 h3 8113 3

It should be kept in mind that Eqgs, 2,55 -2, 58 are valid only for orthogonal

sets -of coordinates.

EXERCISES

Z2.15 (a) Find the scalar products of the unit vectors : ;and K with each

other,
(b) Find the vector products of these unit vectors with each other,

2.16 Show that, in cartesian coordinates,

X v Z
(@bc)=2a.(bx3)=|b by b
{63 C C
X v Z

2,17 (a) Find the scalar product of the vector = axi—’+ ay_j"+ azl? with each

. el
of the unit vectors i, j, k.

(b) Find the vector product of a with each of these unit vectors.
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2,22

N

If Er, e i é'cp are mutually perpendicular unit vectors in the r, 8, ¢

8
directions for a set of spherical polar coordinates,
(a) Find the scalar products with each other

(b) Find the vector products with each other,

Using the notation of Prob, 2,18 find the vector product of two vectors
when expressed in terms of components in spherical polar coordinates
- — - - - - -
axb= (arer+aeee+ acpecp) x(brer+beee+bcpecp).
Cylindrical coordinates r, ¢, z are defined as shown in Fig. 2,15(c).

(a) Show that the time derivatives of the unit vectors are

dzg
=L =8_ =&
dt ~ =@ )

'e’cpz -H &,

& =0
T
(b) Show that the velocity of the displacement vector

—4

- s dr . .

r=re_ +xe is =V=1& +rpe +ze
r x dt

r p zZ

(c) Show that the acceleration is given by

- 2
->_dv _d’r _ 2 . A o
a= gt _Ez—_(fr-rcp )er+(rcp+2rcp)ecp+ Ezez

A particle is moving in the x-y plane, and r is the vector from the
origin to the particle, Show that the components of the velocity dr/dt

along, and perpendicular to, the radius vector are erdr/dt and

e rdep/dt,
o Y
Show that in spherical coordinates
ér = ee‘e + ¢ sin eeCp

é’e = -éér +ocos e"é’cp

= -(pcos A€

0 ml.

D 8 ® sin eé’r
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2,22 (continued)

_{r‘ ==& + 18, +r¢sin 8%,
5= P= (f_réz- zcbz _ 0)E,

+ (2fé+re'—rc'p2 sin f cos e))'e‘e
+ (22} sin g+ répsin 9+2récbcos e)é‘cp

2.23 Calculate the h's for cylindrical coordinates from Eq. 2. 46.
2,24 For spherical coordinates
Xx=rsinpcosp , y=rsinfsing , =zZ=Trcos@§
Find hr’ he, hcp'
2.25 One can define an elliptic cylindrical coordinate system (g, 7, z) in
which x=2A coshgcos T, y=2A sinhgsinT, z=2z,

(2) Show that the system of coordinates is orthogonal, and that

2 2 2, . .2 . 2 2
hc_hT_4A (sinh™ o + sin"'7) , hz_l

(b) Sketch the surfaces T=const., T=const., z=const., and give the
permissible range of variation of each coordinate to define a unique

coordinate system,

2,7 Line and Surface Integrals

Line Integrals. In discussing the scalar product in Section 2.2 we

saw that it is useful in giving an analytic expression for many quantities
met in mechanics; e, g., the scalar product of a force vector with a dis-
placement vector gives work, and the scalar product of force and velocity
vectors gives rate of doing work, If the magnitude and directions of the
vectors in such a product change, however, we must introduce the concept

of the line integral in order to obtain physically meaningful quantities.
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- F(P)
1
I)
ar’
N P+ AP
¢
¢

> P

5 2
Fig. 2.18

if a particle is constrained to move along a curve C (Fig. 2.18) and
is acted upon by a force f(P) which depends on the point P, then the work

required to move the particle from P to P+AP will be approximately
AW =F(P’). AT (2.59)

where P’ is a point on C between P and P+AP, The work required to move
the particle from P1 to P2 will be approximately

W:ZF(Pi)-A?i (2. 60)
1

where the summation covers the length of the curve from P1 to PZ‘ We
define the line integral as the limit of this sum as the largest of the incre-

ments A?i approaches zero, and write
PZ
W:[P B.a7 (2.61)
1

This definition of the line integral can be applied to any vector point function
l;"(P)_ The value of the integral will, in general, depend on the path chosen

between 13‘1 and PZ‘ The actual evaluation of such an integral will require
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-, i |
F and T in terms of some convenient parameter, As an example, let us
s ' . 4 bra d g - . . s
consider the line integral of the vector F = F, e, (where e is the radial unit

vector in spherical polar coordinates) along two different paths in Fig, 2,19,

Z

P, (0,2,2)

(2/2,0,0)

Fig. 2.19

Path A is a line from the origin to the point (0,2,2). On A we have dr = 'é'rdr

and

52, 2 /T .
[ F-df’:j ¥y =2 5 (2. 62)
: o o
P 0

1
Path B will be taken along the x-axis to the point (2/2, 0, 0) and then along a
circular arc from this point to P,., We see that the result will be the same
as we already obtained, since the integral along the x-axis is identical with
that of Eq. 2,62, and along the circular arc F owill always be perpendicular

to d¥, hence the scalar product F.dT will vanish,

EXERCISES

2.26 Given the force field

1? = (y2+1 )z"i".+ 2xyz§.+ xyZE
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2,26 (continued)
(a) Calculate the work done in moving a particle from the point (0, 0, 2)
to the point (0, 0, -2) along a semicircle lying entirely in the positive
x half of the xz-plane.

(b) Calculate the work done in moving a particle from the point (0,0, 2)

to the point (0, 0, -2) along the z-axis,

2,27 If we form the scalar product of both sides of Eq. 2.14 with the unit

tangent vector U we find

dr

‘G-ﬁ':u- =1, Whence T.dr =ds,

a1

Using this expression, find the length of the curve expressed para-

metrically in Eq, 2,25 between the origin and the point at which it

penetrates the xz plane,

2.28 Find the line integral of ¥.d7 from (1,0,0) to (1, 0, 4) if Foxi- y~j4+ zk
(a) along a line segment joining the end points;

(b) along the helix x=cos2nt, y=sin2nt, z=4t,

Surface Integrals, The flux of a vector point function (such as mass

flow) through a surface can be obtained by a surface integral of the form

'J.J'f.dg: ”F.Uds (2.63)
s s

where Vis the unit normal to the surface, Since the integrand is a scalar

- quantity, such an integral can be reduced
to a double integral over an appropriately
chosen pair of parameters, For example,

h % if we have an incompressible fluid of
density p, flowing with a velocity

8 | - a — r —
v=v |—e_+—e "
— *'rl-\%( olr r a 8
what is the flux through the curved sur-
face of the cylinder of Fig, 2,20? Here

we must evaluate the surface integral
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J.Ip\?. as
S

We can readily obtain dS from the cross product of two line elements:
-
ag- 3y ar d8 dep (2. 64)
8" By
The surface in question has the vector equation

—

—acscfe (2. 65)
T

Hence

a5

0 — ] -
-ﬁ(a csc Ger) X ﬁ(a csc Ber)da dep

(-actn Bcsc Ger+ acsc eee) X (aecp) dgdeo

1]

al csc B ctn 838+ aZ csc Ggr (2. 66)

The integral becomes

IIQV dS—pI amfzw(:az cscBctn B + %az csc 9>dcpd9 (2. 67)

Since r sin B = a this reduces to

=1 -1
tan = a/h 2w tan =~ a/h
aZer (cos e-}-I)dcde = 2ma p[@ -———]
/2 0 sin~ @ 2.5111 8-w/2
la ™ a +h2
= 2mwa pE:an T e ] (2.68)
. h 2 2aZ 2
EXERCISES

2.29 Find the flux of the vector field defined by the expression
F= x.i-‘+ yi'.+ zK

through the closed surface consisting of the coordinate planes and the

first octant of the sphere xz+y2+z2 = az, first by direct calculation

using cartesian coordinates and then using spherical polar coordinates,
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2.8 The Directional Derivative and the Gradient,

In many physical problems we shall be interested in the rate of
change of some scalar point function in a particular direction, For example,
the rate of flow of heat across an element of surface is proportional to the
rate of change of temperature normal to that surface, If the element of sur-
face in question lies in one of the coordinate surfaces, the required rate of
change will be related to the appropriate partial derivative, Since this will
not be generally the case, we must extend the notion of partial derivatives.

Consider a scalar point function ®&(P) which is continuous and varies
smoothly in every direction from any point interior to some region R, Let
2 us consider the variation of ®(P) in the

C direction of an arbitrary unit vector &
(Fig. 2.21). If we start from the point P,
B Ak P+ APC let APe be the distance along € to a neigh-
P boring point P+ APe_ Then we define

) ‘I’(P+AP€)"P(P)
lim APa (2.69)

Fig. 2.21 AF, -0

as the directional derivative of &(P) in the & direction, We see that this is
a direct extension of the usual definition of a partial derivative,

If we had taken AP along a smooth curve C passing through P
(Fig. 2.21) where e is tangent to the curve at P, then AP~ |ag|

AP -

lim —=S= lim JAATSLl (2. 70)
AP -0 2P AP0 277

we can consider Eq. 2,69 as giving us the directional derivatives along the
curve C, If we now consider a set of coordinate curves in an orthogonal

curvilinear coordinate system, we will have AE’:hiAuié'i, and the directional

derivative in the é'i direction will be

_ ®(PthAu,) - &(P)
B, ——TFer Ry B 2. 71)
i
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It is possible to construct an infinite number of directional derivatives
of ®(P) at any point, but these are by no means independent of each other,
In fact, we can construct a unique directional derivative, called the gradient,
which, when treated as a vector, has the property that its component in any

direction is just the directional deriva-

$(P)=C+AC tive in that direction, Consider two
neighboring surfaces $(P)=C and
&(P)=C .
&(P)=C+ AC (Fig. 2.22), Swuch sur-
O faces are frequently called level
/ surfaces of the function ®(P), The
directional derivatives of ®(P) in the
Fig. 2.22 direction RQ’, evaluated at the point R,
will be
7
lim ‘I’(QR)éfI’ Rl o im S2LG-C . gy 8O (2. 72)
RQ'-0 RQ'-0 RQ'-0

Let Axr be the distance between the two surfaces along the normal to &(P)=C
erected at R, and let U be a unit vector in the direction of that normal. Then
RQ’=Avseca where ¢ is the angle between RQ and RQ’, except for terms of
higher order than Av, and AV will represent the minimal distance between
the two surfaces, This means that the directional derivative normal to
$(P)=C at R will be the maximal directional derivative at R, Furthermore,
the normal direction can be defined uniquely relative to a surface at a point
on the surface., This gives us the possibility of defining a unique directional
derivative, We shall define the gradient of the function ®(P) as a vector in
the direction of the normal to ®(P)=C, equal in magnitude to the directional

derivative in this normal direction

gradient = grad d=vd= lim 223 2. 73)

An-—»O Al‘l

Since RQ’=Avysecq, we find that

% -—--——--—--:|gradd>|cosa
RO’~0 RQ o Avseca

If we let 0 be a unit vector in the RQ’ direction, n.V=cosqa, and we have the

result that
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Dn¢=grad@-ﬁzv¢.ﬁ (2. 74)

In fact, the directional derivative of a function in any direction will be given
by the scalar product of a unit vector in that direction with the gradient of
the function, We can use this property to construct the gradient vector in
any coordinate system, whether orthogonal or not,

For any curvilinear coordinate system with the line element

—

ds :hldu.le1 +h2du2ez+h3du e (2. 75)

373

the directional derivatives in the three directions normal to the coordinate

surfaces will be

Lo AT 2. 9o (2. 76)
h, 8u, h, du, by By
and the gradient will be
e 108 o, 1088 o, 100
grRa =V =g fu, o1 By Su, 2t B, du, 3 (B 7Y

Since the vector V® is normal to the surface ® =const., we can

obtain the unit normal from the gradient

= \
v:-ﬁﬁgT (2. 78)
By the operation of finding the gradient of a scalar field we have
derived a related vector field, We can hardly expect all vector fields to be
derivable as gradients of scalar point functions, so we might expect that
such vector fields will possess certain special characteristics., For

example, consider the line integral of grad F between two points P and QQ

. Roar
PgnﬁE\ds:.L $=ds = F(Q) - F(P) (2. 79)

This result depends only on the value of F at the end points, and is inde-
pendent of the path of integration. A further consequence of this fact is

that the line integral of such a vector field around a closed path will vanish,
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EXERCISES

2.30 Using the general definition of the directional derivative, show that
the directional derivative of the radius vector r is unity in the
direction ¥, Check by using the expression for the directional deri-

vative in cartesian coordinates and the fact that r = (x2+y2+z2)1/2.

2.31 Show that

(2) In cartesian coordinates

(c) In spherical polar coordinates

0%z , 1082, 1 80,
Va= or r T T Wee+ rsinf 9o ecp

2.32 Given F(x,v,2z)= x2'+y2-l-z2 =r2
grad F = 2xi+2y]j+22F = 2r&_
(a) Evaluate the line integral of grad F along the path indicated in

the sketch,

(b) Evaluate the line integral of grad F between the same limits
along the radius vector,
(c) Evaluate the line integral of grad F between the same limits

using Eq. 2,79, z‘ (1, 1,2)

(1,0,0)

(1,1, 0)
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2.9 Divergence

The divergence of a vector field can probably be most easily illus-
trated by considering the example of fluid flow, Suppose that we have a fluid
flowing in a region R such that the velocity at any point P and at time t is
given by the vector V(P,t). Let us
consider a small closed volume V
(Fig. 2.23) and write the expression
for the net inflow or outflow of fluid
from that volume, If we represent an
element of the surface of V by the

vector dS directed normally outward

from the enclosed volume, the net

flow of fluid through that surface ele-

Fig. 2.23

ment per unit time will be dS . (p¥)
where p is the mass density of the fluid, The net outflow or inflow from the
volume V will be given by the integral over the entire bounding surface of

this scalar expression

Flux= ”Sdé.’- (o) (2. 80)

and the average flux per unit volume throughout the volume V will be

I8 9

o (2.81)

We define the divergence of the mass flow at the point P by the

expression

[ as. o
divergence (p¥) =div (63) = V. (p?) = lim —Si—ﬁ—

AV 40

(2. 82)

where, in the limiting process AV-0, the point P remains interior to AV,
and the greatest distance from P to any point on the surface of AV approaches
zero with AV, The expression represents the net outflow (or inflow) of

mass per unit volume at the point P, If the density p is constant, this flux
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must come from sources and/or sinks located at P, If p is not constant,
such a flux could arise from a local density change, If no sources or sinks

are present we can write

-.. pV = - &
”Sds 3 AV (2. 83)

where (0p/0t) represents the average value of (8p/8t) over the small volume
AV, In the limit this becomes

=)
“+lo

.9
V. (p?) = - 5F (2. 84)
If, of course, the density is constant with time we have
v.(pv)=0 (2.85)

The concept of the divergence of a vector field is readily generalized

to define the divergence of a vector point function F by the equation

V'fz lim AV

AV -0

(2. 86)

if this limit exists when, in the limiting process, the shape of AV is not
restricted except that P be interior to AV and the greatest distance from P

to any point on the surface of AV must approach zero as AV-0,

Gauss's Theorem or the Divergence Theorem, Equation 2,86 can be

rewritten in the form

”dé‘- F = v. FAV+ AV (2. 87)

For a finite volume, which can be broken up into n cells AVi, we have

n

n n
.zl flo8® - Zlv' FAV,+) AV, (2. 88)
1= 15

i=1

-
If F is continuous and possesses continuous first derivatives throughout V

and if the bounding surface S of V is continuous and piecewise smooth, we
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get as a limit
Hdé'.i*' = [[[v.Fav (2. 89)
S v

This is known as Gaussg's Theorem or the divergence theorem,., The condi-

tions on F and S can be somewhat relaxed, but no simple catalogue will
suffice, and the conditions enumerated will be satisfied in most physical
situations arising in classical field theory.

The definition of the divergence given by Eq. 2. 86 should make clear
the fact that the divergence is a property of the original vector field, and
does not depend on the coordinate system in which the vector field is des-
cribed. Since many physical laws relate the value of a field quantity at a
point to the values at neighboring points, we might expect to take advantage
of expressions such as Eq. 2,86 to permit us to obtain rather general
mathematical formulations of such laws, We shall illustrate this with a for-
mulation of the laws of heat conduction in which we shall be concerned with

the temperature as a scalar point function.

Heat Conduction, The formal laws of heat conduction and their

mathematical formulation can be stated as follows:

(1) If the temperature of a body is changed by an increment of
temperature AT, then the change in the heat content of an element of volume

of the body is given by

Ag=c_pAVAT (2.90)

where c, is the specific heat at constant volume, p the density, and the bar
represents the average value over AV, Both <, and p will usually depend on
T, If the temperature changes by AT in time AT, then
lim 29 _94 _c—5AvEL
L. 55t = pp = o POV 5 (2. 91)
At-0
Since q is the amount of heat in the volume element AV (AV does not vary

with time) we can put g = AQ and sum up over a large body. In incremental

form

8AQ _
T — cvp AV

(2.92)

Q@



