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Abstract—We address the problem of multipermutation code
design in the Ulam metric for novel storage applications. Mul-
tipermutation codes are suitable for flash memory where cell
charges may share the same rank. Changes in the charges of
cells manifest themselves as errors whose effects on the retrieved
signal may be measured via the Ulam distance. As part of
our analysis, we study multipermutation codes in the Hamming
metric, known as constant composition codes. We then present
bounds on the size of multipermutation codes and their capacity,
for both the Ulam and the Hamming metrics. Finally, we present
constructions and accompanying decoders for multipermutation
codes in the Ulam metric.

I. I NTRODUCTION

Permutations and multipermutations as information rep-
resentation formats have a long history, with early appli-
cations in communication theory dating back to the work
of Slepian [1], who proposed using multipermutation codes
for transmission in the presence of additive white Gaussian
noise. More recently, Vinck proposed using permutation codes
in the Hamming metric for combatting impulse noise and
permanent frequency noise in power grids [2]. Permutation
codes have received renewed interest in the past few years
due to their promising application in storage systems, suchas
flash memories [3]–[5].

Flash memories are nonvolatile storage units (i.e., storage
units that remain operational when unpowered), and are usu-
ally used for archival or long-term storage. Information is
organized in blocks of cells, all of which have to be processed
jointly during information erasure cycles. The gist of the
approach underlying permutation coding in flash memories,
which uses the fact that the memories consist of specially
organized cells storing charges, is that information is repre-
sented via the relative order of charge levels of cells rather
than their absolute charge levels [3]. This approach, termed
rank modulation, alleviates the problems of cell over-injection,
reduces the need for block erasures, and is more robust to
errors caused by charge leakage [3]. For instance, whileall
absolute values are subject to errors caused by charge leakage,
the relative ordering of the quantitative data may remain
largely unchanged [6]. The modeling assumption behind rank
modulation is that only errors swapping adjacently ranked cell
charges are likely [4], [6]. As a result, code design for flash
memories was mainly performed in the domain of the Kendall
τ metric, which accounts for small magnitude errors causing
swaps of adjacent elements. A thorough treatment of codes in
the Kendall metric may be found in [4] and references therein.

In contrast, a more general error model was proposed by
the authors in [7], based on the observation that increasing
the number of charge levels in order to increase capacity
decreases the difference between adjacent charge levels and
thus unwanted variations in the charge of a cell may cause
its rank to rise above or fall below the ranks of several
other cells instead of only swapping two adjacent ranks. In
addition, the proposedtranslocation errormodel adequately
accounts for more general types of error such as read-disturb
and write-disturb errors. In this context, the distance measure
of interest is the Ulam distance, related to the length of
the longest common subsequence of two permutations and
consequently, the deletion/insertion or edit distance [8]. The
Ulam distance has also received independent interest in the
bioinformatics and the computer science communities for the
purpose of measuring the “sortedness” of data [9]. Other
metrics used for permutation code construction include the
Hamming distance [2], [10] and the Chebyshev distance (the
ℓ∞ metric) [11], [12].

Multipermutation codes are a generalization of permutation
codes where each message is encoded as a permutation of
the elements of a multiset. Multipermutation codes in the
Hamming metric, known asconstant composition codesor
frequency permutation arrays (FPAs), were studied in several
papers including [13]–[16]. For nonvolatile memories, multi-
permutation coding was proposed by En Gad et al. [17], as
well as by Shieh and Tsai [18]. These works were motivated
by different considerations – the former aiming to increasethe
number of possible re-writes between block erasures, and the
latter focusing on the advantages of multipermutation coding
with respect to cell leakage, over-injection issues, and charge
fluctuations. In addition, multipermutation codes were also
recently reported for the Chebyshev distance in [18], [19] and
for the Kendallτ distance in [20], [21].

Here, we continue our study of codes in the Ulam metric
for nonvolatile memories by extending it to the level of
multipermutation codes. Our results include bounds on the
size of the largest multipermutation codes, code construc-
tions using multipermutation codes in the Hamming metric
and interleaving as well as permutation codes in the Ulam
metric [7], [22]. In the process of analyzing these schemes,
we establish new connections between resolvable balanced
incomplete block designs (RBIBDs) [23], [24], semi-Latin
squares [25], and multipermutation codes in the Ulam metric.
As multipermutation codes in the Hamming metric are used
in our constructions, we also provide new bounds on the size
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of these codes, and find their asymptotic capacity. In addition,
our results include simple decoding schemes for the proposed
constructions based on designs and those based on interleaving
permutation codes in the Ulam metric.

The paper is organized as follows. In Section II, we present
the notation used throughout the paper as well as formal
definitions regarding multipermutation codes. In addition, this
section includes motivating examples for our work. SectionIII
is devoted to bounds on the size of multipermutation codes in
the Ulam and Hamming metrics, as well as to the computation
of the asymptotic capacity of these codes. Section IV provides
constructions for codes in the Ulam metric. We conclude the
paper in Section V with a summary of our results and a number
of remarks.

II. PRELIMINARIES AND NOTATION

A. Multipermutations, ordered set partitions, and codes

For an integerk, let [k] = {1, . . . , k}. Furthermore, let
Sn denote the symmetric group of ordern!, i.e., the set of
permutations ofn distinct elements (typically the elements of
[n]).

A multipermutation is an arrangement of the elements of
a multiset. For example,(2, 1, 2, 3, 1, 2) is a multipermutation
of {1, 1, 2, 2, 2, 3}. For a positive integern and a multiplicity
vector ~r = (r1, . . . , rm), such thatn =

∑m
i=1 ri, we use

M(n,~r) to denote the multiset

{1, . . . , 1
︸ ︷︷ ︸

r1

, 2, . . . , 2
︸ ︷︷ ︸

r2

, . . . ,m, . . . ,m
︸ ︷︷ ︸

rm

}.

A multiset that hasr copies of each of its elements is termed
an r-regular multiset. For brevity, we henceforth denote the
r-regular multisetM(n, (r, · · · , r)) by M(n, r). An r-regular
multipermutationis a permutation of anr-regular multiset.
Throughout the paper, we focus onr-regular multipermuta-
tions. Many of the subsequently described results, however,
can easily be extended to multipermutations ofM(n,~r) for
general multiplicity vectors~r.

Let n also denote the number of cells in a block of a flash
memory. We assume thatr is a positive integer that dividesn.
Consider a permutationπ ∈ Sn that lists the cells in decreasing
order of charge. For example,π = (3, 2, 4, 1) means that cell
3 has the highest charge, cell 2 has the second-highest charge,
and so on. The inverse ofπ is the vector of the ranks of the
cells,π−1 = (4, 2, 1, 3); cell 1 has rank4, cell 2 has rank2,
and so on.

To obtain anr-regular multipermutation of cell rankings,
instead of assigning ranki to the element in positioni in π,
we assign ranki to all the elements in positions{(i− 1)r +
1, . . . , ir}. This multipermutation is denoted bymr

π, where

m
r
π(j) = i, iff (i − 1)r + 1 ≤ π−1(j) ≤ ir.

For instance, givenn = 4, r = 2, andπ = (3, 2, 4, 1), we have
m2

π = (2, 1, 1, 2).
Observe that forπ ∈ Sn, mr

π is a multipermutation of
M(n, r) and that forr = 1, the multipermutationmr

π reduces
to the inverse ofπ, i.e.,m1

π = π−1.

A multipermutationm of M(n, r) can also be represented
as an ordered set partitiono, where theith part ofo is the set

o(i) = {j : m(j) = i} .

This definition can naturally be extended to multipermutations
of other multisets. Forπ ∈ Sn, let orπ be an ordered set
partition where

o
r
π(i) = {j : mr

π(j) = i} .

For the aforementioned exampleπ = (3, 2, 4, 1), we have
o2π = ({2, 3}, {1, 4}).

For π, σ ∈ Sn, we writeπ ≡r σ if mr
π = mr

σ, andπ 6≡r σ
otherwise. It is easy to show that≡r is an equivalence relation.
The equivalence class of permutations includingπ is denoted
by Rr(π), i.e.,

Rr(π) = {σ : σ ≡r π}.

As an illustration, the equivalence class of(3, 2, 4, 1) under
≡2 equals

R2((3, 2, 4, 1)) =

{(3, 2, 4, 1), (2, 3, 4, 1), (3, 2, 1, 4), (2, 3, 1, 4)}. (1)

In this case, the setR2((3, 2, 4, 1)) is isomorphic to the
subgroupS2 × S2 of S4.

Let S be a set of sizen. An r-regular multipermutation
codeMPC(n, r) over S is a codeC whose codewords are
permutations ofS with the property that for anyπ ∈ C,
Rr(π) ⊆ C. For example,

{(2, 3, 1, 4), (3, 2, 1, 4), (2, 3, 4, 1), (3, 2, 4, 1),

(1, 3, 2, 4), (3, 1, 2, 4), (1, 3, 4, 2), (3, 1, 4, 2))} (2)

is anMPC(4, 2) code. We typically assume thatS = [n], but
the results hold for any setS of sizen.

Each permutation inC represents an ordering of cell
charges. For exampleπ = (1, 3, 2, 4) indicates that the cell
1 has the highest charge, followed by cell 3, and so on.
In multipermutation coding, eachr cells are assigned the
same rank and all permutations corresponding to the same
multipermutation encode the same information. In the previous
example, the multipermutation(2, 1, 1, 2) may be represented
by any of the permutations on the right side of (1).

As a result, it is clear that anMPC(n, r) codeC can be
represented as a set of multipermutationsMr(C), where

Mr(C) = {mr
π : π ∈ C},

or as a set of ordered set partitionsOr(C), where

Or(C) = {orπ : π ∈ C}.

For example, ifC is the code given in (2), we have

M2(C) = {(2, 1, 1, 2), (1, 2, 1, 2))},

O2(C) = {({2, 3}, {1, 4}) , ({1, 3}, {2, 4})} .

With slight abuse of notation, for anMPC(n, r) C, we may
useC to meanMr(C) or Or(C) if doing so does not lead
to ambiguity. Similarly, we may considerC to be a set of
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Figure 1: The two equivalence classes of the code given in (2). The numbers on the top of the bars indicate cell indices,
while the heights of the bars represent the charge levels of the indicated cells. The equivalence classes on the left and right
correspond to the multipermutationsm = (2, 1, 1, 2) andm = (1, 2, 1, 2), respectively. Note that each multipermutation can
be programmed into the memory as four different permutations, each representing a complete ranking of cell charges without
ties.

multipermutations or a set of ordered set partitions instead of
a set of permutations.

Thecardinality or thesizeof C, denoted by|C|, equals the
number of multipermutations inMr(C), or equivalently, the
number of equivalence class ofC under the relation≡r.

In what follows, we describe why multipermutation formats
are suitable for flash memory coding applications. We start
with the readback process. To be able to read the information
stored in a flash memory, cells with different ranks must have
charge levels that differ by at least a certain amount∆, since if
the difference between charge levels of two cells is too small,
it cannot be reliably decided which one had the higher charge
level. Hence, in permutation coding, to store a permutationof
lengthn, the range of possible charge values must be at least
n∆ to allow for n different charge levels corresponding to
n different ranks. In contrast, anr-regular multipermutation
of lengthn has onlyn/r ranks and thus it can be stored in
a flash memory whose range of possible charge level values
is n∆/r. Specifically, the relative order of charge levels of
cells of the same rank of a multipermutation is irrelevant as
all possibilities correspond to the same multipermutation, i.e.,
the same information message.

Note that in order to store information represented byr-
regular multipermutations, charges are injected to achieve a
desired multipermutation ranking. As it is neither necessary
nor possible for cells of the same rank to have precisely the
same charge levels, the actual representation of such a multi-
permutationm is some permutationπ, such thatmr

π = m. The
multipermutation is available to the user retrieving information
in the form of the cell charge orderingπ. As an illustration,
consider Figure 1 for the code given in (2). For instance, to
store the multipermutation(2, 1, 1, 2), any of the permutations
given in (1) may be programmed into the memory. To retrieve
the information, the user reads the permutation, or possibly an
erroneous copy of it, and performs error correction to identify
the multipermutation corresponding to the stored permutation.

Next, we show how multipermutations can achieve a higher
information rate compared to permutations. Consider a flash
memory that can accommodatem sufficiently spread charge
levels. In a group ofm cells of such a device, one can store
a permutation of lengthm. Supposer is a positive integer. It
follows that inmr cells, the number of possible messages that

can be stored is(m!)
r.

On the same device, one can store anr-regular multi-
permutation of lengthmr in mr cells. In this case, the
number of possible messages equals to the number of possible
multipermutations, i.e.,(mr)!

(r!)m . It is clear that forr ≥ 2, we
have

(mr)!

(r!)m
> (m!)

r
.

Hence, in this setting, more information messages can be
stored if one uses multipermutations instead of permutations.

As an illustration, suppose thatm = 2 and r = 10. Using
multipermutations, we can store

lg
(mr)!

(r!)
m ≈ 17.5 bits

while using permutations, we can store

lg (m!)
r
= 10 bits

in 20 cells. Note that here we considered the uncoded regime.
The saving in the number of possible charge levels can also

be used to increase the number of possible re-writes before a
block erasure becomes necessary [17]. As an example, suppose
that 5 charge levels are available. If one uses permutations of
length 5, it is only possible to write once before an erasure
becomes necessary, and if one uses permutations of length
3, it is possible to write twice before an erasure. Encoding
with r-regular multipermutations of length3r also provides the
ability to write twice before an erasure. While both methods,
permutation coding and multipermutation coding, allow for
writing twice before an erasure, using multipermutations leads
to a higher information storage rate. For further details on
multipermutation re-write codes, we refer the reader to [17].

Before proceeding with an analytical treatment of multiper-
mutation codes in the Ulam metric, we remark that throughout
the paper, we useZ+ to denote the set of positive integers.
Whenever it is clear from the context, we use the well-known
result thatlnx! = x ln x + O(x), for any nonnegative real
valuex. By convention, we adopt0 ln 0 = 0.

B. The Multipermutation Hamming distance

For an integerr, ther-regular Hamming distance(or simply
the Hamming distance)drH between two permutationsπ, σ ∈
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Figure 2: Examples of errors: A small-magnitude charge droperror (a) manifests itself as a swap of adjacent ranks in the
permutation while a large-magnitude error (b) manifests itself as a translocation in the permutation. In multipermutation coding,
charge fluctuations may or may not lead to erroneous multipermutations. Assumingr = 2, in (a) the multipermutation does
not change, while in (b) it does.

Sn is defined as

d
r
H(π, σ) = |{i : mr

π(i) 6= m
r
σ(i)}| .

In words, the permutations are first converted into multiper-
mutations, which are subsequently compared coordinate-wise.
The distancedrH (π, σ) is equivalent to the ordinary Hamming
distance betweenπ andσ. Thus, instead ofd1H , we writedH .

We observe that

d
r
H(π, σ) =

n/r
∑

i=1

(r − |orπ(i) ∩ o
r
σ(i)|)

=

n/r
∑

i=1

(|orπ(i)| − |orπ(i) ∩ o
r
σ(i)|)

=

n/r
∑

i=1

|orπ(i)\o
r
σ(i)| .

Furthermore,

d
r
H(π, σ) = min

π′∈R(π)
min

σ′∈R(σ)
dH(π′, σ′).

Let C be anMPC(n, r) code. The codeC has minimum
Hamming distanced if for all π, σ ∈ C with π 6≡r σ, we have
drH(π, σ) ≥ d. Equivalently, since for allπ ∈ C, Rr(π) is
contained inC, the codeC has minimum Hamming distance
d if for all π, σ ∈ C with π 6≡r σ, it holds thatdH(π, σ) ≥ d.
An MPC(n, r) code with minimum Hamming distanced is
said to be anMPCH(n, r, d) code. The code given in (2) is
anMPCH(4, 2, 2) code.

C. Translocation errors and the Ulam distance

Figure 2 illustrates examples of errors in flash memories
that may occur due to charge leakage, read-disturb, and write-
disturb [26]. While errors with small magnitude represent
swaps of adjacent ranks, errors with large magnitude represent
translocations[7].

A translocationφ(i, j) is a permutation that is obtained from
the identity permutatione by moving elementi to the position
of j and shifting all elements betweeni and j, including j,
by one [7]. For example, fori < j,

φ(i, j) = (1, . . . , i− 1, i+ 1, i+ 2, . . . , j, i, j + 1, . . . , n).

As a convention, we assume thatφ(i, i) = e. A translocation
error is an error that changes a stored permutationπ to
πφ(i, j), with i 6= j.

A subsequenceof a vectorx = (x (1) , x (2) , . . . , x (n))
is a sequence(x (i1) , x (i2) , . . . , x (ik)), where i1 < i2 <
· · · < ik andk ≤ n. A common subsequenceof two vectors
x and y is a sequence that is a subsequence of bothx and
y. Let the length of the longest common subsequence of two
permutationsπ and σ be denoted byLCS(π, σ). The Ulam
distanced◦ (π, σ) between two permutationsπ andσ of length
n is defined asn − LCS(π, σ). It is straightforward to see
that the Ulam distance betweenπ andσ equals the minimum
number of translocations required to takeπ to σ [7]. It is
also well known that the Ulam distance represents theedit
distancebetween two permutations, i.e., the smallest number
of insertion/deletion pairs needed to transform one permutation
into another.

For π, σ ∈ Sn, define the(r-regular) Ulam distancedr◦ on
permutations as

d
r
◦(π, σ) = min

π′∈R(π)
min

σ′∈R(σ)
d◦(π

′, σ′).

Note that this distance is a set-distance: it measures the
smallest Ulam distance between two permutations in different
equivalence classes. Furthermore, the distancedr◦(π, σ) equals
the minimum number of translocations required to take a
permutation inRr(π) to a permutation inRr(σ).

Let U∗
r(π, σ) denote the set

{(α, β) : α ∈ Rr(π), β ∈ Rr(σ), d
r
◦(π, σ) = d◦(α, β)}.

By definition of dr◦(π, σ), U
∗
r(π, σ) is nonempty.

An MPC(n, r) C has minimum Ulam distanced if for
all π, σ ∈ C with π 6≡r σ, we havedr◦(π, σ) ≥ d. Such a
code is denoted byMPC◦(n, r, d). The code given in (2) is
anMPC◦(4, 2, 1) code, asd◦ ((3, 2, 1, 4), (3, 1, 2, 4)) = 1.

Under minimum distance decoding, anMPC◦(n, r, d) code
can correctt translocation errors iffd ≥ 2t + 1. To see this,
note thatd < 2t + 1 iff there existsπ, σ ∈ C, π 6≡r σ, and
ω ∈ Sn such thatd◦(ω, π) ≤ t andd◦(ω, σ) ≤ t, iff C cannot
correctt errors.

For a setP and a permutationπ, let πP denote the
projection of π onto P , that is, the sequence obtained by
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only keeping those elements ofπ that are inP . We find the
following lemma, proved in our companion paper [7], useful
in our subsequent derivations.

Lemma 1. For sets P ⊆ [n] and Q = [n]\P , and for
permutationsπ, σ ∈ Sn, we have

d◦(π, σ) ≥ d◦(πP , σP ) + d◦(πQ, σQ).

D. Relationship between the Ulam and the Hamming metrics

The following lemma is an immediate consequence of the
definition of a translocation.

Lemma 2. A translocation, applied to a permutation, changes
at most one element of each rank. That is, for a translocation
ϕ, a permutationπ, and i ∈ [n/r],

∣
∣o

r
π(i) ∩ o

r
πϕ(i)

∣
∣ ≥ r − 1.

Since there aren/r ranks, we have

d
r
H(π, πϕ) ≤

n

r
,

for a translocationϕ and a permutationπ. Hence,

d
r
H(π, σ) ≤

n

r
d
r
◦(π, σ)

for π, σ ∈ Sn.
We next upper bounddr◦(π, σ) in terms ofdrH(π, σ). There

existπ′ ∈ Rr(π), σ′ ∈ Rr(σ), and a common subsequence of
π′ andσ′ that contains the elements of

n/r
⋃

i=1

(orπ(i) ∩ o
r
σ(i)) .

Hence,

d
r
◦(π, σ) ≤ n− LCS(π′, σ′)

≤ n−

n/r
∑

i=1

|orπ(i) ∩ o
r
σ(i)|

=

n/r
∑

i=1

(r − |orπ(i) ∩ o
r
σ(i)|)

= d
r
H(π, σ),

implying thatdr◦(π, σ) ≤ drH(π, σ).

Lemma 3. For π, σ ∈ Sn, we have

r

n
d
r
H(π, σ) ≤ d

r
◦(π, σ) ≤ d

r
H(π, σ).

The lemma illustrates the fact that forr = Θ(n), the Ulam
distance is within a constant factor of the Hamming distance,
while for r = o(n), the Ulam distance may be much smaller.
Consequently, while good codes in the Ulam metric allow
for substitution error correction, good codes in the Hamming
metric provide resilience under translocation errors onlyfor a
certain limited range of parameters.

III. B OUNDS ONSIZE OF MULTIPERMUTATION CODES

In what follows, we derive bounds on the size of mul-
tipermutation codes in the Hamming metric as well as the
Ulam metric. For the case of the Hamming distance, we
find the asymptotic capacity, while for the Ulam distance we
provide lower and upper bounds on the capacity. We point
out that a number of bounds on multipermutation codes in
the Hamming metric were derived in [15], including some
simple and some complicated expressions involving Laguerre
polynomials. Nevertheless, these bounds do not allow for
finding a capacity formula for the underlying codes.

Let AH(n, r, d) andA◦(n, r, d) denote the maximum car-
dinalities of anMPCH(n, r, d) and anMPC◦(n, r, d) code,
respectively. Furthermore, letCH(r, d) denote thecapacity,
i.e., maximum achievable rate, of multipermutation codes in
the Hamming metric, defined as

CH(r, d) = lim
n→∞

lnAH(n, r, d)

lnn!
·

The capacity of multipermutation codes in the Ulam metric,
C◦(r, d), is defined similarly.

In the remainder of the paper, limits are evaluated forn →
∞ unless stated otherwise. We assume that all limits of interest
exist and we useρ = ρ(r) = lim ln r

lnn , as well asδ = δ(d) =
lim d

n ·

A. Multipermutation Codes in the Hamming Metric

It was shown by Luo et al. [13] that

AH(n, r, d) ≤
d

r + d− n
, for r + d > n, (3)

and by Huczynska and Mullen [15] that

AH(n, r, d) ≤
n!

r(d− 1)!
· (4)

The first bound, (3), implies that the asymptotic rate is zero
if r + d > n, while the second bound implies that

CH(r, d) ≤ 1− δ, (5)

which also follows from the fact thatCH(r, d) ≤ CH(1, d)
and Theorem 11 of our companion paper [7], stating that
CH(1, d) = 1 − δ. We improve next upon the bound in (5)
and provide a matching lower bound, thereby establishing the
capacity ofr-regular multipermutation codes in the Hamming
metric.

Let S(l,m, r) denote the number of sequences of lengthl
over the alphabet[m], with no element appearing more than
r times. Note thatS(l,m, r) equals the number of ordered
partitions of a set of sizel into m sets such that each part has
at mostr elements, and where empty subsets are allowed.

Lemma 4. (Singleton bound) For positive integersn, r, d such
that r dividesn, we have

AH(n, r, d) ≤
(n

r

)n−d+1

.

Proof: Consider anMPCH(n, r, d) codeC of sizeM and
let

M = Mr(C) = {m1, . . . ,mM}
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denote its multipermutation representation. Since the minimum
Hamming distancedrH of C is at leastd, for distinct i andj,

n∑

k=1

I (mi(k) 6= mj(k)) ≥ d, (6)

where the indicator functionI is defined in the standard
manner as

I(condition) =

{

1, if condition is true,

0, if condition is false.

By removing the lastd−1 elements of each multipermutation
mi, i ∈ [M ], we obtain the setM′ = {m′

1, . . . ,m
′
M} of

sequences of lengthn − d + 1 over [n/r] where no element
appears more thanr times.1

Sinced− 1 elements are removed, (6) implies that

n−d+1∑

k=1

I
(
m

′
i(k) 6= m

′
j(k)

)
=

n−d+1∑

k=1

I (mi(k) 6= mj(k)) ≥ 1.

and thus for distincti, j ∈ [M ], m′
i andm′

j are distinct. Hence,
we have

AH(n, r, d) ≤ S
(

n− d+ 1,
n

r
, r
)

. (7)

Furthermore, sinceS(n−d+1, n/r, r) ≤ S(n−d+1, n/r,∞),
we find

AH(n, r, d) ≤ S
(

n− d+ 1,
n

r
,∞
)

=
(n

r

)n−d+1

.

As shown in the sequel, the bound given in Lemma 4 is
sufficiently tight for capacity derivations. Nevertheless, it may
be useful to boundS(l,m, r) more tightly.

It is easy to see that

S(l,m, r) =
∑

x1 + · · ·+ xm = l,
0 ≤ xi ≤ r

l!
∏m

i=1 xi!
· (8)

where thexi’s are integers. The exponential generating func-
tion (EGF) ofS(l,m, r) is

∞∑

l=0

S(l,m, r)
zl

l!
=

(
r∑

i=0

zi

i!

)m

and thus one can write

AH(n, r, d) ≤ (n− d+ 1)!
[
zn−d+1

]

(
r∑

i=0

zi

i!

)n/r

· (9)

The bound given in (9) can be used to find numerical upper
bounds on the code size, such as those provided in Table I. In
addition, it can be used to obtain simple asymptotic bounds
using methods described in the classical text [27, Ch. 8]. Asa
final note, we point out that the related problems of restricted
multisets and restricted integer partitions are far betterstudied
combinatorial entities than the one we addressed above [28,

1This argument is akin to the approach proposed in [4] for permutation
codes in the Kendall metric.

Ch. 21, Sec. 8], although no simple direct connection between
these problems and the problem discussed here exist.

Another approach, which is conceptually much simpler
and which applies to many other coding-theoretic scenarios
is using the Poisson approximation theorem for multinomial
variables and the Chernoff bound [29], [30], or alternatively,
the Central limit theorem [31]. As shown in [31], [32], the
number of terms in the multinomial summation formula,
m, may represent the number of labeled urns into whichl
labeled balls are thrown randomly. The occupancy variables
Xi, i = 1, . . . ,m, are dependent, sinceX1+. . .+Xm = l. But
in the asymptotic central domain regime, withl/m constant,
the variablesXi, i = 1, . . . ,m, may be viewed asindependent
Poisson variables with meanλ = l/m. Any result of computa-
tions involving independent Poisson variables that satisfies the
inversion conditions dictated by Tauberian theorems described
in [32] may be asymptotically convertedinto the correct
result by simply replacingλ with l/m. Furthermore, the same
approach may be used when dealing with urns and balls that
satisfy additional constraints [32].

To understand the principles behind the Poisson transform
method, we follow the analysis in [31] based on [33]. The
key observation is that the Poisson distributions satisfy the
additivity (infinite divisibility) property, i.e., the property that
the sum of independent Poisson random variables is another
Poisson random variable with mean parameter equal to the
sum of the parameters of the individual variables in the sum.
Then, it is straightforward to show that for two different
ball placement processes, the urn occupancy variables have
the same distribution: 1) in the first case, each urn receives
balls according to a Poisson distribution with parameterλ
independently of all other urns; 2) in the second case, balls
arrive with a Poisson distribution with parameterλm and are
routed with uniform probability1/m to one of the urns.

Assume next thatg(m,λ) is a quantity of interest where
the input to each urn is generated according to model 1). The
same quantity under the original urns and balls model with
a fixed numberl of balls is denoted byf(m, l). Using the
equivalence between the two formulations 1) and 2), one can
show that

g(m,λ) =
∑

l

f(m, l) P (X1 + . . .+Xm = l) ,

whereX1, . . . , Xm are i.i.d Poisson random variables with
parameterλ. As a result, it is straightforward to see that
f(m, l) = l!

ml [λl]
{
eλmg(m,λ)

}
.

In words,eλmg(m,λ) represents the exponential generating
function over the number of ballsl of f(m, l) evaluated
at λm. Evaluating the coefficient in a generating function
in the asymptotic domain may be accomplished with the
aid of Tauberian theorems (see [32]) or classical asymptotic
analysis. In the case of the Poisson transform, provided that
some minor technical conditions are met, it can be shown
that f(m, l) ≃ g(m, l/m), where a(x) ≃ b(x) stands for
limx→∞ a(x)/b(x) = 1. Intuitively, the aforementioned result
implies that when the dependencies among a large number
of random variables are weak – for example, only in terms
of a constraint on the total sum of their values – then the
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Table I: Bounds on the size3-regular multipermutation codes in the Hamming metric of length 9.

Upper bound onAH(9, 3, d) d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

(3) [13] - - - - - - 7 4 3
(4) [15] 120960 120960 60480 20160 5040 1008 168 24 3

Lemma 4 19683 6561 2187 729 243 81 27 9 3
(11) (approximate bound) 12077 4560 1700 624 224 79 27 9 3

(9) 1680 1680 1050 510 210 78 27 9 3

variables are asymptotically independent, provided a proper
choice of the distribution ensures consistence with the finite-
valued parameters.

In the case of interest, we need to find the probability
P{Xi ≤ r, i = 1, . . . ,m}. For m, l → ∞, such thatl/m
is a constant, and forr fixed, this leads to

S(l,m, r) ≃ ml

(
r∑

i=0

exp(−λ)
λi

i!

)m

,

where λ = l/m. The asymptotic formula forS(l,m, r)
depends on the relationship between the parametersr, l,m.
For r ≤ l/m, the Chernoff bound reads as

r∑

i=0

exp(−λ)
λi

i!
≤

exp(−λ)(e λ)r

rr
,

so that

S(l,m, r) . ml exp(−l/m)(e l/m)r

rr
· (10)

For the case of interest in our derivation,r > l/m.
Wheneverr > 10, one may use the straightforward Central
Limit Theorem approximation

r∑

i=0

exp(−λ)
λi

i!
≃ Φ

(

r + 0.5− l/m
√

l/m

)

,

so that

S(l,m, r) ≃ ml Φm

(

r + 0.5− l/m
√

l/m

)

,

where the functionΦ(·) stands for the cumulative distribution
function (CDF) of a standard Gaussian random variable. Since
r > n−d+1

n/r , the preceding relation and (7) imply

AH(n, r, d) .
(n

r

)n−d+1

Φn/r

(

n+ 2(d− 1)r

2
√

n(n− d+ 1)r

)

(11)
provided thatn−d+1

n/r is a constant larger than 10.
As an example, upper bounds on the size ofMPCH(9, 3, d)

are given in Table I. Note that the bounds of (11), Lemma 4,
and (9) are very close for small values ofd. Indeed, the right
side of (11) is bounded above by(n/r)n−d+1 and below by

(n

r

)n−d+1
(
1

2

)n/r

and we have

lim
ln
((

n
r

)n−d+1 ( 1
2

)n/r
)

ln
(
n
r

)n−d+1
= 1

provided thatδ < 1 andr < n. Therefore, the bounds of (11)
and Lemma 4 have the same asymptotic exponent.

The next lemma provides a lower bound onAH(n, r, d).

Lemma 5. (Gilbert-Varshamov Bound) We have

AH(n, r, d) ≥
n!

(r!)n/r
(

n
d−1

) (
n
r

)d−1
·

Proof: There are n!
(r!)n/r multipermutations ofM(n, r).

The size of a ball of radiusd − 1 in the space of multiper-
mutations ofM(n, r) endowed with the Hamming distance is
bounded above by

(
n

d−1

) (
n
r

)d−1
(an exact and complicated

expression for the size of the ball may be found in [15]).
The Lemma follows by a standard application of Gilbert’s
argument.

Theorem 6. We have

CH(r, d) = (1− ρ)(1 − δ).

Proof: First, recall thatlim expressions with no subscripts
stand forlimn→∞.

On the one hand, from Lemma 4, we have

CH(r, d) ≤ lim
(n− d+ 1)(lnn− ln r)

lnn!

= lim
n lnn− n ln r − d lnn+ d ln r

n lnn+O(n)

= 1− ρ− δ + ρδ.

On the other hand, from Lemma 5, we easily see that

CH(r, d) ≥ lim
ln
(

n!(r!)−n/r
(

n
d−1

)−1 (n
r

)−d+1
)

lnn!

= 1− lim
(n/r) ln r! + (d− 1) ln(n/r)

lnn!

= 1− lim
n ln r + d lnn− d ln r +O(n)

n lnn+ O(n)

= 1− ρ− δ + ρδ,

where we have used the fact thatlim
ln ( n

d−1
)

lnn! = 0. This
establishes the claimed result for the asymptotic capacityof
multipermutation codes in the Hamming metric.

B. Multipermutation Codes in the Ulam Metric

Using Lemma 3 which implies thatA◦(n, r, d) ≤
AH(n, r, d), we find the following upper bound onA◦(n, r, d):

A◦(n, r, d) ≤ AH(n, r, d) ≤ S(n−d+1,
n

r
, r) ≤

(n

r

)n−d+1

.

(12)
The next lemma provides a lower bound onA◦(n, r, d).
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Lemma 7. (Gilbert-Varshamov Bound) For positive integers
n, r, d such thatn is a multiple ofr, we have

A◦(n, r, d) ≥
(n− d+ 1)!
(

n
d−1

)
(r!)2n/r

·

Proof: Let Br
◦(u) denote the size of a ball of radius

u in Sn endowed bydr◦ (note that due to symmetry, i.e.,
left invariance of the Ulam metric, the volume of the ball
is independent on the choice of the center). Equivalently, let
B
r
◦(u) = {π ∈ Sn : dr◦(π, e) ≤ u}. The Gilbert bound states

that
A◦(n, r, d) ≥

n!

Br
◦(d− 1)

·

We show thatBr
◦(d − 1) ≤ (r!)2n/rB1

◦(d − 1). The lemma
then follows from a result pertaining to the Ulam metric we
derived in [7], namely:

B
1
◦(d− 1) ≤

(
n

d− 1

)
n!

(n− d+ 1)!
·

The set{π ∈ Sn : dr◦(π, e) ≤ u} equals
⋃

σ∈Rr(e)

⋃

π∈Sn:d◦(π,σ)≤u

Rr(π).

Hence,

B
r
◦(u) =

∣
∣∪σ∈Rr(e) ∪π∈Sn:d◦(π,σ)≤u Rr(π)

∣
∣

≤ (r!)n/r
∣
∣∪π∈Sn:d◦(π,e)≤uRr(π)

∣
∣

≤ (r!)n/rB1
◦(u)(r!)

n/r

= (r!)2n/rB1
◦(u),

which shows thatBr
◦(d− 1) ≤ (r!)2n/rB1

◦(d− 1).
Next, we improve upon Lemma 7 by finding a sharper

bound forBr
◦(u), u ∈ Z

+. Consider the ball around the identity
permutatione. For a permutationπ that satisfiesdr◦(π, e) ≤ u,
there exists aπ′ ∈ Rr(π) that has a common subsequences
of length l = n− u with somee′ ∈ Rr(e). There are

A =
∑

x1 + · · ·+ xn/r = l,
xi ∈ [0, r], ∀i

n/r
∏

i=1

(
r

xi

)

xi!

ways of choosing a sequences of length l such that it is a
subsequence of somee′ ∈ Rr(e), with

∏n/r
i=1

(
r
xi

)
xi! counting

the number of ways one can choose a subsequence of length
l with xi elements from ranki,

o
r
e′(i) = o

r
e(i) = {(i− 1)r + 1, . . . , ir}.

The number of ordered partitionso with parts of size equal
to r, such that there exists aπ′ that satisfieso = orπ′ and
containss as a subsequence equals

B =
∑

x1 + · · ·+ xn/r = l,
xi ∈ [0, r], ∀i

(
n− l

r − x1, . . . , r − xn/r

)

.

Here, the multinomial
(

n−l
r−x1,...,r−xn/r

)
accounts for the num-

ber of ways of choosing the ordered partitiono such that the

first x1 elements ofs are in the first part, the nextx2 elements
are in the second part, and so on.

In addition, there are(r!)n/r permutationsπ such thatπ ∈
Rr(π

′). Hence,
B
r
◦(u) ≤ AB(r!)n/r . (13)

With regards to bounding the combinatorial sumA, we
observe that

A ≤

(
l+ n/r − 1

n/r − 1

)

max
x1 + · · ·+ xn/r = l,

xi ∈ [0, r], ∀i

n/r
∏

i=1

(
r

xi

)

xi!

≤

(
l+ n/r − 1

n/r − 1

)( r!

(r − l
n/r )!

)n/r

≤

(
2n

n

)( r!
r(n−l)

n !

)n/r

.

Using a similar approach forB, we find

B ≤

(
2n

n

)
(n− l)!

(
r(n−l)

n !
)n/r

·

Hence,

B
r
◦(u) ≤

(
2n

n

)2( r!
ru
n !

)2n/r

u!,

and so, ford > 1,

lnBr
◦(d− 1) ≤

2n

r
ln r! −

2n

r
ln

r(d − 1)

n
!

+ ln(d− 1)! +O(n)

= 2n ln r − 2(d− 1) ln
r(d − 1)

n
+ (d− 1) ln(d− 1) +O(n)

= 2n ln r − 2d ln r + 2d lnn− d ln d+O(n).

This implies that

C◦(r, d) ≥ 1− lim
2n ln r − 2d ln r + 2d lnn− d ln d+O(n)

n lnn+O(n)

= 1− 2ρ+ 2δρ− δ

= (1− δ)(1 − 2ρ). (14)

Theorem 8. The capacity of multipermutation codes in the
Ulam metric is bounded according to

(1− δ)(1 − 2ρ) ≤ C◦(r, d) ≤ (1− δ)(1− ρ).

Proof: The lower bound is given in (14) while the upper
bound is a result of (12) and Theorem 6.

IV. CONSTRUCTIONS

In the next subsections, we present several constructions for
multipermutation codes in the Ulam metric. One of the key
ingredients of our constructions is permutation interleaving,
which we proposed for Ulam metric code design in [7]. The
related idea of restricting certain positions in the codewords
to certain values was first described in [11], [12], while
interleaving in the Chebyshev metric was discussed in [18].
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For sequencesπ1, . . . , πk, let π1 ◦r π2 ◦r · · · ◦r πk denote
the sequence obtained by sequentially interleaving blocksof
r elements ofπi, i ∈ [k].

For example,(1, 3, 4, 2) ◦2 (6, 7, 8, 5) ◦2 (12, 10, 9, 11) =
(1, 3, 6, 7, 12, 10, 4, 2, 8, 5, 9, 11).

This form of interleaving will henceforth be called block
interleaving. Wheneverr = 1, we simply write◦ instead of
◦1.

A. Constructions based on almost disjoint sets

Two setsA andB are said to beat most k-intersecting,if
for a given positive integerk, one has

|A ∩B| ≤ k.

When k is smaller than the size of the setsA,B, and the
aforementioned bound is true, we say that the sets arealmost
disjoint. The next lemma shows how sets of set partitions with
almost disjoint parts can be used for constructing multipermu-
tation codes in the Ulam metric.

Lemma 9. Let C be anMPC(n, r) code, and suppose thatt
is a positive integer such that2t < r. If for all π, σ ∈ C and
i ∈ [n/r], we either haveorπ(i) = orσ(i) or

|orπ(i) ∩ o
r
σ(i)| < r − 2t, (15)

then the codeC can correctt translocation errors, that is,C
is anMPC◦(n, r, 2t+ 1) code.

Proof: Supposeπ ∈ C is the (unknown) stored codeword
andω is the retrieved permutation. The Ulam distance between
π andω is at mostt since the codewordπ is affected by at
most t translocation errors. We show that givenω, orπ can be
uniquely identified. Fixi ∈ [n/r]. Since there are at mostt
translocation errors, by Lemma 2, we have

|orπ(i) ∩ o
r
ω(i)| ≥ r − t. (16)

To identifyorπ(i) uniquely, it suffices to have|orσ(i) ∩ orω(i)| <
r − t for all σ ∈ C such thatorπ(i) 6= orσ(i).

Suppose thatσ ∈ C and orπ(i) 6= orσ(i). We use (15)
and (16) to show that|orσ(i) ∩ orω(i)| < r − t. For simplicity,
let Bπ = orπ(i), Bσ = orσ(i), andBω = orω(i). We then have

|Bσ ∩Bω| = |Bσ ∩Bω ∩Bc
π|+ |Bσ ∩Bω ∩Bπ|

≤ |Bω ∩Bc
π|+ |Bσ ∩Bπ|

(a)
< (r − |Bω ∩Bπ|) + (r − 2t)

(b)

≤ t+ r − 2t = r − t,

where Bc
π denotes the complement ofBπ. Inequality (a)

follows from the fact that|Bω| = r and (15); and inequality
(b) follows from (16). This completes the proof.

Remark10. A code satisfying the condition of Lemma 9 can
in fact correct a class of errors that is more general than
translocation errors. More precisely, the code can correcterrors
that lead to the displacement of at mostt elements of each
rank. In particular, the code can correctt transposition errors,
t Hamming errors, or anyt errors where each error displaces

at most one element from each rank. As an example of the
latter type of error, consider

({3,4}, {2, 6}, {7, 8}, {1, 5})
error

−−−−−→

({3,1}, {2, 6}, {4, 8}, {7, 5}) ,

where each rank corresponds to one set in the set partition.
We note that each part except for the one listed second has
one displaced (moved) element.

A code that satisfies the conditions of Lemma 9 can be
decoded in timeO(Mnr), whereM is the size of the code. As
before, suppose thatπ ∈ C is the unknown stored codeword
and ω is the retrieved permutation. For eachi ∈ [n/r], we
must identify a unique setA(i) ∈ {orσ(i) : σ ∈ C} such that

|A(i) ∩ o
r
ω(i)| ≥ r − t. (17)

The ordered partition representation ofπ is then orπ =
(A(1), . . . , A(n/r)) .

The intersection oforω(i) and each of the sets in{orσ(i) :
σ ∈ C} can be trivially found with time complexityO(r2).
Since there areM sets in{orσ(i) : σ ∈ C}, finding A(i) for
eachi ∈ [n/r] takesO(Mr2) steps. Thusorπ can be identified
with complexityO(Mr2n/r) = O(Mnr).

Since for some code parametersM can be exponential in
n, the time needed for exhaustive search decoding may be
exponential as well. However, if more information about the
structure of the code is available, decoding may be performed
much faster, as in the cases of constructions based on grouping
elements and Steiner systems discussed in Subsections IV-A1
and IV-A2.

We pause to briefly comment on the relationship between
almost disjoint sets of set partitions and intersecting families,
in the context of the celebrated Erdős-Ko-Rado (EKR) theorem
(see [34], [35] and references therein). A family of subsetsof
a set is said to be intersecting if each pair of subsets have a
non-empty intersection. The EKR theorem establishes upper
bounds on the size of the largest intersecting family. This
theorem is also extended to the space of permutations where
a set of permutations is said to be intersecting if each pair
of permutations agree in some coordinate [36]–[38]. In our
formulation, we require the intersections to be small, unlike
for intersecting families where the intersection size may be
arbitrary large as long as it is non-zero. Furthermore, we
require our subsets to be organized into ordered partitions,
with the intersection property holding only for parts at the
same location. Although the code-anticode theorem by Del-
sarte [39], [40] may help in establishing bounds on familiesof
subsets intersecting in a few elements only, it cannot be used
for the specialized ordered set partition setting in a simple
manner. To the best of our knowledge, the almost disjoint set
partition family problem has not been previously studied in
the extremal combinatorics literature.

Next, we describe two methods for constructing codes that
satisfy the conditions of Lemma 9.

1) A Construction based on grouping elements:If r is a
multiple of 2t+ 1, the following simple construction satisfies
the conditions of Lemma 9. Partition the set[n] in an arbitrary
fashion inton/(2t+1) partsE1, · · · , En/(2t+1), each of size
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2t+1. Consider all ordered partitionso of [n] into n/r parts of
sizer that place all elements of eachEj , j ∈ [n/(2t+ 1)], in
the same part. LetC be a code such that its corresponding
set of ordered set partitionsOr(C) consists of the set of
aforementioned partitionso.

As an illustration, supposet = 1, r = 6, andn = 12, and
let {1, . . . , 12} be partitioned as{E1, E2, E3, E4}, with

E1 = {1, 2, 3}, E2 = {4, 5, 6},

E3 = {7, 8, 9}, E4 = {10, 11, 12}.

Next, consider ordered partitions of{1, . . . , 12} that place all
elements of eachEi in the same part, namely,

o1 =
(
{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}

)
,

o2 =
(
{1, 2, 3, 7, 8, 9}, {4, 5, 6, 10, 11, 12}

)
,

o3 =
(
{1, 2, 3, 10, 11, 12}, {4, 5, 6, 7, 8, 9}

)
,

o4 =
(
{4, 5, 6, 7, 8, 9}, {1, 2, 3, 10, 11, 12}

)
,

o5 =
(
{4, 5, 6, 10, 11, 12}, {1, 2, 3, 7, 8, 9}

)
,

o6 =
(
{7, 8, 9, 10, 11, 12}, {1, 2, 3, 4, 5, 6}

)
.

Then, the code corresponding to the set of ordered partitions
O = {o1, . . . , o6} can correct one translocation error.

To see thatC satisfies the conditions of Lemma 9, consider
o, o′ ∈ Or(C) and i ∈ [n/r]. Suppose thato(i) 6= o′(i).
There existsEj such thatEj ⊆ o(i) butEj ∩o′(i) = ∅. Since
|Ej | = 2t+ 1, we have|o ∩ o′(i)| < r − 2t.

The simplicity of this construction allows for fast decoding.
Without loss of generality, assume that

Ej = {(j − 1)(2t+ 1) + 1, . . . , j(2t+ 1)}.

Suppose thatπ is the stored codeword andω is the re-
trieved permutation. For eachi ∈ [n/r], we haveEj ⊆
orπ(i) if |Ej ∩ orω(i)| ≥ t + 1. To compute|Ej ∩ orω(i)|,
j ∈ [n/ (2t+ 1)], we compare each element oforω(i) with
j (2t+ 1), j ∈ [n/ (2t+ 1)]. This can be performed in

O
(

rn
2t+1

)

steps. Hence, decoding can be performed in time

O(nr
rn

2t+1 ) = O(n2).
Let d = 2t+ 1. The cardinality of the codeC equals

(n/d)!

((r/d)!)n/r
,

and thus the asymptotic rate is

lim
n
d ln n

d − n
d ln r

d +O(n)

n lnn+O(n)
= lim

1

d

lnn− ln r +O(1)

lnn+O(1)

= (1− ρ) lim
1

d
.

Hence, the asymptotic rate is nonzero iffd is bounded (con-
stant). While the rate of the code does not approach capacity,
it should be noted that, per Remark 10, the code can correct
more general errors than translocation errors.

2) Constructions based on combinatorial designs:Several
well-known – and a number of significantly lesser known
– families of combinatorial objects are closely related to
the notion of almost disjoint ordered set partition families.
These include block designs and Latin squares. From the
first category, we useSteiner systemsandresolvable balanced

incomplete block designsand, from the latter category, we
mentionsemi-Latin squares, representing a generalization of
the well-known family of Latin squares [41]. The constructions
are straightforward consequences of the definition of almost
disjoint sets, but they provide for a rather limited set of code
parameters. A more general method, based on interleaving
arguments, will be presented in the next subsection.

A Latin square of ordern is ann× n array such that each
element of[n] appears exactly once in each row and exactly
once in each column. A semi-Latin square with parametersn
and r is an n

r × n
r , array where each cell is anr-subset of

[n] such that each element in[n] appears exactly once in each
column and exactly once in each row [25]. An example of a
semi-Latin square is shown below, withn = 6, r = 2:

{1,4} {2,5} {3,6}
{3,5} {1,6} {2,4}
{2,6} {3,4} {1,5}

Note that the definition of a semi-Latin square implies that
each row and each column of the square represent a partition
of [n]. Hence, we arrive at the following result.

Lemma 11. The rows of a semi-Latin square with parameters
n and r, viewed as ordered set partitions of[n], form the
ordered set partitions of anMPC◦(n, r, r) code of cardinality
n
r .

The result is a direct consequence of Lemma 9 and the fact
that no element is repeated in a column of a semi-Latin square.
Unfortunately, the size of a code based on semi-Latin squares
is small, since the row-column restrictions are too strong for
the purpose of designing almost disjoint ordered set partition
families.

As stated before, a code that satisfies the conditions of
Lemma 9 can be decoded in timeO(Mnr). This implies that
the code of Lemma 11 is decodable in timeO(n2).

Another family of combinatorial objects that allow for
constructing almost disjoint ordered set partitions are special
types of designs, namelyresolvable balanced incomplete block
designsand resolvable Steiner systems.

A k-(n, r, λ)-designis a family of r-subsets of a setX of
size n, each called ablock, such that everyk-subset ofX
appears in exactlyλ blocks. Such a design isresolvableif its
blocks can be grouped intom classes, such that each class
forms a partition ofX . It is known that [41, p. 202]

m = λ

(
n−1
k−1

)

(
r−1
k−1

) ·

A Steiner systemS(k, r, n) is a k-(n, r, 1)-design and a
balanced incomplete block design(BIBD) with parameters
(n, r, λ) is a 2-(n, r, λ)-design. For the purpose of code con-
struction, resolvable Steiner systems and Resolvable BIBDs
(RBIBDs) are of special interest.

The following lemma shows that resolvable Steiner systems
can be used to construct multipermutation codes in the Ulam
metric. Resolvable designs may also be used to construct mul-
tipermutation codes in the Hamming metric, as described by
Chu et al. [16]. The aforementioned construction nevertheless
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does not cater to the specialized requirements posed by the
Ulam metric.

Lemma 12. If a resolvable Steiner systemS(k, r, n) exists,
then there exists anMPC◦(n, r, d), whered is an odd number
satisfyingd ≤ r − k + 1, of size

(
n−1
k−1

)

(
r−1
k−1

)

(n

r

)

!.

Proof: We use a Steiner systemS(k, r, n) to construct
a family of ordered set partitions satisfying the conditions of
Lemma 9.

Let m denote the number of classes of the Steiner system.
The blocks of each of them classes of the Steiner system
form an unordered set partition. Each unordered set partition
gives rise to

(
n
r

)
! ordered set partitions. Hence, in total, we

havem(nr )! ordered set partitions. LetC be a code such that
its corresponding set of ordered set partitionsOr(C) is the
aforementioned set ofm(nr )! partitions.

Let t = (d− 1)/2. We havek ≤ r− 2t. Each two blocks in
the Steiner system have less thank elements in common, and
consequently, have less thanr − 2t elements in common. It
follows that the conditions of Lemma 9 are satisfied. Hence,
C is anMPC◦(n, r, d) of the stated size.

The code described in the preceding lemma can be decoded
in timeO(nkr) as follows. Suppose thatπ is the stored code-
word andω is the retrieved permutation. For eachi ∈ [n/r], to
find orπ(i), one needs to compute the size of the intersection of
orω(i) with the blocks of the Steiner system. Computing each
intersection takesO(r2). Hence, decoding can be performed
in time

O

(

n

r

(
n−1
k−1

)

(
r−1
k−1

) r2

)

= O

(

nr

(
n− 1

k − 1

))

= O
(
nkr
)
.

An RBIBD with parameters(n, r, λ = 1) is a resolvable
Steiner systemS(2, r, n), and thus can be used for code
construction. Forλ = 1, the case of interest in all our
subsequent derivations, the condition

n = r mod r(r − 1)

is necessary for the existence of an RBIBD, and it is also
known to be asymptotically sufficient forr ≥ 5 [23].

Two of the most commonly used approaches to constructing
RBIBDs are based on finite fields [23] and on a simple combi-
natorial construction [24]. Using the former construction, one
can derive RBIBDs with parametersλ = 1, n = pαv, and
r = pα, with p a prime andα andv positive integers.

The combinatorial construction of [24] is based on the
following straightforward procedure. Assume thatr is prime
and arrange then = r2 elements of then-set into anr × r
array in order. Each row corresponds to one block of sizer,
and each array represents a class that partitions then-set. The
first class, denoted byC1, is shown below forr = 3:

1 2 3
4 5 6
7 8 9

ClassC2 is constructed from classC1 by taking the trans-
pose. Each subsequent classCi, for i ≥ 3, is constructed from
the previous classCi−1 in the following manner: the cyclically
continued diagonals ofCi−1 are arranged row-wise, starting
from the main diagonal, and then moving to the left sub-
diagonals. For the example withr = 3, the additional three
classes constructed according to the above procedure take the
form:

1 4 7
2 5 8
3 6 9

1 5 9
2 6 7
3 4 8

1 6 8
2 4 9
3 5 7

Note that the procedure terminates afterr+1 steps, resulting
in a repetition of classC2. The total number of blocks in the
RBIBD equalsr(r + 1) = r2 + r.

The construction involving cyclic diagonal shifts can be
extended for resolvable,unbalancedIBDs with parameters
n = pαr, α ≥ 1, p prime, and block sizer which may
be an arbitrary integer≥ 2. The only difference between a
balanced and unbalanced design is the requirement that any
pair of elements appear inat mostλ blocks [24]. For the case
λ = 1, i.e., any pair of elements appearing zero or one time,
the designs are known as zero-one concurrence designs; they
may be constructed by a combination of variety cutting and
the diagonalization procedure described above. The interested
reader is referred to [24] for an in-depth treatment of this
construction.

The aforementioned procedures show that an RBIBD with
parameters(r2, r, 1) exists, provided thatr is am odd prime.
Hence, using Lemma 12, we can obtain the following lemma,
which concludes this subsection.

Lemma 13. Suppose thatr is an odd prime. Then,
A◦(r

2, r, r − 2) ≥ (r + 1)r!.

B. Construction based on codes withr components

In this subsection, we present a construction for multiper-
mutation codes in the Ulam metric based onr permutation
codes of lengthn/r, interleaved to ensure translocation error
protection.

Assume first that d ≤ n/r. Consider a partition
{P1, . . . , Pr} of [n] into sets of equal size, and the set of codes
{C1, . . . , Cr}, with eachCi, i ∈ [r], being a permutation code
of minimum Ulam distanced over Pi. We form a new code
C as follows:

C =
⋃

ci∈Ci, ∀ i

Rr(c1 ◦ · · · ◦ cr). (18)

Proposition 14. The codeC given in (18) is anMPC◦(n, r, d)
code.

Proof: Considerπ′, σ′ ∈ C such thatπ′ 6≡r σ′. By
construction, there existsπ ∈ Rr(π

′) and σ ∈ Rr(σ
′) such

that

σ = σ1 ◦ · · · ◦ σr, σi ∈ Ci,

π = π1 ◦ · · · ◦ πr, πi ∈ Ci. (19)
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Sinceπ 6≡r σ, there exists an elementj ∈ [r] such thatπj 6=
σj .

We show that for an arbitrary choice ofα ∈ Rr(π) and
β ∈ Rr(σ), we haved◦(α, β) ≥ d. Sinceα andβ are chosen
arbitrarily, we find that

d
r
◦(π

′, σ′) = d
r
◦(π, σ) = min

α∈Rr(π)
min

β∈Rr(σ)
d◦(α, β) ≥ d,

which completes the proof.
Forα ∈ Rr(π) andβ ∈ Rr(σ) and eachi ∈ [r], the order of

the elements ofPi is the same inπ and inα, i.e.,πPi = αPi .
Furthermore, sinceπi ∈ Ci, andCi is a code overPi, we
haveπi = πPi . Hence,αPi = πi. A similar argument holds
for σ andβ, implying thatβPi = σi for eachi ∈ [r]. So, by
Lemma 1, one can show that

d◦(α, β) ≥
r∑

i=1

d◦ (αPi , βPi) =
r∑

i=1

d◦ (πi, σi)

≥ d◦ (πj , σj) ≥ d,

where the last inequality follows fromπj 6= σj .
As an example, forn = 6, r = 2, andd = 2, consider

P1 = {1, 2, 3} ,

P2 = {4, 5, 6} ,

C1 = {(1, 2, 3) , (3, 2, 1))} ,

C2 = {(4, 5, 6) , (6, 5, 4)} .

Note thatC1 andC2 both have Ulam distance equal to 2. The
codeC, constructed according to (18) contains

(1, 4, 2, 5, 3, 6) , (1, 6, 2, 5, 3, 4) ,
(3, 4, 2, 5, 1, 6) , (3, 6, 2, 5, 1, 4) ,

and their equivalency classes under≡2. For instance, letπ =
(1, 4, 2, 5, 3, 6) and σ = (3, 4, 2, 5, 1, 6) and considerα =
(4, 1, 5, 2, 3, 6) ∈ R2 (π) andβ = (4, 3, 5, 2, 6, 1) ∈ R2 (σ). It
can be observed thatαP1

= πP1
= (1, 2, 3) andαP2

= πP2
=

(4, 5, 6). Similar statements hold forβ andσ. It can also be
verified that

d◦ (α, β) = 2.

For several constructions of permutation codes in the Ulam
metric, we refer the reader to [7].

The components of the constructed code can be decoded
independently. As before, suppose thatπ is the stored code-
word andω is the retrieved permutation. Since there are at
most t =

⌊
d−1
2

⌋
errors, we haved◦(π, ω) ≤ t. By Lemma 1,

this implies thatd◦(πP , ωP ) ≤ t for all P ∈ {P1, . . . , Pr}.
Hence, one can use a decoder for permutation codes in the
Ulam metric that can correctt errors. Consequently,orπ can
be identified fromωP , P ∈ {P1, . . . , Pr}, through a parallel
decoding process. Note that a simple decoding architecture
for a class of codes in the Ulam metric was proposed in our
companion paper [7], based on Hamming distance decoding
of de-interleaved component codes.

Assuming that the cardinality of the codesCi equals
A◦(n/r, 1, d), the cardinality ofC equals A◦(n/r, 1, d)

r.
Recall that we define the cardinality of a multipermutation

code as the number of its equivalency classes and not the
number of its elements. It was proved in [7] that

A◦(m, 1, d) ≥
(m− d+ 1)!
(

m
d−1

) ·

Hence,

A◦(n, r, d) ≥

(

(n/r − d+ 1)!
(
n/r
d−1

)

)r

.

Furthermore, from the fact thatC◦(1, d) = 1− δ [7], we find
that

C◦(r, d) = lim
lnA◦(n, r, d)

lnn!

≥ lim
r lnA◦(n/r, 1, d)

lnn!

= lim
lnA◦(n/r, 1, d)

ln(n/r)!
lim

r ln(n/r)!

lnn!

= (1− lim
rd

n
)(1 − ρ).

In particular, if lim rd
n = 0, thenC◦(r, d) = (1− ρ).

C. Construction based on codes in the Hamming metric

Recall that drH(π, σ) ≥ dr◦(π, σ). Thus, if C is an
MPC◦(n, r, d) code, then it is also anMPCH(n, r, d) code. We
now show that anMPC◦(n, r, d) code can be obtained using
multipermutation Hamming codes of shorter lengths. We refer
the reader to [13]–[16] for constructions of multipermutation
codes in the Hamming metric.

Proposition 15. Suppose thatn/r is even and thatd ≤ r.
Let P =

[
n
2

]
, and Q = [n]\P . Additionally, letC′

1 be an
MPC◦(

n
2 , r, d) code overP and C1 be an MPCH(n2 , r, d)

code overQ. The codeC = C′
1 ◦r C1 is an MPC◦(n, r, d)

code.

Proof: Let π, σ ∈ C with π 6≡r σ. Assume that

π = π′
1 ◦r π1, σ = σ′

1 ◦r σ1,

whereπ′
1, σ

′
1 ∈ C′

1 andπ1, σ1 ∈ C1.
First, suppose thatπ′

1 6≡r σ
′
1. Then,

d
r
◦(π, σ) = min

α∈Rr(π)
min

β∈Rr(σ)
d◦(α, β)

≥ min
α∈Rr(π)

min
β∈Rr(σ)

d◦(αP , βP )

≥ d,

where the first inequality follows from Lemma 1, and the sec-
ond inequality follows from the facts thatαP ∈ Rr(π

′
1) ⊆ C′

1,
βP ∈ Rr(σ

′
1) ⊆ C′

1, and thatC′
1 is anMPC◦(n/2, r, d) code.

Next, suppose thatπ′
1 ≡r σ

′
1. Sinceπ 6≡r σ, we haveπ1 6≡r

σ1. Let

D =
{
x ∈ Q : x ∈ o

r
π1
(i), x ∈ o

r
σ1
(j), i 6= j

}

be the set of elements ofQ that are of different ranks inπ1

andσ1. Note that|D| = drH(π1, σ1).
Considerα ∈ Rr(π) andβ ∈ Rr(σ). For odd values ofi,

we haveorα(i) = orβ(i), asπ′
1 ≡r σ

′
1.
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On the one hand, for any common subsequence ofα andβ
that contains an element ofD, there exists some oddi such
that orα(i) = orβ(i) is not in that subsequence. This implies
that the length of the given common subsequence is at most
n− r. On the other hand, for any common subsequence ofα
andβ that does not contain any element ofD, the length of
that subsequence is at most

n− |D| = n− d
r
H(π1, σ1) ≤ n− d.

Hence, the length of any common subsequence ofα andβ is
at most

max{n− d, n− r} = n− d

and thusd◦(α, β) ≥ d. Sinceα andβ are arbitrary elements
of Rr(π) andRr(σ), respectively, we find thatdr◦(π, σ) ≥ d,
which completes the proof.

One particularly simple choice forC′
1 is

C′
1 = Rr ((1, . . . , n/2)) , (20)

which is a code with cardinality 1.
As an example, letn = 8, r = 2, d = 4, and

C′
1 = R2 ((1, 2, 3, 4))

= {(1, 2, 3, 4) , (2, 1, 3, 4) , (1, 2, 4, 3) , (2, 1, 4, 3)} ,

C1 = R2 ((5, 6, 7, 8)) ∪ R2 ((7, 8, 5, 6)) ,

which leads to

C = R2 ((1, 2, 5, 6, 3, 4, 7, 8)) ∪ R2 ((1, 2, 7, 8, 3, 4, 5, 6)) ,

anMPC◦ (8, 2, 4) code.
For the case of (20), the cardinality ofC equals the

cardinality of C1, which may be as large asAH(n/2, r, d).
Hence,

A◦(n, r, d) ≥ AH(n/2, r, d)

if n/r is even andd ≤ r. With similar arguments, one can
show that, ifn/r is odd andd ≤ r, then

A◦(n, r, d) ≥ AH ((n+ r)/2, r, d) .

For d ≤ r andρ < 1, we haveδ = 0. Hence, ford ≤ r and
ρ < 1,

C◦(r, d) ≥
1

2
(1 − ρ)(1− 2δ) =

1

2
(1− ρ).

To construct larger codebooks, one may recursively use the
construction of Prop. 15 to designC′

1. For simplicity, suppose
that n andr are both powers of 2. Let

C = ((C′
k ◦r Ck) ◦r Ck−1 ◦r · · · ) ◦r C1,

where eachCi, i ∈ [k], is anMPCH

(
n/2i, r, d

)
code,C′

k =
Rr

(
(1, . . . , n/2k)

)
, andk is a positive integer satisfyingk ≤

lg(n/r). The conditionk ≤ lg(n/r) is required since we need
n/2k ≥ r. Note that this condition also implies thatn/2k ≥
d, sinced ≤ r. The codeC is anMPC◦(n, r, d) code. The
cardinality ofCi can be as large asAH

(
n/2i, r, d

)
. Hence,

if n andr are powers of 2 andd ≤ r, it holds that

A◦(n, r, d) ≥
k∏

i=1

AH

(
n/2i, r, d

)
.

Let n = 2j , r = 2ρj , d ≤ r, whereρ is a constant less than
1, and suppose thatk is a constant such thatk ≤ lg(n/r) =
j(1− ρ). For this regime, we have

lim
j→∞

lnA◦(2
j, 2ρj , d)

lnn!
≥ lim

j→∞

lgA◦(2
j , 2ρj , 2ρj)

lg 2j!

≥
k∑

i=1

lim
j→∞

lgAH(2j−i, 2ρj , 2ρj)

lg 2j−i!

lg 2j−i!

lg 2j !

=

k∑

i=1

(

1− lim
j→∞

ρj

j − i

)

2−i

=(1− ρ)(1− 2−k).

Since ρ < 1, k can be chosen arbitrarily large. Hence, the
asymptotic rate can be made arbitrary close to(1− ρ).

V. CONCLUSION

We studied a novel rank modulation scheme based on mul-
tipermutation codes in the Ulam metric. We also highlighted
the close connection between multipermutation codes in the
Hamming metric, also known as constant composition codes
and frequency permutation arrays, and codes in the Ulam
metric.

The presented results included bounds on the size of multi-
permutation codes in both the Ulam metric and the Hamming
metric; for the case of the Hamming metric, these bounds
led to the capacity of the codes, while for the Ulam metric,
the bounds led to upper bounds and lower bounds for the
capacity, with a gap equal toρ(1 − δ). We also presented
several construction methods for codes in the Ulam metric
using permutation interleaving, semi-Latin squares, resolvable
Steiner systems, and resolvable balanced incomplete block
designs, among other techniques.
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