
VOLUME 73, NUMBER 11 PHYSICAL REVIEW LETTERS 12 SEPTEMBER 1994

Observation of the Gap and Kinetic Energy in a Correlated Insulator

G. A. Thomas, D. H. Rapkine, S.A. Carter, and A. J. Millis
ATc%T Bell Laboratories, Murray Hill, New Jersey 07974-0636

T.F. Rosenbaum

Physics Department and the James Franck Institute, The University af Chicago, Chicago, Illinois 60637

P. Metcalf and J.M. Honig
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

(Received 28 April 1994)

Fundamental energies are determined optically for an ensemble of correlated electrons in an anti-

ferromagnetic insulator, V203. The observed variation of the energy gap and the kinetic energy are
compared quantitatively to some approximate solutions of the Hubbard Hamiltonian.

PACS numbers: 71.27.+a, 71.30.+h, 78.30.Hv

The approach to the metal-insulator transition by a
collection of correlated electrons has been a subject of
considerable interest since Mott's classic paper [1] in
1949. In the class of systems where the electrons attempt
to form a half-filled band, but remain insulating, Mott [1]
and Hubbard [2] have suggested that the band could have
been split by the Coulomb repulsion among the electrons.
Alternatively, Slater [3] suggested that antiferromagnetic
interactions alone could open an energy gap to produce an
insulator. These authors have argued that these general
considerations apply in some form to a very wide class of
condensed matter systems. Recently, new, approximate
solutions [4—7] of the Hubbard model containing both
these ideas have been studied extensively. The motivation
of our experiments has been to compare these new
calculations with the optical spectra of a model system
of correlated electrons.

We have chosen V203 because there are some indi-
cations [8,9] that it may be approximated by a Hubbard
model. Band-structure calculations [10]show that a range
of V-V transitions (from predominantly V initial states to
predominantly V final states) dominates the spectrum up
to about 3.5 eV and a range of V-0 transitions occurs
only at higher E. We find that its optical conductivity
is in good agreement with the band structure. Anderson
[11]has suggested that the Hubbard model applies with
an effective (rather than a bare) Coulomb interaction en-
ergy. Brinkman and Rice [12], for example, have argued
further that the model applies with magnetic correlations
relatively unimportant in the metallic state.

Another motivation for our choice of V203 was that
carefully characterized crystals [9,13,14] were available.
We have been able to measure the optical energy gap,
which, to our knowledge, had not been measured pre-
viously, partly because of the improved materials. Pre-
viously, an energy gap had been inferred from various
measurements, such as the temperature dependence of the
resistivity [8,13,14]. However, the only far-infrared opti-
cal measurements [15] showed a reduction in the conduc-

tivity at low E but no energy gap. A similar reduction in
the density of states has been observed in photoemission
spectra [16], also with no spectral region with negligible
signal intensity.

We have made measurements with energy resolution
less than 1 meV on crystals which we found to be very
difficult to anneal, polish, and etch, with the additional
difficulty that they crack on passing through the metal-
insulator transition that occurs on cooling from room
temperature. Based on optical and dc transport char-
acterization of over 10 crystals, we have developed an-

nealing and surface preparation procedures which yield
reproducible spectra [17]. We have made reflectivity,
R, measurements from the far-infrared to E = 3.5 eV
(a frequency, ta, about 27000 crn ') and used the mea-
surements of Shin et al. [18] from 3.5 to 25 eV in our
Kramers-Kronig transformations to obtain the optical con-
ductivity, tr.

The main part of Fig. 1 shows cr at low E for
two crystals of V&03 in their low-temperature insulating
phase. The open circles are for a nominally stoichiometric
crystal with T, = 154 ~ 1 K, measured at 70 K. The
solid circles are for a sample, measured at T = 10 K, that
was annealed differently to introduce V vacancies and a
reduced T, = 50 ~ 1 K. We found that no substantial
changes occurred at lower T, so that our results are
representative of the zero-T limit. The effect of this
annealing is qualitatively similar to an effective pressure
[14]. It differs from doping a rigid band without disorder
(often discussed in the theoretical literature [4,5]) which
can introduce conducting states into a filled band, and
it also differs from disordered doping which primarily
introduces impurity states into the gap [1]. We see
negligible absorption (except that due to phonons) in the
energy gap, and our 0. extrapolated to E = 0 agrees with
the (essentially zero) measured dc conductivity, trd„of
similarly prepared samples.

Qualitatively, the spectra show an energy gap, 2b„with
a "soft" edge and a broad peak at higher energy. This
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FIG. 1. Optical conductivity 0- as a function of photon
frequency co (lower scale) and energy E (upper scale), for two
crystals of V203 with metal-insulator transition temperatures,
T, = 50 K (solid points) and 154 K (open circles). The energy
gap 2h, half-width D, and peak energy U are indicated. The
solid lines are fits by Eq. (1). The inset shows a wider region
of the spectrum for the sample with T, = 154 K with cr over a
scale 0 to 5000 and E from 0 to 12.5 eV.

type of spectrum resembles that predicted by various
models [5,7,19,20] with no intersite spin correlations.
This behavior differs from our expectation for a Slater
antiferromagnet [3], where we would expect a E
divergence in the density of states at the band edge which
would produce a o rising sharply as E'/2. We expect that
the peak in o. arises from a superposition of the states
in the (filled) lower Hubbard band and the (empty) upper
Hubbard band. If these single-particle densities of states
rise as E'/2 near the band edges, we argue that o. will rise
as E3i just above 2A. We then determine the values of
2b, using a fit with this form (solid lines, Fig. 1): 2.5',

I I
I

I I I 4
I

I l I l

0.05 eV]. These narrow bandwidths are comparable to
band-structure calculations for individual bands in the d
to d manifold [10],and the increase in D in the lower T,

sample is consistent with the idea of an increasing effec-
tive pressure that increases the overlap of the atomic wave
functions.

%'e plot the optical measurements of the energy gap
(normalized to D ) as a function of the characteris-
tic energy ratio, U /D (solid points, bottom scale), in

Fig. 2. For additional measurements of the gap, we have
used dc results from samples with different stoichiome-
tries [13] and applied pressures [14]. These measure-
ments determined the excitation energy, b, d, , from the
slope of In(od, ) versus 1/T. We find that, for sam-

ples with T, = 154 4 K, 2b, d, is about 2A/1. 7, and
we interpret this smaller transport value as indicating
that the chemical potential is pinned at a weak impu-
rity level (not apparent on the scale of Fig. 1), rather
than floating at midgap. Therefore, we have scaled the
values of 26d, by 1.7. We have used the measured
values of T, to estimate the values of U and D for
the dc data by interpolating between the optical val-
ues. We assume U /D = (U/D)p(1 + [T,/Tp]3) and
find Tp = 152 K and (U/D)p = 2.01 by fitting to the
optical data. We have chosen this T3 functional form
because we can fit the dc data to 2hd = 25p(T/Tp),
with 250 = 0.4 eV. This T3 variation may be due to
the interplay between the ground state Coulomb energy
and the lattice excitation energy at increasing T. We
use a similar scaling to interpolate values of D for the
dc data, 1/D = 1/Dp(1 + [T,/Tri]3), with Dp = 0.48 eV

2.0— Vp03

where o.o is a constant related to the average ki-
netic energy. The constants are [T, o p, 2A] =
[154 K, 9.71 X 10 4(Q cm), 0.66 ~ 0.05 eV] and

[50 K, 2.27 X 10 3(Q cm) ', 0.09 ~ 0.05 eV].
The definition of the effective Coulomb repulsion

energy U is the energy difference between the peaks of
the lower and upper Hubbard bands in the single-particle
density of states. For large U, the absolute E of the
maximum in o., U (see arrow in Fig. 1), corresponds

[7,19,20] to U. Our values are [T„U ] = [154 K, 1.27 ~
0.05 eV] and [50 K, 0.98 ~ 0.05 eV].

The hopping energy t which appears in the usual
form of the Hubbard Hamiltonian, is proportional to the
bandwidth D through the number of nearest-neighbor
hopping sites. We define the full width of the single par-
ticle bands to be 2D, so the half width at half maximum
of the peak in the measured 0-, D, corresponds to D.
The uncertainty is similar to that in U, giving values

[T„D ] = [154 K, 0.31 ~ 0.05 eV] and [50 K, 0.47 ~
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FIG. 2. Energy gap 26, normalized to the experimental band-
width D, as a function of the normalized experimental band
energy U (bottom scale), for the optical measurements (solid
circles), and for the de measurements with annealing (open cir-
cles) and with pressure (open diamonds). The calculations of
25/D using the dynamical mean-field model [20] are plot-
ted against the relative Coulomb repulsive energy, U/D (top
scale), for the Slater limit (dash-dotted line) and the stable
(solid line) and metastable (dashed) branches of the Hubbard
limit. A value calculated for V203 using the Hartree-Fock ap-
proximation [6] is shown as the solid triangle. A slave-boson
calculation [7] in the Hubbard limit is also shown (dotted line).

1530



VOLUME 73, NUMBER 11 PH YS ICAL REVIEW LETTERS 12 SEPrEMBER 1994

and T& = 188 K. This procedure yields the open points
in Fig. 2. The annealed series of samples [13] and the

sample at a series of pressures [14] yield similar results.
A linear extrapolation of all the data suggests a continu-
ous gap closing at (U /D ), = 1.95 ~ 0.2.

We compare these measurements with theoretical pre-
dictions for 2A/D in Fig. 2 by plotting the theoretical
U/D on the upper scale, with the assumption (accurate for
large U/D that U/D = U /D . We consider four types
of theoretical approaches: (1) perturbation [4,21] about
the exactly solvable limits, U/D = 0 and U/D = ~, (2)
Hartree-Fock mean-field [6] (3) slave-boson mean-field

[7], and (4) dynamical mean-field [5]. The first three can
be applied directly to models in three spatial dimensions.
The Hartree-Fock approach has been applied to a model
incorporating many of the aspects of the crystal structure
of V&03. The fourth is calculated for infinite dimensions,
but may give a good approximation for three dimensions
in the insulator. It also has the advantage of validity for
arbitrary U/D and inclusion of correlations not easy to
incorporate in other approaches. Within each theoretical
approach there are two simple limits for treating the mag-
netism. One limit assumes that the intersite spin corre-
lations are zero, so the gap arises simply from U, which
we shall refer to as the Hubbard limit. The second as-
sumes simple, two-sublattice, antiferromagnetic order, so
a large, additional contribution to the gap arises from the
magnetism (the Slater limit).

Relatively large gaps are obtained in the Slater limit as
shown by the dash-dotted curve for the dynamical mean-
field theory [20]. The Hartree-Fock calculation [6] gives a
lower result, 2A = 0.3 eV, as shown by the solid triangle
plotted using U and D for the sample with T, = 154 K.
(Because of the realistic structure used here, the treatment
of the magnetism is between the two magnetic limits. )
Smaller values of the gap also come from consideration
of the Hubbard limit as illustrated by the dotted line from
a slave-boson approximation on a simple cubic lattice
[7], given by 2A/D = (U /D —2.6)'/2. The solid
line is from a calculation of the dynamical mean-field
model in the Hubbard limit [20]. In this limit, a metal-
insulator transition occurs at U/D = U,2/D = 3.05, with
the formation of a band of extended quasiparticle states in
the middle of a gap. However, this metallic state is only
about 0.1% lower in energy than an insulating solution
in which the gap closes continuously at U, i/D = 2.15 as
shown by the dashed line. It seems likely [5,20] that a
small magnetic contribution to the energy would stabilize
the insulating solution without changing the values of 2'
substantially. Such a small antiferromagnetic contribution
could arise because the spin structure of V203 shows
substantial, but incomplete, frustration [22] due to a
mixture of ferromagnetic and antiferromagnetic, nearest-
neighbor interactions.

The data of Fig. 1 permit an additional test of the
theory. Qualitatively, there is a dramatic increase in the

spectral weight (area under the curve) with decreasing
U /D . This weight provides a measure of the average
electronic kinetic energy, (T). Kohn and subsequent
workers [23,24,25] have shown that (T)/(T)p = cop/capp.

Here, we have normalized (T) and cup to their values for
the same bandwidth, but for U = 0, (T)p, aild cd pp. Using
the f-sum rule [23,25], we determine cup from an integral
over a.. Since we find additional bands at higher E in

V203, we have assumed symmetric bands and doubled the

integral over the lower E half of the conductivity peak:

Um

Mp = 16 (y dE.
0

(2)

where dvv is the average vanadium-vanadium distance
in V203, 3.06 A. For the two crystals, we then have

[T,(T)/(T)p] = [154 K, 0.11 4- 0.05 eV] and [50 K,
0.39 ~ 0.05 eV].

Using these determinations, we can compare (T)/(T)p
from experiment with that from the dynamical mean-
field model in Fig. 3 with no adjustable parameters.
The calculated variation [20] for the (partly metastable)
insulating branch of the Hubbard limit is shown as the
solid and dashed curves, and the data are shown as solid
points. The comparable calculation for the metallic state
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FIG. 3. Average kinetic energy, (T), normalized to its value
for U = 0, (T)0, as a function of the same variables as Fig. 2.
The solid points are the optical measurements [evaluated using
Eq. (2) and normalized using Eq. (3)]. The dynamical mean-
field theory [20] is plotted in the Hubbard limit for its insulating
stable branch (solid line) and metastable branch (dashed), and in
the metallic state (dash-dash-dotted). Perturbative calculations
are plotted for large U/D in the Slater limit (dash-dotted) and
for small U/D (dash-dot-dotted).

For the two data sets shown in Fig. 1, we have [T„cop] =
[154 K, 0.23 ~ 0.04 eV2] and [50 K, 1.2 ~ 0.04 eV2].

We evaluate capp, following the calculations of Millis
and Coppersmith [25], using a half-filled cubic lattice,
the atomic kinetic energy, and the measured bandwidth
and find

rupp = 1.4D e /dvv,
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is similar to the result of Brinkman and Rice [12] and is
sho~n by the dash-dash-dotted line. The Hubbard model
can also be evaluated for small U/D using perturbation
theory [4] and extrapolated to the intermediate U/D range
of interest here. For small U/D in infinite dimensions
[4], the result is similar to the dash-dash-dotted line,
and is given by (T)/(T)o = 1 —0.098(U/D)2 (not shown
in the figure). In three dimensions [4,25], we find

(T)/(T)0 = 1 —0.16(U/D)2, which is shown as the dash-
dot-dotted curve. Similarly, for the large U/D limit in
three dimensions [21,25], we find (T)/(T)o = 1.05U/D
(the dot-dashed curve) for the Slater limit and a result
1/2 as large (near the solid curve, but not shown) for the
Hubbard limit. All the curves show a suppression of the
average kinetic energy (in addition to that expected from
the bandwidth change) with increasing U/D.

We conclude that, although we have measured a corre-
lated antiferromagnet, we have not observed the large en-

ergy gaps and large kinetic energies expected in the Slater
limit of approximate solutions to the Hubbard Hamilton-
ian. Instead, perhaps as a result of spin frustration, a
partly metastable solution near the Hubbard limit is clos-
est to our data. We consider this agreement to indicate
that the dynamical mean-field model is quantitatively suc-
cessful in describing the apparently continuous closing of
the energy gap and the accompanying rise of the kinetic
energy in insulating VzQ3.
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