JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 88, NO. B4, PAGES 3295-3314, APRIL 10, 1983

TRAVEL TIMES AND STATION CORRECTIONS FOR P WAVES AT TELESEISMIC DISTANCES

Adam M. Dziewonski

Department of Geological Sciences, Harvard University, Cambridge, Massachusetts 02138

Don L. Anderson

Seismological Laboratory, California Institute of Technology Pasadena, California 91125

Abstract. Approximately 3300 shallow focus earthquakes and 1000 seismic stations have been used in a study of P wave travel times and station residuals, including azimuthal effects. The events were selected from a catalog containing 160,000 earthquakes, and those having uniform distance and azimuthal coverage were systematically relocated and used to refine P wave travel times and station corrections. Station corrections are provided for 994 seismic stations. The station corrections involve three terms: the static effect and two cosine terms with appropriate phase shifts. They exhibit general consistency over broad geographic areas and, where coverage is dense, often show abrupt changes from one geological province to another. The cos 2θ terms appear to be due to upper mantle anisotropy, and they correlate with the stress direction in the crust.

Introduction

This paper treats a rather traditional topic, one that attracted much attention during the late 1960's and early 1970's, when the high-quality data from the rapidly expanding global seismograph network and fast computers became readily available. Although several papers pointed out inadequacies in the Jeffreys and Bullen [1940] travel times, there were important differences among the travel time curves derived in these studies. Partly for this reason, the National Earthquake Information Service of the U. S. Geological Survey and the International Seismological Centre still use the J-B tables for estimation of hypocentral parameters.

In addition to the practical applications of travel time curves, such as in earthquake location, the inferences drawn from observations of travel times cover a broad range of basic problems in geophysics. Detection of discontinuities and resolution of lateral variations in earth structure are important in understanding dynamic processes within the earth. Station anomalies, including azimuthal effects, can be used to study heterogeneity and anisotropy.

Since arrival times of P waves are the most frequently reported functional of the earth's structure, our ability to process and interpret these data is, in a certain way, a measure of progress in seismology.

The travel times for P waves in the J-B

Copyright 1983 by the American Geophysical Union.

Paper number 2B1668. 0148-0227/83/002B-1668\$05.00 tables are an expansion of the results published by Jeffreys [1939]. In that paper he combined his results on travel times and velocity distribution in the earth which were published in a series of articles dating from 1936 to 1939 in the Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society. The fact that these results are still used as the standard testifies to the excellence of this effort.

The existence of regional variations in travel times had been recognized by Gutenberg [1953], who attributed them primarily to regional changes in the depth of the Mohorovicic discontinuity. Herrin and Taggart [1962] studied regional variations in the P_n travel times in the United States. Carder [1964] used travel times from nuclear explosions and showed that there are significant deviations from the J-B travel times. His results indicated the need for a baseline correction of about -2 s and the existence of distance-dependent residuals. However, Carder used only data from explosions in the Marshall Islands, and the question of a regional bias remained open.

It was the study by Cleary and Hales [1966] that set the stage for most of the later investigations, including this one, that involved globally distributed sets of sources and receivers. The approach adopted by Cleary and Hales is an application of the 'time term' analysis previously used in interpretation of seismic refraction studies [cf. Willmore and Bancroft, 1960]. The objective of this analysis is to represent an observed set of travel times (or residuals) as a sum of source, propagation, and receiver terms. As a result, one obtains an improved set of epicentral coordinates, a new travel time curve, and a set of station corrections. Cleary and Hales were the first to publish an extensive set of station corrections, a parameter that they found to be closely related to the tectonic nature of the receiver region.

Other important papers that involved analysis similar to that of Cleary and Hales are the 1968 Tables [Herrin et al., 1968], the joint epicentre method of Lilwall and Douglas [1970], and the study of travel times for deep earthquakes by Sengupta and Julian [1976].

Dziewonski and Anderson [1981] used a very large set of data (1,500,000 P wave arrival times for 26,000 earthquakes) from the <u>Bulletins of the</u> <u>International Seismological Centre (ISC) for the</u> years 1964 to 1975 to obtain a travel time curve which, together with other subsets of data, was used to derive the Preliminary Reference Earth Model (PREM). However, the epicenters were not relocated in that study, and, as suggested by A. Douglas (personal communication, 1981), some residual effect of the J-B curve might have remained.

Other studies included $dT/d\Delta$ measurements using seismic arrays [cf. Niazi and Anderson, 1965; Johnson, 1967, 1969; Toksöz et al., 1967; Chinnery, 1969] and the search for the lateral heterogeneity in the mantle [cf. Julian and Sengupta, 1973; Dziewonski et al., 1977]. These papers have a bearing on the subject of this report, but our present purpose is to use the data for shallow earthquakes contained in the bulletins for the years 1964-1978 in order to clarify several issues that are still controversial.

The shape of the travel time curve. The principal difference between the results of Cleary and Hales [1966], Herrin et al. [1968], and Lilwall and Douglas [1970] was the slope of the travel time curve. The largest difference exists between the first two studies: between 30° and 90° the slowness of the 1968 tables is greater by 0.023 s/deg than that inferred by Cleary and Hales. There are also differences in the details of the travel time curves do not exceed 0.3 s, they ought to be resolvable.

The question of the source bias. Most of the earthquakes (~ 80%) occur at or near subduction zones. Because of the velocity structure in the subducted slab, travel time residuals tend to have very particular patterns [cf. Davies and McKenzie, 1969]. A desire to avoid this effect motivated the study of Sengupta and Julian [1976]. However, if the effect of the slab extends below 700 km [Jordan, 1977], then the use of only deep-focus earthquakes not only does not free one from source bias but also severely restricts the geographical coverage.

Azimuthal dependence of station corrections. Herrin and Taggart [1968] and Lilwall and Douglas [1970] evaluated station correction terms that, in addition to the constant term, provided for a sinusoidal variation with azimuth (plus a constant phase term). Sengupta and Julian [1976] found that the correlation coefficient between these two sets of azimuth-dependent corrections was 0.41. This figure indicates contamination by noise or uneven coverage. Figure 3 of Herrin and Taggart [1968] indicates that while there is overall consistency among the slow direction vectors in the eastern United States, the magnitude and direction of these vectors are highly incoherent in the central and western United States.

Our objective is to demonstrate that by using a significantly larger set of data and an approach to estimation of the azimuth-dependent terms that accounts for the uneven distribution of observations as a function of azimuth, it is possible to demonstrate regional coherence of not only the first but also the second azimuthal term.

The Data Set

The ISC <u>Bulletins</u> for the years 1964-1978 contain entries for approximately 160,000 earthquakes. Most of these events are small with relatively few reports of arrival times by individual stations. For the purpose of our study we require events for which stable epicenters can be determined using only the teleseismic travel times. Thus we have scanned the ISC tapes for earthquakes that had at least 30 arrival times between 30° and 90° of epicentral distance and at least five readings in each azimuthal quadrant. This search yielded 3270 events.

As discussed in the introduction, the effect of source bias in the vicinity of subducted slabs is a subject of concern. Subduction-related events dominate the catalog even though trenches cover a relatively small fraction of the earth's surface. In order to avoid as well as to study this bias, we divide the selected sources into two classes: class I, events away from subduction zones; and class II, events in the vicinity of subduction zones.

Figure 1 shows the geographical distribution of the two classes of events. The symbols indicate that at least one event of a particular class occurred within a given 5° x 5° cell; circles designate class I events; stars, class II. Even though there are 3 times more class II events, class I earthquakes occupy roughly twice as many cells and provide more uniform coverage of the earth's surface. For this reason the class I events are considered the primary data; class II earthquakes are processed separately.

In the last stage of the entire process, when the station corrections are determined, the condition of the azimuthal coverage of an event is relaxed: three azimuthal quadrants must contain at least five observations. This triples the number of available events and improves the azimuthal coverage of the individual stations. A number of precautions are taken that this does not introduce a bias.

There are over 1000 stations that reported 30 or more arrival times within the established range of epicentral distance. At least one component of the station correction can be established for most of these stations.

TWO TYPES OF SHALLOW SOURCES USED IN THIS STUDY

Fig. 1. Distribution of shallow sources used in this study. A symbol indicates that at least one event for a given $5^{\circ} \times 5^{\circ}$ cell was used in the analysis. Circles designate class I events; stars, class II events: earthquakes that occur near or at subduction zones.

The Iterative Time Term Analysis

The time term method, as described by Cleary and Hales [1966], is based on the following equation of condition:

$$\delta t_{ij} = a_{ij} + b_j + d_i \qquad (1)$$

where for the ith station and jth earthquake, δt is the observed residual from the reference travel time curve; a is the perturbation to the travel time curve for the particular source-receiver pair; b is the source term and d is the station term.

Cleary and Hales assumed that a_{ij} is a function of distance only: $a_{ij} = a_k(\Delta_{ij})$, where k is an integer selected such that it covers a 2° cell. The same division has been assumed by Lilwall and Douglas [1970] and Sengupta and Julian [1976]; a 1° cell size was adopted by Herrin et al. [1968] and in this study. In general, the term a may depend on the geographical coordinates of the source and receiver; this formulation was used by Dziewonski et al. [1977] in a search for large scale velocity heterogeneities in the mantle. In this case a_{ij} is represented by a product of unknown structural parameters with the appropriate kernels.

Cleary and Hales represented the source term b by a constant, essentially a perturbation in the origin time. The events were relocated after each iteration. In general, the source term can be associated with a perturbation in the hypocentral coordinates of the source. In this case, b is equivalent to the product of a matrix of partial derivatives with the vector of perturbations in hypocentral parameters. Lilwall and Douglas [1970] adopted this approach with the source depth fixed.

Cleary and Hales represented the station term d by a constant. In general it may be azimuth dependent:

$$d_{ij} = \sum_{n=0}^{N} C_{in} \cdot \cos n\xi_{ij} + S_{in} \cdot \sin n\xi_{ij}$$

where ξ_{ij} is the azimuth from the ith station to the jth source. Herrin et al. [1968] and Lilwall and Douglas [1970] considered N = 1; in this study, N varies between 0 and 2, depending on the azimuthal coverage at the station.

There is a natural nonuniqueness in (1); clearly, the same amount of time may be added to all a_{ij} and subtracted from all d_i and the observed value δt_{ij} would remain unchanged. Therefore it is necessary to fix arbitrarily one value of the a parameter and one value of the station correction. Provided that this is done, application of the least squares condition to the set of equations of condition (1) leads to a system of normal equations:

$$A \cdot x = B \tag{2}$$

The matrix A has the structure

$$\underline{A} = \begin{bmatrix} C & H & G \\ H & D & F \\ G & F & E \end{bmatrix}$$
(3)

where C, D, and E are diagonal or block diagonal matrices. If C is associated with the travel time corrections that depend only on epicentral distance, then it is diagonal; if D is associated with the source term, then it is diagonal in the formulation of Cleary and Hales or (3×3) block diagonal in the case of Lilwall and Douglas. Matrix E is block diagonal with block dimensions of (2N + 1); E is diagonal for N = 0. Matrices F, G, and H are the cross-product matrices; in the case considered by Cleary and Hales they have the property that all their elements are positive integers and the sum of a given row or column is equal to the appropriate diagonal element.

If, as in this study, we consider 2000 events to be relocated, 1000 stations with an average of three unknowns per station to be determined and travel time corrections to be determined for 76 epicentral distance cells, the matrix A would have dimensions of the order of 9000 x 9000. Computation of the inverse of such a matrix is impractical even using the largest available computers.

However, the fact that matrix A is dominated by its diagonal submatrices C, D, and E, allows us to initiate an iterative procedure that does not require an explicit evaluation of the inverse of A.

If we approximate the inverse of A by

$$\underline{\tilde{A}}^{-1} = \begin{bmatrix} c^{-1} & 0 \\ & D^{-1} \\ 0 & & E^{-1} \end{bmatrix}$$
(4)

then the first approximation of the unknown vector \boldsymbol{x} is

$$\underline{x}_{(0)} = \underline{\widetilde{A}}_{(0)}^{-1} \cdot \underline{B}_{(0)}$$
⁽⁵⁾

This is equivalent to (1) estimation of the correction to the travel times by averaging the residuals with respect to the starting travel time curve, (2) relocation of the individual events using the starting travel time curve, and (3) estimation of station corrections for the individual stations.

In the next iteration, we evaluate

$$\delta \underline{x}_{(1)} = \widetilde{A}_{(1)}^{-1} \cdot (\underline{B}_{(0)} - \underline{A}_{(1)} \cdot \underline{x}_{(0)}) = \underline{\widetilde{A}}_{(1)}^{-1} \cdot \underline{B}_{(1)}$$

$$\underline{x}_{(1)} = \underline{x}_{(0)} + \delta \underline{x}_{(1)}$$
(6)

or, in general,

$$\delta \underline{x}_{(n)} = \underline{\widetilde{A}}_{(n)}^{-1} \cdot \underline{B}_{(n)}$$

$$\underline{x}_{(n)} = \underline{x}_{(n-1)}^{+\delta} \underline{x}_{(n)}$$
(7)

If the inverse of matrix A is stable, then the iterative process described above should converge. This means that, formally, the procedure adopted by Lilwall and Douglas [1970] on the one hand and Herrin et al. [1968], Sengupta and Julian [1976], and this study on the other are equivalent; the procedure of Cleary and Hales [1966] falls between the two approaches. Thus the differences in the final results must be explained by the selection of events and stations rather than by the specific algorithm adopted. For practical reasons (the process of estimation of station residuals is very time consuming) we depart somewhat from the iterative procedure described above. Each cycle consists of (1) relocation of events, (2) determination of improved travel time curve, and (3) estimation of station corrections. We repeat steps 1 and 2 until convergence is achieved and only then evaluate station correction. The cycle is then repeated. To verify that this departure from the ideal procedure does not introduce a bias, we have carried out the entire process having in the first step calculated station corrections using the J-B travel times and the original ISC locations. The difference in the final results was negligible.

The Procedure and Results

Given a travel time curve and starting locations, relocation of a hypocenter is routine: an exhaustive description can be found, for example, by Tucker et al. [1968]. Ellipticity corrections were introduced using the formula and tabular values given by Dziewonski and Gilbert [1976].

Because the azimuthal distribution of stations with respect to the epicenter tends to be uneven, we have tested a weighting scheme in which, regardless of the number of observations, each azimuthal quadrant was given equal weight. In terms of the average travel time curve for the total set of either class I or class II events, that weighting approach did not change the results by more than 0.02-0.03 s. We have not investigated what effect this weighting scheme had on location of the individual events, but, in general, individual events were not of interest in this study. Another test was performed by relaxing the condition on the azimuthal coverage: only three azimuthal quadrants were required to have not less than five observations. This allowed us to triple the amount of available data. Again, the effect on the average travel time curve was negligible; other than that the increased amount of data resulted in a somewhat smoother residual curve.

In the relocation procedure it is necessary to have a differentiable travel time curve. The perturbations obtained in each iteration were fit with cubic splines with three knots. This representation was sufficient to avoid any significant long-term deviations between the observed and smoothed curves.

Figure 2 shows, in terms of deviations from the 1968 travel times, the starting curve, one obtained in the first iteration and the final one (after four iterations). It is clear that most of the change occurs in the first iteration. As stated earlier, the class I events are considered the principal data set. Therefore class II events are relocated also using the class I travel time curve. It is clear from Figure 2 that there are some differences between the travel times for class I and class II events. Both curves, however, are relatively close to the 1968 tables, with the curve for class II events being closer and showing only a slight offset in the baseline and slope. This is not surprising, since some 80% of the events used in the derivation of the 1968

Fig. 2. Illustration of the convergence of iterative derivation of teleseismic travel times for P waves. The results are displayed as residuals with respect to 1968 tables. Station corrections are not yet included.

tables were class II events [see Herrin et al., 1968, Figure 3].

After the convergence of travel times is achieved, the residuals are sorted by station, and the process of determination of station corrections begins. The full azimuth range is divided into 18 windows, 20° wide. An average residual is calculated if there are at least five readings in a given window. From now on, these average residuals are treated with equal weight; this reduces the bias due to unequal distribution of events [see Herrin and Taggart, 1968, Figure 1]. In general, the least squares approach is used to determine the coefficients A and B in the equation

 $\delta t = A_0 + A_1 \cos \xi + B_1 \sin \xi + A_2 \cos 2\xi + B_2 \sin 2\xi$ (8)

However, the number of terms to be determined depends on the azimuthal coverage at a given station. All terms are determined if the data exist for 15 or more windows. Below that number, decisions are made depending on the distribution of the missing windows and the pattern of deviations; admittedly, some decisions are subjective. Station corrections are not determined if data are available for fewer than two windows.

Figure 3 shows a plot of station residuals as a function of azimuth. It is one of the final plots, but it serves well to explain the interactive process of determination of station corrections. The squares are residuals for the class I events; stars are for class II. Averages

Fig. 3. Station residuals as a function of azimuth. Square represents an average of all residuals for class I events within a given 20° window; stars correspond to class II events. Solid line is the least squares fit of the constant term; long-dashed line, constant and first azimuthal term; short-dashed line, constant and two azimuthal terms.

for individual windows are given equal weight. The straight, solid line is the A_0 term: the average of all residuals. The long-dashed line corresponds to the least squares fit of the first three terms in equation (8). Finally, the short-dashed line represents all five terms. The coverage by class I events is more complete; it would have been possible to determine all five terms even if the data for class II events were not included, and the derived parameters would differ little from those shown. On the other hand, even though there are class II data for 10 out of 18 windows, fitting of terms other than A_{Ω} would not be justified, as the data are very unevenly distributed. Overall, in windows for which both kinds of data exist, the average residuals for both classes of events are very close, indicating that the source term, at least for this station, is not very important or has been absorbed in the relocation of the epicenters. This seems to be the case for most stations.

The stations corrections were computed using three sets of relocated earthquakes: (1) class I data: four quadrants with at least five observations, (2) class I and II data: four quadrants with at least five observations, and (3) class I and II data: three quadrants with at least five observations.

Clearly, the number of data for each of the subsequent sets increases, and yet, whenever a comparison could be made, the results obtained using sets 1 and 3 were fully compatible. For this reason we use set (3) to evaluate station corrections, since it allows us to investigate more stations with a better azimuthal coverage.

In the next cycle, the events are relocated using station corrections, and after two more iterations, convergence of the travel time curves is achieved. The next set of station corrections differs insignificantly from the previous one, and we conclude that the process has converged.

Our main interest in this study was the derivation of station residuals and a new average

travel time curve for distances beyond 25° . However, with the relocated earthquakes and available readings at shorter distances we can also construct an average travel time curve from 1° to 25° . Although regional variations become important at these distances, the usefulness of the new travel times is enhanced by having available values for the full range of distances. We remind the reader that only tha data between 30° and 90° were used in the process of relocation of events and estimation of station corrections.

As before, we construct average travel times for 1° cells and then smooth them with a set of polynomials with various conditions of continuity at the knots. The smoothed travel times are continuous throughout, but the first derivative (slowness) was allowed to be discontinuous at 18° and 24° . Except for the distance from 18° to 24° and from 90° to 100° , where a quadratic was fitted, cubic polynomials were used in the remaining segments ($1^{\circ}-18^{\circ}$, $24^{\circ}-40^{\circ}$, $40^{\circ}-65^{\circ}$, $65^{\circ}-90^{\circ}$). The rms of the fit improves with increasing epicentral distance. For the class I travel time curve it is 0.44 s between 1° and 18° , 0.11 s between 18° and 24° , 0.06 s bewteen 24° and 40° , and beyond this distance it ranges from 0.04 to 0.05 s.

Our final average travel times are given in Table 1. Tabulated are epicentral distance (DEL), number of observations (NOBS), average travel time (TOBS), standard deviation of single observation (S.D.), smoothed travel time (TCOM), difference between observed and smoothed values (DIFF), and slowness (DT/DD) in seconds/degree. Travel times for both class I and class II events are given; the maximum difference between smoothed values for the two sets is 0.12 s between 90° and 94° .

Table 2 contains stations corrections for 994 stations. Most of the entries are self-explanatory. NW is the number of 20° azimuth windows for which data were available; RMS0 is the rms error calculated after the A₀ term is removed from averages for individual windows; RMS1 is the error after the higher-order terms (if any) have been removed. The station correction term (to be added to the theoretical travel time) has the form

$$\delta t = A0 + A1 \cdot \cos(\xi - E1) + A2 \cdot \cos(\xi - E2)$$

Thus the azimuths El and E2 represent the slow directions. For the second azimuthal term there is another slow direction: $E2 + 180^{\circ}$.

Discussion

Figure 4 shows a comparison of the residual travel time curves for the class I and class II events before and after introduction of station corrections. There are several important conclusions that can be drawn from this figure.

The average number of observations for a 1° cell is about 1600 for the class I data and 4000 for the class II data. With an rms of single observation of 1.2 s, the standard error of the mean (sem) for the class I data should be 0.03 s and 0.02 for the class II data. The roughness in the uncorrected class I curve exceeds only slightly what could be considered random scatter.

TABLE 1. Final Travel Times and $dt/d\Delta$ for Class I and Class II Events

DET	NORC	TOPC	CLASS	I EVEN	IS DIFF	DT/DD	NORC	TOBS	CLASS	II EVEN	ITS	DT/DD
DEL	MOB3	1083	3.0.	TCOM	DIFF	51755	1083	1065	3.0.	TOOM	DIFF	01700
1	73	18.13	1.54	18.66	-0.53	14.440	1488	19.29	1.78	19.51	-0.22	14.177
2	177	33.50	1.92	33.06	0.44	14.349	2495	33.87	1.75	33.67	0.20	14.133
4	203	61.23	2.00	61.57	-0.34	14.167	2375	61.42	1.82	61.84	-0.42	14.084
5	240	76.01	1.92	75.70	0.31	14.076	2684	76.16	2.04	75.84	0.32	13.975
6	263	90.25	2.22	89.73	0.52	13.986	2301	90.06	2.15	89.78	0.28	13.913
7	307	103.16	2.04	103.67	-0.51	13.895	1859	103.54	2.13	103.66	-0.12	13.848
9	559	130.32	2.13	131.27	-0.95	13.712	1922	130.55	2.12	131.22	-0.67	13.704
10	534	144.62	2.23	144.94	-0.32	13.621	1829	144.54	2.10	144.88	-0.34	13.625
11	648	158.12	2.22	158.52	-0.40	13.530	1552	158.12	2.18	158.47	-0.35	13.543
12	629	172.56	2.18	172.00	0.56	13.439	1321	172.34	2.12	171.97	0.37	13.456
13	753	185.18	2.18	185.40	-0.22	13.348	1366	184.90	2.15	185.38	-0.48	13.365
15	937	212.11	2.21	211.91	0.42	13.165	1279	212.02	2.10	211.91	0.11	13.169
16	910	225.12	2.12	225.03	0.09	13.074	1562	225.39	2.07	225.03	0.36	13.065
17	11 7 7	238.15	2.15	238.06	0.09	12.982	1636	238.22	2.01	238.04	0.18	12.956
18	1220	250.78	1.96	250.99	-0.21	12.891	1745	250.68	1.91	250.94	-0.26	12.844
18	1220	250.78	1.96	250.99	~0.21	11.522	1745	250.68	1.91	250.94	-0.26	11.672
19	1328	262.45	1.77	262.38	0.07	11.252	2077	262.56	1.76	262.46	0.10	11.360
20	1303	273.66	1.69	273.50	0.16	10.981	2197	273.82	1.70	273.66	0.16	11.047
21	1384	284.31	1.40	284.34	-0.03	10.711	2437	284.53	1.64	284.55	-0.02	10.735
22	1653	294.80	1.48	294.92	-0.12	10.440	2434	294.96	1.68	295.13	-0.17	10.423
24	1596	315.18	1.42	315.26	-0.08	9.899	2471	315.30	1.63	315.35	-0.05	9.798
24	1596	315.18	1.42	315.26	-0.08	9.267	2471	315.30	1.63	315.35	-0.05	9.247
25	1634	324.60	1.40	324.49	0.11	9.205	2319	324.62	1.57	324.57	0.05	9.187
27	1499	342.88	1.49	342.78	0.10	9.081	2396	342.92	1.32	342.83	0.09	9.120
28	1477	351.92	1.45	351.83	0.09	9.020	2312	351.87	1.40	351.86	0.00	9.010
29	1547	360.87	1.27	360.82	0.05	8.959	2509	360.78	1.42	360.85	-0.07	8.951
30	1403	369.72	1.29	369.75	-0.03	8.899	2613	369.69	1.38	369.77	-0.08	8.893
32	1534	387.25	1.24	3/8.02	-0.18	8.780	2003	3/8.39	1 31	3/8.03	-0.04	8.777
33	1479	396.07	1.17	396.18	-0.11	8.721	2801	396.19	1.24	396.19	0.01	8.719
34	1536	404.79	1.17	404.87	-0.08	8.663	2701	404.88	1.30	404.88	0.01	8.661
35	1724	413.51	1.23	413.50	0.00	8.605	2708	413.49	1.30	413.51	-0.02	8.604
30	2012	422.12	1.20	422.08	0.04	8.548	2923	422.09	1.29	422.08	0.01	8.547
38	1697	439.16	1.15	439.06	0.10	8.435	3104	439.11	1.23	439.06	0.05	8.433
39	1746	447.54	1.19	447.47	0.07	8.379	3446	447.49	1.28	447.47	0.02	8.377
40	1915	455.89	1.20	455.82	0.07	8.323	3467	455.84	1.28	455.81	0.02	8.320
41	2003	464.11	1.09	464.11	0.00	8.248	3568	464.13	1.29	464.10	0.03	8.245
43	1689	480.43	1.22	472.32	-0.02	8.097	3669	472.32	1.20	472.31	0.01	8.096
44	1923	488.51	1.15	488.51	-0.00	8.022	3503	488.49	1.26	488.50	-0.01	8.022
45	1987	496.46	1.15	496.50	-0.04	7.947	3582	496.48	1.19	496.48	-0.00	7.948
46	1917	504.34	1.17	504.41	-0.07	7.873	3580	504.37	1.22	504.40	-0.03	7.875
47	1837	519.99	1.13	520.00	-0.12	7.725	3525	512.26	1.21	512.23	-0.03	7.728
49	1813	527.69	1.19	527.69	-0.00	7.652	3910	527.65	1.17	527.69	-0.04	7.655
50	1793	535.28	1.11	535.31	-0.03	7.579	3830	535.31	1.16	535.31	0.00	7.583
51	1647	542.92	1.16	542.85	0.07	7.506	3724	542.85	1.20	542.86	-0.01	7.510
52	1812	550.31	1.23	550.32	-0.01	7.433	3328	550.31	1.18	550.33	-0.02	7.438
54	1916	565.10	1.20	565.04	0.05	7.289	3340	565.02	1.19	565.06	-0.04	7.295
55	1965	572.32	1.18	572.29	0.02	7.217	3916	572.34	1.17	572.32	0.02	7.223
56	1954	579.49	1.21	579.48	0.01	7.146	3702	579.55	1.14	579.51	0.04	7.152
57	1826	586.59	1.18	586.59	0.00	7.075	3773	586.65	1.17	586.63	0.02	7.081
50	1902	593.00	1.14	593.63	-0.03	6 934	4110	593.67	1.13	593.6/	-0.00	6 940
60	1866	607.51	1.17	607.49	0.02	6.863	4137	607.57	1.17	607.55	0.02	6.870
61	1743	614.32	1.26	614.32	-0.00	6.794	4170	614.40	1.13	614.39	0.01	6.800
62	1724	621.04	1.20	621.08	-0.04	6.724	4400	621.15	1.15	621.15	-0.00	6.731
64	1629	634.43	1.10	634.39	-0.03	6.586	4281	634 44	1.14	62/ .85	-0.05	6 592
65	1698	640.92	1.14	640.94	-0.02	6.517	4676	641.07	1.15	641.03	0.04	6.523
66	1619	647.39	1.20	647.42	-0.03	6.446	4699	647.54	1.10	647.52	0.02	6.450
67	1542	653.86	1.19	653.83	0.03	6.376	4661	653.96	1.10	653.93	0.03	6.377
69	1481	666.40	1.14	666.44	-0.04	6.233	5046	666.53	1.13	666.54	-0.03	6.230
70	1600	672.64	1.21	672.64	-0.00	6.161	5351	672.75	1.13	672.73	0.02	6.156
71	1478	678.80	1.27	678.77	0.03	6.089	5544	678.87	1.11	678.85	0.02	6.082
72	1586	684.79	1.21	684.82	-0.03	6.016	5726	684.89	1.12	684.90	-0.01	6.008
76	1498	696 64	1.14	696.71	40.0	5.870	5705	696.72	1.11	696.77	-0.02	5.859
75	1505	702.58	1.21	702.54	0.04	5.796	5597	702.57	1.11	702.59	-0.02	5.785
76	1614	708.34	1.21	708.30	0.04	5.722	6358	708.36	1.10	708.34	0.02	5.710
77	1567	713.98	1.17	713.98	-0.00	5.648	6729	714.00	1.10	714.01	-0.01	5.635
78	1335	719.50	1.15	725 13	-0.03	5 / 98	7858	725 12	1.11	725 13	-0.01	5 484
80	1448	730.60	1.20	730.59	0.01	5.422	8215	730.54	1.13	730.57	-0.03	5.408
81	1496	736.00	1.15	735.97	0.03	5.346	8296	735.96	1.13	735.94	0.02	5.332
82	1523	741.28	1.18	741-28	0.00	5.270	8238	741.26	1.10	741.24	0.02	5.256
83 g.	1367	751 20	1.20	/46.51	0.03	5.193	/810 7040	751 44	1.11	751 40	0.04	5.104
85	1454	756.64	1.18	756.74	-0.10	5.038	7523	756.68	1.12	756.66	0.00	5.027
86	1498	761.74	1.29	761.74	-0.00	4.961	7122	761.64	1.15	761.65	-0.01	4.950
87	1320	766.72	1.32	766.66	0.06	4.882	6280	766.56	1.17	766.56	-0.00	4.873
88	1369	771.45	1.23	771.51	-0.06	4.804	5486	771.35	1.23	771.40	-0.05	4.796
89 60	1264	780 07	1.23	780 04	-0.09	4.725	5117 6750	780 92	1.23	780.84	-0.09	4.719
91	1306	785.55	1.14	785.59	-0.04	4.632	4564	785.47	1.28	785.47	-0.00	4.630
92	976	790.16	1.25	790.22	-0.06	4.618	3921	790.12	1.27	790.10	0.02	4.618
93	850	794.91	1.32	794.83	0.08	4.604	3661	794.77	1.34	794.71	0.06	4.606
94 05	822	/99.49 803 07	1.33	/99.43	0.06	4.590	3446	799.31 803 90	1.37	799.31 803 90	0.00	4.583
96	620	808.67	1.57	808.58	0.00	4.563	2868	808.45	1.43	808.48	-0.02	4.571
97	499	813.14	1.54	813.14	0.00	4.549	2430	813.04	1.46	813.04	-0.00	4.560
98	485	817.71	1.50	817.68	0.03	4.535	2280	817.60	1.48	817.59	0.01	4.548
99 100	397	826.68	1.58	826.72	-0.01	4.508	1751	826.66	1.48	826.67	-0.01	4.524

TOBS are 1° cell means; TCOM are smoothed travel times.

However, for the uncorrected class II curve, excursions from a smooth line are 2-3 times larger than the sem. These excursions tend to extend over several adjacent cells and might suggest minor discontinuities in the lower mantle. The difference between the class I and class II curves reaches nearly 0.3 s between 70° and 80°, implying statistically significant differences between the two data sets.

These inferences were made assuming that the errors are random. There were some 3300 events that contributed to these averages and over 1000 stations reporting some 350,000 P wave arrival times. It is difficult to keep track of such a large amount of data, and one would feel justified in assuming that the data set has been randomized.

The bottom part of Figure 4 proves that this assumption is incorrect. Introduction of station corrections (which are primarily determined from the class I data because of the more uniform geographical distribution) diminished the rms error of a single observation by only 10%, on average. The effect of station corrections on the class I curve is significant but relatively modest in comparison with the effect on the class II curve. Many large excursions have nearly vanished, leading to a much smoother curve. On the other hand a large, long-wavelength depression between 70° and 90° has been added, bringing class I and class II travel times very close to each other. Between 30° and 85° the differences do not exceed 0.1 s.

In view of the effect that station corrections had on both curves, it would be difficult to defend an argument in favor of major, global scale discontinuities in the lower mantle between a depth of some 800 km and the top of the D" layer. The residual roughness of these curves seems to be uncorrelated. Considering the crudeness of the station corrections (e.g., lack of distance dependence), the remaining differences could be explained by their inadequacy, even though the differences may appear to be statistically significant. The detection of lower mantle discontinuities will probably require detailed studies of waveforms since the travel time anomalies, if any, are very small.

At this point it may be worthwhile to quote Jeffreys [1939, p. 506], including a charming footnote:

It seems to be necessary to insist again that a standard error is not a final claim of any specified degree of accuracy. It is always subject to the condition that no unforseen complications may be present; but the onus of proof is on the advocate of such complications, and they must be stated in a form leading to verifiable inferences before they can be discussed.*

And the footnote is

*Otherwise we are in Alice's position in her conversation with the Cheshire Cat: 'Which way ought I to go to get from here?' 'That depends a good deal on where you want to get to' said the Cat. 'I don't much care where...' said Alice. 'Then it doesn't matter which way you go,' said the Cat.

TABLE 2. Station Corrections

TABLE	2.	(continued)
-------	----	-------------

CODE	LAT	LONG	ELEV	NOBS	NW	P-W/ RMSO	RMS1	ATION CO	A1	<u>10N</u> E1	A 2	E 2		ODE	LAT	LONG	ELEV	NOBS	NW	P-WA RMSO	RMS1	A0	Al	E1	A2	E2
AAA AAB AAB AAI AAI	43.272 43.267 9.029 -3.700 42.300	76.947 77.383 38.766 128.167 -83.656	800 850 2442 80 254	31 2917 909 189 382	2 17 17 8 13	0.46 0.58 0.53 0.71 0.53	0.30 0.46 0.45	0.80 0.40 2.46 0.23 0.52	0.66 0.30 0.39	87 194 36	0.31 0.24	110 43	68 81 81 81 81	HK HP I 2 IG IZ	31.417 8.961 69.623 59.390 45.939	76.417 -79.558 -145.895 -155.217 26.104	410 36 1100 562 410	205 135 209 384 131	7 8 10 12 7	0.22 0.80 0.39 0.57 2.32	0.58 0.23 0.41	0.42 0.15 0.08 0.25 -2.84	0.86 0.56 0.58	86 353 338		
ABQ ABU ACO AD- ADE	34.943 34.859 36.699 51.875 -34.967	-106.458 135.573 -99.146 -176.679 138.709	1849 200 521 61 655	311 781 63 54 2499	10 14 3 5 17	0.39 0.53 0.10 0.14 0.44	0.29 0.41 0.36	0.20 0.51 -0.38 0.65 0.38	0.35 0.48 0.36	70 157 122	0.39 0.07	94 94	81 B1 B1 B1	KR KS LA LC LT	41.733 37.877 37.211 64.317 -29.109	43.517 -122.235 -80.421 -96.017 26.188	1 500 2 76 6 34 1 6 1 420	3285 1881 713 2675 348	17 17 15 15 14	0.35 0.48 0.67 0.44 0.46	0.19 0.33 0.39 0.32 0.33	0.96 1.19 0.53 -1.00 0.36	0.41 0.40 0.75 0.39 0.32	93 56 111 36 118	0.12 0.36 0.26 0.17 0.41	152 15 94 70 164
ADK AFI AFR AGM AIA	51.884 -13.910 -17.538 47.082 -65.250	-176.685 -171.777 -149.778 -69.023 -64.267	116 706 50 238 11	1244 897 477 153 173	14 14 15 10 8	0.84 0.64 0.74 0.78 0.44	0.51 0.41 0.52 0.48	-0.12 0.66 1.00 0.64 0.16	0.71 0.48 0.71 0.95	280 310 322 141	0.48 0.40 0.58	1 131 95	81 81 81 81 81	LO LR LY ME MN	39.172 63.502 44.749 30.916 40.431	-86.522 -145.845 17.184 -6.760 -117.222	230 792 256 1078 1505	187 833 44 182 1085	4 15 4 10 15	0.28 0.51 0.55 0.44 0.46	0.39 0.43 0.31	-0.86 0.06 0.09 0.56 0.34	0.37 0.23 0.49	104 140 5	0.20 0.25	41 149
ARU ALA ALB ALE ALG	65.687 37.242 49.271 82.483 36.772	-18.107 -115.115 -124.822 -62.400 3.058	24 0 25 65 59	1026 47 210 3807 176	17 3 9 18 11	0.33 0.25 0.39 0.56 0.76	0.29 0.34 0.31 0.70	1.68 0.28 0.90 -0.52 -0.06	0.22 0.28 0.61 0.40	164 276 42 96	0.14 0.22	135 108	81 81 81 81 81	MO NG NH NS OD	44.849 4.435 44.591 50.964 57.850	-117.306 18.547 -71.256 7.176 114.183	1189 378 472 200 250	2457 1545 543 1838 3296	15 18 14 17 16	0.40 0.53 0.50 0.29 0.57	0.27 0.47 0.25 0.22 0.34	-0.50 -0.67 0.76 0.55 -0.67	0.30 0.28 0.65 0.01 0.76	298 193 137 135 144	0.29 0.19 0.09 0.26 0.12	134 104 10 120 107
ALI ALM ALQ ALT AMN	38.355 36.853 34.942 39.055 -17.851	-0.487 -2.460 -106.458 30.111 -140.859	35 65 1853 1060 2	338 239 2574 220 53	15 12 15 8 3	0.59 0.61 0.32 0.28 0.74	0.52 0.57 0.21	0.87 0.69 0.13 0.22 0.66	0.43 0.39 0.34	1 154 52	0.17 0.18	90 120	80 80 80 80 80	OG OK OL OM OU	4.623 23.783 44.487 18.900 40.008	-74.065 85.883 11.329 72.817 -105.271	2658 298 80 0 1654	668 338 65 445 119	16 10 4 10 8	0.60 0.46 0.76 0.73 0.28	0.32 0.30 0.37	1.21 0.76 2.06 0.74 1.07	0.66 0.45 1.10	2 52 1 03 2 00	0.32	13
ANG ANK ANM ANP ANR	17.155 39.917 64.566 25.183 40.755	-61.830 32.817 -165.372 121.517 72.360	23 0 330 827 494	78 381 36 821 1864	6 12 4 14 17	0.74 0.53 0.85 0.77 0.39	0.52 0.39 0.37	0.61 0.65 0.92 2.18 0.79	0.15 0.99 0.18	16 279 313	0.05 0.09	141 108	B(B) B) B)	OZ PT RA RG RK	45.600 41.222 48.168 50.874 37.873	-111.633 -73.242 17.105 13.946 -122.260	1575 83 270 296 81	582 173 1950 2078 99	15 11 17 16 6	0.24 0.54 0.51 0.13 0.28	0.19 0.31 0.29 0.12	-0.16 0.47 0.14 0.12 0.78	0.21 0.66 0.47 0.04	8 28 28 284	0.10 0.28 0.09	108 22 63
ANT ANV APA APE APP	-23.699 64.566 67.550 37.069 60.541	-70.415 -165.372 33.333 25.531 13.929	80 330 140 620 354	282 143 2460 63 152	16 6 18 4 11	0.72 0.48 0.55 9.51 0.42	0.53 0.39 0.29	0.08 0.80 0.41 0.18 0.01	0.32 0.57 0.60	44 2 32 2 21	0.69 0.16	104 69	81 81 81 81 81 81	RL RN RS RW SF	52.464 52.419 -27.392 71.303 47.833	13.301 13.203 152.775 -156.748 6.794	50 45 525 0 1200	66 165 2815 1083 1359	4 8 17 15 16	0.31 0.28 0.46 0.53 0.29	0.40 0.35 0.22	1.59 1.12 -0.02 0.48 -0.11	0.28 0.62 0.22	251 348 338	0.25 0.38 0.14	24 59 2
APT AQU ARC ARE ARG	41.316 42.354 40.877 -16.462 36.216	-72.064 13.403 -124.075 -71.491 28.126	3 720 59 2452 170	196 586 73 688 458	11 16 5 18 13	0.58 0.63 0.37 0.74 0.74	0.55 0.51 0.43 0.51	0.98 0.41 1.75 -0.31 0.32	0.30 0.56 0.51 0.94	131 35 243 155	0.19 0.61	106 127	B' B' B1 B1	TR TY UB UC UD	-2.617 36.883 47.749 44.414 47.484	29.733 -116.767 8.603 26.097 19.024	1648 1183 740 82 196	73 36 314 809 1189	7 2 10 14 15	0.45 0.46 0.73 0.69 0.57	0.43 0.48 0.44	0.73 0.37 -0.97 0.85 1.02	1.11 0.78 0.46	355 153 22	0 . 26	153
ARH ARN ARO ARR ARR	45.010 37.349 11.529 45.368 11.521	1.312 -121.533 42.847 24.634 42.838	320 628 680 868 710	531 333 41 71 99	15 10 5 5 6	0.32 0.35 0.40 0.52 0.50	0.31 0.32	0.62 0.93 1.56 0.27 1.64	0.11 0.18	52 87	0.05	135	81 81 81 81 81 81	UR UL UT YI YA	48.676 -20.143 46.013 -80.005 -80.017	8.228 28.613 -112.563 -119.043 -119.517	750 1341 1758 1449 1515	1392 2219 973 219 52	18 17 16 9 3	0.44 0.46 0.40 0.51 0.70	0.27 0.36 0.34 0.35	-0.22 -0.40 0.30 0.53 0.33	0.43 0.20 0.28 0.53	337 37 60 124	0.20 0.33 0.13	164 138 137
ARU ASH ASP ASU ATA	56.400 37.950 -23.683 33.417 11.457	58.600 58.350 133.897 -111.933 43.208	250 220 600 354 50	662 1587 2512 88 42	14 17 16 6 3	0.41 0.42 0.47 0.35 0.62	0.32 0.28 0.49	-0.18 0.95 -0.88 1.01 1.80	0.41 0.41 0.29	203 22 280	0.12 0.25 0.14	40 96 152	B) C/ C/ C/	YR AF AL AN AR	-80.017 44.926 22.535 -35.321 10.507	-119.517 2.064 88.367 148.999 -66.927	1515 630 6 700 1032	316 183 190 2946 1029	10 7 9 17 16	0.75 0.29 0.55 0.40 0.49	0.74 0.38 0.30	0. 0.41 3.30 0.42 -0.27	0.24 0.15 0.59	173 122 56	0.05 0.08	72 1 2
ATH ATL AVE AVF AVF	37.972 33.433 33.298 46.791 -18.920	23.717 -84.337 -7.413 3.353 47.731	95 272 230 225 1716	1216 384 1124 324 236	17 6 17 12 8	0-85 0.70 0.43 0.36 0.68	0.55 0.47 0.40 0.32	0.33 -0.01 0.49 -0.32 0.72	0.70 0.87 9.17 0.27	222 78 234 338	0.42 0.07	112 94	C1 C1 C1 C1 C1	BM BZ DF DR ED	46.932 -52.560 48.412 43.675 34.277	-68.121 169.159 7.276 5.767 -117.334	250 30 1100 368 1067	4 94 48 1476 403 92	14 4 15 12 5	0.32 0.45 0.32 9.40 0.34	0.20 0.20 0.37	0.30 1.97 -0.03 0.25 0.91	0.29 0.32 0.27	145 342 324	0.19 0.14	48 15
BAA BAB BAC BAE BAF	-34.592 30.121 46.567 -15.841 47.835	-58.483 -2.186 26.900 -47.820 6.995	25 0 168 1200 1025	101 411 469 198 661	5 16 13 11 15	1.04 0.42 0.79 0.77 0.39	0.33 0.75 0.22 0.22	1.13 -0.23 0.70 -0.13 -0.25	0.29 0.34 1.08 0.42	205 75 68 322	0.27 0.17	118 162	C1 C1 C1 C1 C1	EN ER FA FF FR	-31.576 -33.362 -31.607 45.763 45.185	-68.754 19.295 -68.239 3.102 28.153	900 472 622 400 0	338 130 106 197 87	15 9 10 7 4	0.65 0.88 0.75 0.76 0.27	0.40 0.49	-0.24 1.43 -0.33 0.87 -0.37	0.60 0.77	348 333	0.47	83
BAG BAK BAN BAO BAS	16.411 40.383 51.172 -15.635 47.540	120.580 49.900 -115.558 -47.991 7.583	1507 -12 1400 1211 309	2286 430 166 324 337	16 11 9 16 9	0.69 0.58 0.61 0.62 0.66	0.30 0.52 0.49 0.34 0.61	-0.33 3.52 -0.88 -0.39 0.47	0.57 0.47 0.45 0.45 0.39	297 208 342 99 102	0.59 0.48	94 13	01 01 01 01 01	GM HA HC HG HI	37.317 26.833 35.917 18.790 41.900	-89.533 87.167 -79.050 98.977 -87.633	134 161 149 416 183	50 364 183 2285 147	4 12 6 18 5	0.31 0.49 0.79 0.64 0.37	0.47 0.32	-0.52 0.61 0.78 -0.30 -0.72	0.19 0.71	1 52 1 37	0.31	122
BCK BCN BCR BCT BDB	37.460 35.981 7.019 41.493 43.065	30.589 -114.834 -73.176 -73.384 0.148	860 776 750 69 561	309 1068 170 197 286	9 14 13 11 11	0.39 0.33 1.08 0.41 0.48	0.33 0.21 0.81 0.35 0.46	0.42 0.97 -0.77 0.60 -0.08	0.35 0.35 0.93 0.33 0.31	272 47 2 129 353	0.18	3	C1 C1 C C	HN HT HZ IN IR	4.967 22.350 50.292 37.600 -21.013	-75.617 91.817 18.992 28.087 31.580	1360 35 316 0 430	142 462 40 1151 1314	9 11 3 15 16	0.90 0.61 0.14 0.23 0.53	0.87 0.43 0.22 0.40	-0.28 1.94 1.36 -0.15 0.14	0.33 0.74 0.09 0.26	117 182 153 81	0.14 0.44	11 166
BDF BDT BEC BEI	-15.664 17.233 42.776 32.379 42.117	-47.903 99.050 -109.568 -64.681 -111.782	1260 0 2190 41 1859	174 139 373 145 230	12 6 12 8 12	0.56 0.81 0.33 0.77 0.42	0.50 0.30 0.52 0.26	-0.41 0.51 -0.56 0.78 0.44	0.32 0.21 0.82 0.46	94 23 116 356			C: C: C: C: C:	IZ LC LE LK	-43.955 35.817 41.489 -15.680 51.310	-176.566 -117.597 -81.532 34.977 13.003	45 766 328 781 230	67 162 692 1216 4210	3 6 15 16 17	0.18 0.39 0.71 0.36 0.27	0.34 0.28 0.23	1.90 0.30 0.83 0.14 0.	0.76 0.14 0.04	62 210 315	0.38 0.30 0.18	49 145 112
BEL BEO BER BES BFD	51.833 44.821 60.387 47.250 -37.176	20.817 20.455 5.326 5.987 142.544	180 129 22 311 235	617 1625 596 1290	15 16 13 16	0.57 0.41 0.38 0.40	0.38 0.37 0.35 0.32	0.82 0.75 0.26 -0.09	0.54 0.13 0.22 0.12	304 252 302 48	0.46 0.20 0.31	81 148 77	01 01 01 01 01	LS MC MP NG NR	38.637 67.833 45.268 -26.292 43.830	-122.585 -115.083 25.038 32.188 125.313	457 31 598 100 0	67 947 1628 698 141	2 15 17 16 8	0.41 0.61 0.68 0.53 0.45	0.40 0.26 0.50	0.71 -0.08 1.03 0.50 -0.02	0.12 0.96 0.09	194 8 21	0.75 0.04 0.24	47 13 152
BFW BGO BGV BHA BHG	46.487 41.378 21.294 -14.447 47.721	-123.215 -83.659 106.229 28.468 12.879	902 212 15 1206 475	178 149 94 1120 320	9 6 6 17 11	0.53 0.50 0.84 0.74 0.59	0.22 0.59 0.25	0.65 0.07 1.79 -0.28 0.12	0.66 0.70 0.95	331 333 1	0.28	77	C1 C1 C1 C0	nn NT NU NZ OB	39.137 23.092 30.660 -39.200 -41.088	-84.277 113.338 104.012 175.547 172.734	203 9 0 1116 213	164 94 131 271 858	5 5 7 8 12	0.31 0.28 0.76 0.63 0.58	0•42	-0.52 1.32 0.28 0.77 0.31	0.55	352		

TABLE 2. (continued)

CODE	LAT	LONG	BTEA	NOBS	NW	P-W RMSO	AVE ST RMS1	ATION CO	ORRECT A1	ION E1	42	E2	co	DE LAT		LONG	ELEV	NOBS	NW	P-W. RMSO	AVE STA RMS1	ATION CO	A1	ION E1	A2	E2
COI COL CON CON CON	40.207 64.900 16.253 -36.828 -30.578	-8.418 -147.793 -92.128 -73.045 151.892	140 320 1528 15 653	171 481 5 197 144 563	11 17 9 10 12	0.34 0.72 0.76 0.71 0.45	0.29 0.37 0.46 0.60 0.30	0.79 -0.39 1.04 0.12 0.73	0.25 0.82 0.92 0.56 0.48	18 6 238 297 278	0.21	155	ew Ezi Fa Fa Fb	-4.1 39.8 7 36.1 7 36.0 4 64.9	15 1 27 2 21 -9 91 -9 00 -14	52.087 26.322 94.190 94.191 47.793	30 86 387 404 320	63 464 991 .431 123	5 13 14 9 8	0.95 0.44 0.40 0.57 0.86	0.43 0.29	0.27 -0.26 -0.93 -0.50 -0.16	0.17 0.34	173 150	0.09	106
COP COR CPO CPP CPX	55.683 44.586 35.595 -27.354 36.932	12.433 -123.303 -85.570 -70.351 -116.055	13 123 574 384 1285	1576 317 2088 68 35	16 11 15 2 2	0.58 0.55 0.73 0.34 0.42	0.29 0.38 0.32	1.07 1.43 -0.53 -0.20 0.97	0.42 0.50 0.90	304 322 111	0.57 0.25	120 5 112	FB(FC) FDI FE/ FEI	63.7 58.7 14.7 39.6 47.8	33 -6 52 -9 33 -6 19 -12 75	68.467 94.087 61.156 21.246 8.017	45 39 510 1227 1485	1790 1996 111 76 92	17 16 6 5	0.52 0.48 0.55 0.30 0.57	0.35	-0.53 -0.54 0.06 0. -0.43	0.46 0.50	141 35	0.26 0.04	78 38
CRC CRO CRT CRZ CSC	37.242 34.150 37.190 -34.432 34.000	-122.130 -94.556 -3.598 172.680 -81.033	607 302 774 140 94	78 167 396 211 249	5 6 15 6 7	0.31 0.63 0.45 0.46 0.79	0.36	1.45 -0.49 1.27 1.38 -0.01	0.36	2 3 2	0.10	132	FF(FG(FH(FI) FL	54.7 40.9 40.8 43.7 35.2	25 -10 26 -10 22 -12 74 1 93 -11	01.978 09.386 23.985 11.255 11.702	338 1982 610 40 2445	2923 608 959 503 112	14 15 16 13 6	0.44 0.48 0.28 0.54 0.37	0.35 0.37 0.22 0.44	-0.83 -0.29 0.98 0.87 1.57	0.36 0.38 0.18 0.57	36 39 341 329	0.08 0.18 0.18	70 146 148
CSSN CTA CUM CVF CVF	36.026 -20.088 10.465 42.568 52.738	-117.767 146.254 -64.169 8.869 -1.307	1143 357 34 530 187	136 3222 182 238 350	5 16 10 8 12	0.06 0.51 0.87 0.35 0.37	0.36 0.83 0.36	0.74 -0.31 1.19 0.13 0.26	0.32 0.33 0.14	196 178 339	0.48	3 133	FL FL FL FO	48.7 38.8 41.7 45.6 40.8	52 -9 52 -9 17 -7 55 2 53 -7	-0.482 90.370 71.122 27.183 73.886	230 160 52 61 24	2361 456 51 331 74	16 11 2 9 3	0.43 0.37 0.80 0.88 0.34	0.27 0.31 0.57	0.04 -0.56 1.42 1.02 0.67	0.50 0.31 1.05	292 97 128	0.09	80
CYA DAC DAG DAL DAR	-28.444 36.277 76.770 32.846 -12.408	-65.794 -117.594 -18.770 -96.784 130.818	567 1433 16 187 6	68 321 1809 274 769	5 13 18 11 13	0-62 0-47 0-51 0-28 0-58	0.42 0.29 0.25 0.44	-0.83 0.85 -0.53 0.65 -0.47	0.29 0.56 0.17 0.21	70 159 126 223	0.29	9 158 : 80	fri Fri Fri Fri Fri	63.74 36.70 36.99 37.82 -18.71	47 -6 57 -11 92 -11 36 -9 17 4	68.547 19.797 19.708 90.486 47.599	18 88 119 161 1554	1071 127 1316 42 270	17 5 16 3 9	0.33 0.38 0.53 0.79 0.80	0.23 0.17 0.37	-0.46 0.72 0.12 0.24 1.01	0.23 0.66 1.16	75 343 272	0.27 0.20	84 ; 7
DAV DBN DBQ DCC DC1	7.088 52.102 42.507 -10.510 43.955	125.575 5.177 -90.683 25.455 -111.096	85 3 244 1425 2020	1218 836 327 55 92	14 15 6 5 3	0.77 0.56 0.45 0.45 0.57	0.43 0.47	0.45 1.43 -0.35 0.67 0.60	0.26 0.19	313 115	0.82 0.47	111	FRI FRI FRZ FS. FUC	-18.1 42.8 42.2 54.4 5.4	70 -14 33 7 31 2 33 -12 70 -7	41.042 74.617 20.038 24.250 73.738	2 655 0 772 2580	40 3422 55 2122 103	3 18 3 16 5	0.97 0.34 0.39 0.55 0.72	0.26 0.39	0.88 0.86 0.53 0.70 -0.27	0.26 0.50	268 170	0-12 0-43	125 176
DCN DCU DDI DDK DDR	53.343 40.414 30.322 53.387 35.998	-7.278 -111.527 78.056 -6.339 139.193	150 1829 682 85 800	161 99 1086 120 2194	8 6 15 6 14	0.29 0.41 0.54 0.28 0.48	0.43 0.35	0.29 0.84 0.29 0.34 0.12	0•43 0•42	330 78	0.20 0.46	126 100	FUE FVE GAI GAI	48.10 37.98 66.50 47.4 39.00	56 1 33 -9 56 -14 77 1 00 7	11.276 90.426 45.231 11.064 70.317	565 305 137 725 1300	2362 425 1059 239 2906	16 14 16 9 17	0.41 0.52 0.58 0.47 0.55	0.28 0.34 0.33 0.35	0.33 -0.49 0.58 0.25 -0.25	0.49 0.40 0.50 0.51	349 133 344 318	0.09 0.29 0.35 0.41	119 36 168 97
DEL DEV DIM DIX DJA	56.470 45.903 42.050 46.080 -6.183	13.870 22.900 25.583 7.411 106.833	150 250 0 2400 .8	31 1009 77 381 192	2 15 4 14 7	0.50 0.54 0.58 0.62 0.47	0.44 0.32	0.21 0.59 0.96 -0.61 1.18	0.39 0.59	27 287	0.31 0.35	61 22	GBA GBA GCA GDH GEN	13.60 38.43 36.93 69.23 44.41	04 7 30 -7 74 -11 50 -5 .8	77.436 79.844 11.593 53.533 8.930	25 826 1339 23 53	2855 47 778 1895 82	17 4 16 18 5	0.39 0.74 0.57 0.57 0.56	0.31 0.30 0.44	0.10 0.80 0.96 0.21 -0.46	0.17 0.61 0.16	130 159 14	0.31 0.17 0.49	109 108 108
DMK DMU DNP DNY DOM	41.822 53.899 -8.650 42.836 15.296	27.757 -6.911 115.217 -78.169 -61.391	280 280 15 381 15	633 33 231 44 52	12 2 9 2 6	0.39 0.07 0.79 0.34 0.30	0.38	0.18 -0.08 0.37 -0.32 0.12	0.13	274			GEO GIE GII GII GLA	38.90 37.98 64.97 50.59 33.0	907 33 1 75 -14 92 52 -11	77.067 14.017 47.495 5.974 14.827	43 990 350 0 627	171 90 3542 146 761	7 9 16 9 15	0.35 1.38 0.71 0.63 0.28	0.45 0.40 0.17	0-44 0.91 -0.47 0.96 0.87	2.24 0.77 0.29	181 14 86	0.32 0.16	148 , 22
DON DOU DRB DRV DSH	37.176 50.096 39.581 -66.665 38.558	-89.933 4.594 28.637 140.009 68.775	165 225 620 40 847	58 2556 198 996 3128	4 17 8 15 18	0.40 0.41 0.43 0.67 0.57	0.33 0.41 0.35	-0.93 0.69 -0.14 0.05 0.74	0.28 0.80 0.64	23 90 255	0.23 0.16 0.23	115 69 73	GLE GLE GLS GMA GMW	39.75 40.28 -25.03 65.42 47.54	1 -10 7 3 5 12 9 -16 8 -12	05.221 30.310 28.296 61.232 22.786	1762 560 600 858 506	209 540 410 2237 249	8 14 10 16 10	0.62 0.74 0.54 0.39 0.59	0.45 0.31 0.31 0.26	1.24 -0.41 -0.43 -0.03 0.63	0.50 0.71 0.37 0.72	109 253 334 346	0.88 0.14	7 70
DST DUG DUN DUR EAB	39.605 40.195 -7.409 54.767 56.188	28.628 -112.813 20.837 -1.583 -4.340	685 1477 709 103 250	213 2910 86 902 743	7 16 7 16 15	0.35 0.35 0.49 0.75 0.39	0.16 0.63 0.27	-0.49 0.22 -0.58 1.19 0.15	0.26 0.23 0.47	54 317 320	0.37 0.52 0.03	1 52 1 22 54	GNZ GOA GOI GOI GPA	-38.64 15.48 39.70 57.69 40.28	4 17 3 7 0 -10 8 1 7 3	78.022 73.817 05.371 11.978 30.310	30 58 2359 66 560	777 205 2014 414 260	11 7 15 9 9	0.96 0.83 0.28 0.49 0.51	0.40 0.19 0.34 0.42	0.88 0.44 0.29 -0.24 -0.03	1.02 0.18 0.62 0.47	138 331 267 314	0.24	125
EAU EBH EBL EBR EBS	55-844 56-248 55-773 40-821 45-000	-3.455 -3.508 -3.044 0.493 -101.232	350 375 365 50 735	700 829 704 642 60	15 16 16 15 3	0.42 0.41 0.45 0.53 0.19	0.33 0.38 0.34 0.41	0.28 0.13 0.20 1.30 0.13	0.14 .10 0.22 0.32	17 315 39 158	0.33 0.16 0.38 0.59	159 178 160 145	G PD GRC GR E GR F GRM	41.01 47.29 12.04 49.69 -33.31	8 -7 6 7 -6 2 1 3 2	74.461 3.074 51.746 11.215 26.573	360 191 15 525 610	71 983 132 2693 280	5 15 6 16 13	0.70 0.24 0.72 0.42 0.77	0.20 0.23 0.68	0.27 0.05 0.88 0.22 0.39	0.08 0.59 0.50	30 6 47	0.12 0.08	173 90
ECH ECT EDC EDI EDM	48.216 41.835 40.347 55.923 53.222	7.158 -73.411 27.864 -3.186 113.350	580 342 270 125 730	365 168 330 516 3336	14 10 9 14 16	0.42 0.44 0.23 0.46 0.52	0.21 0.37 0.37 0.22	-0.58 0.89 0.32 0.12 -0.63	0.63 0.40 0.20 0.64	353 112 57 4	0.33 0.17	167 133	GRR GRS GRV GSC GSP	48.38 39.50 37.05 35.30 -44.13	8 -4 0 4 3 -9 2 -11 4 17	-0.858 6.333 90.395 16.805 70.018	220 1550 168 989 840	2487 2863 36 332 312	17 17 3 11 10	0.49 0.46 0.19 0.62 0.47	0.35 0.37 0.37 0.45	0.16 0.25 -0.81 0.72 0.60	0.47 0.39 0.81 0.20	271 59 63 70	0.07 0.26	157 134
EDU EGL EIL EKA ELC	56.547 55.862 29.550 55.333 37.285	-3.014 -2.738 34.950 -3.159 -89.227	275 245 200 300 153	684 866 1792 2675 248	14 16 18 18 9	0.30 0.31 0.83 0.34 0.49	0.25 0.21 0.29 0.28 0.44	0.05 0.22 0.30 0.18 -0.75	0.21 0.10 1.16 0.16 0.25	357 61 181 7 339	0.12 0.32 0.19	175 173 163	GUA GUM GWC GZR HAD	13.53 13.58 55.29 45.39 31.99	8 14 8 14 2 -7 3 2: 5 -4	4.912 4.866 7.753 2.777 4.455	230 14 8 850 1124	605 201 1104 64 127	13 10 18 4 5	0.86 0.99 0.48 0.29 0.88	0.75 0.70 0.35	-0.49 -0.16 -0.61 0.05 1.14	0.59 1.04 0.34	189 248 43	0.28	60
ELK ELL ELO ELT ELY	40.745 - 36.749 56.471 53.250 39.131 -	115.239 29.908 -3.706 86.267 114.892	2210 1230 495 0 2011	60 620 379 3152 43	4 13 13 18 3	0.42 0.62 0.44 0.41 0.15	0.40 0.33 0.34	0.64 0.61 -0.10 -0.62 0.69	0.48 0.58 0.13	204 337 231	0.58 0.32	168 159	HAL HAM HAN HAU HBF	44.63 53.46 46.60 48.00 32.93	3 -63 5 9 3 -119 5 0 3 -80	3.600 9.925 9.467 6.350 0.377	56 30 329 570 12	455 210 43 1410 37	15 10 4 16 3	0.63 0.36 0.85 0.35 0.74	0.43 0.32 0.21	0.26 1.22 0.18 -0.07 -0.03	0.39 0.27 0.26	246 62 320	0.53 0.26	34 16
emm EPF ERB ERE ERZ	44.739 43.031 -4.193 40.183 39.915	-67.489 0.340 152.162 44.500 41.277	20 750 180 990 1850	336 136 45 280 463	11 8 3 9 13	0.50 0.49 0.71 0.31 0.52	0.32 0.25 0.47	0.59 0.05 0.68 1.04 0.64	0.67 0.28 0.37	134 337 9			HBM HCC HDM HEE HEI	39.40 36.98 41.48 50.88 49.39	2 -120 L -121 5 -71 3 -	20.153 21.722 2.523 5.983 8.726	1804 159 24 100 560	53 39 220 982 46	2 3 11 16 4	0.07 0.32 0.74 0.43 0.42	0.66 0.35	1.39 1.98 0.79 0.87 0.19	0.54 0.35	113 137	0.28	1 51
ESA ESK ESM ETV EUR	-9.738 55.317 -4.277 -4.229 39.483 -	150.814 -3.205 152.686 151.676 115.970	46 242 50 140 2178	942 1569 67 65 3334	15 17 7 4 16	0.37 0.27 0.94 0.78 0.35	0.32 0.26 0.23	0.26 0.26 -0.55 0.02 0.44	0.28	207 13 52	0.09 0.08 0.30	148 97 170	HEN HFS HHM HKC HKL	22.00 60.13 48.34 22.30 20.72	0 120 4 13 9 -114 4 114 3 -150	0.750 3.696 4.027 4.172 6.255	22 265 1100 27 0	68 2730 1303 1619 43	4 17 15 16 3	1.13 0.43 0.29 0.50 0.50	0.33 0.22 0.41	2.43 -0.62 -0.38 1.41 2.07	0.19 0.12 0.28	261 284 182	0.35 0.21 0.36	96 138 86

TABLE 2. (continued)

TABLE 2. (continued)

CODE	LAT	LONG	BTEA	NOBS	NW	P-W RMSC	AVE ST	ATION C	ORRECT A1	ION E1	A2	E2	COL	E LAT	r	LONG	ELEV	NOBS	NW	P-W. RMSO	AVE STA RMS1	TION CO	AI	ION El	A2	E2
HKT HLE HLG HLW HNH	29.950 51.500 54.185 29.858 43.705	-95.833 11.950 7.884 31.342 -72.286	-122 92 41 116 180	415 197 95 824 57	13 8 6 18 4	0.48 0.24 0.41 0.54 0.60	0.46	0.38 -0.20 1.59 0.63 1.15	0.20 0.55	246 218	0.29	179	KPB KPD KPH KPK	-49.5 -49.5 21.5 39.5 50.0	20 17 76 83 58	69.901 70.157 -158.275 -121.305 19.940	0 0 899 223	48 52 66 501 3340	4 5 5 13 17	0.85 0.80 0.42 0.15 0.24	0.14 0.18	2.12 2.14 0.79 0.44 0.10	0.12 0.23	200 358	0.08	65
HNR HOF HON HSS HUA	-9.432 50.314 21.322 42.965 -12.038	159.947 11.877 -158.008 141.232 -75.323	72 566 2 215 3313	997 344 607 210 723	13 13 12 11 18	0.48 0.46 0.59 0.91 0.63	0.46 0.42 0.49 0.48 0.45	0.21 0.39 1.66 0.72 0.85	0.18 0.31 0.48 1.16 0.53	317 161 231 208 230	0.35	5 1 52	KR B KRI KR F KRR KRI	69.7 49.0 -37.9 -16.8 -4.3	24 111 25 152 153	30.062 8.412 175.537 29.618 152.052	0 114 64 1380 20	865 683 2162 1297 55	17 15 14 16 4	0.33 0.52 0.78 0.62 0.88	0.30 0.41 0.46 0.44	0.45 1.12 0.41 -0.22 0.95	0.14 0.57 0.40 0.17	111 1 315 144	0.16 0.26 0.65 0.68	173 113 89 163
HVD HVO HWA HYB IAS	-30.604 19.423 23.967 17.417 47.193	25.496 155.293 121.617 78.553 27.562	1378 1240 18 510 160	273 515 123 2699 931	14 12 5 17 13	0.48 0.70 0.58 0.34 0.52	0.42 0.48 0.29 0.49	0.37 0.91 2.69 -0.25 0.02	0.34 0.69 0.22 0.27	130 239 175 94	0.22 0.13	4	KR V KSA KSU KT4	40.6 33.8 -25.8 11.5 31.9	50 124 150 117 110	46-333 35-892 26-897 42-446 -103-315	340 923 1623 370 948	2733 1569 362 53 59	17 17 14 5 4	0.33 0.79 0.72 0.55 0.36	0.29 0.48 0.71	-0.32 1.31 0.34 1.59 0.18	0.13 0.78 0.17	81 160 163	0.22 0.35	122 95
IFR ILG ILT IMA INH	33.517 77.947 67.900 66.068 -19.547	-5.127 -39.183 -178.700 -153.678 169.273	1630 2401 0 1380 110	1538 164 3009 1156 96	18 9 16 16 5	0.58 0.36 0.35 0.38 0.58	0.33 0.33 0.26 0.21	0.45 -0.61 -0.04 -0.36 0.18	0.64 0.27 0.20 0.45	155 253 6. 331	0.34 0.25 0.30	114 157 39	KT7 KTG KUG KUL KUN	31.7 70.4 -10.1 37.9 25.1	09 17 .83 00 23	-103.306 -21.983 123.667 69.750 102.740	847 6 52 605 1922	44 2671 237 991 161	2 18 11 16 6	0.03 0.50 1.58 0.67 0.69	0.25 0.73 0.46	0.54 0.88 1.35 0.16 0.44	0.58 1.84 0.73	125 138 300	0.16 0.22	107 55
INK INY IR1 IR7 IRK	68.292 42.444 35.416 35.703 52.272	-133.500 -76.483 50.689 50.609 104.310	46 238 1347 1305 467	2883 69 228 224 2664	17 5 6 9 17	0.36 0.75 0.24 0.45 0.51	0.27 0.32	-0.52 0.41 0.75 0.38 0.09	0.20 0.54	323 225	0.24 0.09	152	KUR KVI KYS KZN LAC	45.2 41.0 35.1 40.3 34.3	233 981 98 107 190	147.867 36.046 140.148 21.771 -116.411	0 650 180 900 792	724 398 630 297 80	13 8 14 13 6	0.95 0.48 0.97 0.53 0.68	0.72 0.50 0.47	0.55 0.61 1.21 0.28 1.17	0.98 1.21 0.34	206 81 298	0.14	1 39
ISA ISK ISO IST ITM	35.663 41.066 44.183 41.046 37.180	-118.473 29.059 7.050 28.996 21.927	835 132 876 50 400	131 1202 1384 1298 145	7 17 16 17 8	0.80 0.44 0.42 0.66 0.82	0.46 0.33 0.32 0.55	0.86 -0.27 0.16 0.46 -0.59	0.92 0.39 0.19 0.44	51 24 305 122	0.12 0.33 0.35	7 149 173	LAE LAH LAN LAO LAR	-6.6 31.5 36.0 46.6 41.3	73 50 50 89 14	146.913 74.333 103.833 -106.222 -105.583	50 210 1506 744 2400	41 933 191 1547 438	4 14 7 15 11	0.52 0.41 0.63 0.47 0.36	0.30 0.25 0.36	1.29 0.10 0.87 -0.28 0.01	0.37 0.51 0.09	311 8 21	0•25 0•17	87 40
IZM JAN JAS JAY JCT	38.398 39.657 37.947 -2.500 30.479	27.262 20.851 -120.438 140.667 -99.802	630 540 457 400 591	517 547 3207 396 712	14 15 16 13 14	0.50 0.55 0.31 0.74 0.36	0.35 0.44 0.16 0.61 0.32	0.07 0.41 0.30 0.32 -0.48	0.52 0.55 0.39 0.52 0.09	177 195 19 334 139	0.13 0.24 0.19 0.23	124 172 137	LAT LAW LBP LCG LD 1	-6.7 38.9 46.9 21.1 46.8	12 59 87 45	146.990 -95.250 3.977 -101.725 -105.889	37 0 660 2200 759	825 422 1755 259 357	14 11 17 13 12	0.43 0.36 0.34 0.50 0.55	0.20 0.36 0.25 0.42 0.23	0.34 -0.29 -0.01 1.77 0.15	0.46 0.02 0.20 0.38 0.75	182 153 221 110 32	0.32 0.26	136 165
JEN JER JMI JOS KAA	50.952 31.772 70.927 48.496 -20.777	11.583 35.197 -8.726 20.539 116.859	193 770 50 280 15	269 1576 58 1255 137	7 17 5 15 5	0.71 0.53 0.33 0.42 0.93	0.41 0.29	0.19 1.02 2.10 0.16 -0.14	0.47 0.54	193 0	• 10 0• 28	102 95	LD 3 LD 4 LDM LEE LEM	46.5 46.9 48.4 37.2 -6.8	50 42 54 43 33	-106.480 -106.383 -115.317 -113.377 107.617	801 714 838 1067 1252	87 63 249 98 1923	5 4 10 3 17	0.38 0.37 0.41 0.18 0.91	0.29 0.45	-0.07 0.54 0.30 1.19 0.90	0.44	274 194	0.47	28
KAD Kar Kas Kat Kbl	17.305 24.933 41.372 39.200 34.541	74.183 67.143 33.767 56.267 69.043	581 34 850 90 1920	38 520 1740 1898 2183	4 11 17 17 17	0.42 0.79 0.41 1.23 0.57	0.69 0.30 0.46 0.34	-0.71 1.41 0.56 1.48 -0.19	0.70 0.24 1.70 0.39	210 73 351 234	0.28 0.37 0.43	8 106 120	LEN LF1 LF2 LF4 LFP	40.7 47.3 45.9 47.4 44.9	67 71 09 11 37	43.850 -105.187 -105.486 -106.944 0.736	1522 740 754 707 160	276 76 55 242 1189	10 5 4 3 16	0.62 0.34 0.54 0.37 0.22	0. 29 0. 20	2.94 0.37 -0.48 -0.22 0.52	0.91 0.03	219 162	0.15	2
KBS KCH KDC KDS KDZ	78.917 -49.244 57.748 12.569 41.641	11.924 70.145 -152.492 -12.211 25.350	46 0 110 329	2108 49 2320 122 569	18 4 16 8 14	0.50 0.51 0.32 0.80 0.61	0.33 0.24 0.51	0.99 2.23 0.05 0.55 0.13	0.55 0.16 0.53	238 50 166	0.02 0.23 0.30	58 5 35	LGN LGR LHA LHC LHN	10.1 42.4 29.6 48.4 61.0	45 58 37 17 49	-71.270 -2.503 91.037 -89.267 10.880	3 446 3630 196 505	39 50 198 951 809	2 5 7 14 16	0.83 0.14 0.14 0.54 0.49	0.41 0.32	-0.49 1.65 0.88 -0.57 0.09	0.38 0.51	73 269	0•31 0•07	58 32
KEB KED KER KES KET	38.798 12.926 34.352 31.995 -4.333	38.728 -12.321 47.106 -4.455 152.036	739 0 1310 1124 17	127 159 1034 354 60	6 8 16 15 5	0.32 1.42 0.57 0.46 0.74	0.28 0.40 0.42	0.90 -0.87 0.30 0.71 0.56	2.60 0.39 0.23	335 243 200	0.52 0.10	42 174	LHS LIC LIS LJU LMG	34.4 6.2 38.7 46.0 -8.9	79 24 16 43 08	-80.808 -5.028 -9.149 14.533 148.150	120 100 77 396 1200	81 545 339 2237 309	5 17 15 17 9	0.34 0.60 0.66 0.35 0.48	0.47 0.64 0.31 0.15	-0.01 -0.58 1.21 0.11 0.44	0.50 0.24 0.21 0.68	171 292 141 155	0.30 0.12	67 150
KEV KEW KFC KGM KHC	69.755 51.468 37.956 2.017 49.131	27.007 -0.313 -122.549 103.318 13.579	80 5 6 103 700	3938 360 35 221 4113	18 9 2 8 17	0.35 0.31 0.22 0.43 0.52	0.30 0.26 0.23	0.34 0.36 0.98 0.63 0.29	0.22 0.29 0.65	198 126 7	0.09 0.16	167 19	LMP LMR LMT LND LNM	-16.4 43.3 -41.6 43.0 21.1	26 33 10 40 17	167-800 6-509 146-152 -81-183 -101-667	60 200 349 246 1800	284 871 70 236 37	7 14 3 7 4	0.47 0.48 0.15 0.38 1.10	0.36	0.36 0.27 0.84 -0.18 1.10	0.39	289	0.19	153
KHE KHI KHO KIC KIM	80.617 34.143 37.483 6.361 -28.752	58.050 58.642 71.533 -4.741 24.780	100 1600 1850 175 1321	2 761 402 3076 1 347 452	18 11 18 18 16	0.67 0.44 0.56 0.53 0.60	0.34 0.37 0.34 0.39 0.50	0.94 0.47 0.52 -0.54 -0.34	0.80 0.35 0.53 0.54 0.22	239 338 307 144 93	0.12 0.37 0.11 0.43	7 114 95 150	LNR LNS LNV LOM LOM	-15.8 45.2 -33.9 6.1 46.7	52 89 56 22 50	168-160 6-915 -71-411 1-213 -121-810	8 1480 0 5 854	298 1297 136 56 1581	7 16 9 4 16	0.49 0.67 0.64 1.00 0.44	0.26 0.24	0-23 0-43 -0.65 1.53 0-16	0.67 0.39	295 263	0 • 44	178 161
KIP KIR KIS KJF KJN	21.423 67.840 47.017 64.199 64.085	-1 58.015 20.417 28.867 27.715 27.712	70 390 49 160 250	898 4485 1496 2832 2232	12 18 17 18 18	0.50 0.35 0.59 0.33 0.37	0.34 0.31 0.28 0.24 0.34	1.29 -0.18 -0.54 -0.12 -0.22	0.55 0.21 0.72 0.31 0.17	221 262 98 324 320	0.06 0.12 0.11 0.04	64 12 82 90	LOR LOT LPA LPB LPF	47.20 45.4 -34.90 -16.5 48.0	67 48 09 33 32	3.851 23.769 -57.932 -68.098 -1.042	520 1240 14 3292 170	3150 109 288 873 1080	17 6 15 18 15	0.39 0.32 0.76 0.72 0.51	0.25 0.47 0.59 0.36	-0.04 -0.80 0.32 -0.21 0.17	0.32 0.88 .10 0.48	284 67 156 297	0.23 0.13 0.58 0.12	170 74 65 156
KKI KKM KKR KKS KLG	-4.588 6.045 29.963 42.008 -30.784	145.954 116.211 76.825 20.411 121.458	460 830 257 0 350	32 95 184 79 1885	2 5 8 6 17	1 • 24 0 • 69 0 • 77 0 • 78 0 • 28	0 • 22	-0.80 0.93 1.79 0.22 -0.75	0.20	189	0.09	36	LPO LPS LRG LSF LSM	44.6 14.2 43.4 46.2 36.7	83 92 54 50 39	1.187 -89.162 6.361 1.534 -116.278	330 1000 100 425 1146	1077 1033 831 1285 278	15 14 14 16 12	0.23 0.43 0.44 0.29 0.49	0.18 0.39 0.31 0.25 0.31	0.50 0.34 0.58 0.26 0.73	0.03 0.10 0.30 0.20 0.53	45 323 278 217 134	0.19 0.24 0.28 0.17	2 41 161 157
KLS KMA KMR KMU KNA	56.165 42.262 48.057 42.237 -15.750	15.592 20.243 14.132 142.967 128.767	11 0 379 180 55	428 71 90 629 1014	10 4 7 14 13	0.45 0.51 0.66 0.70 0.49	0.26 0.42 9.45	-0.40 0.22 0.62 0.58 -0.62	0.80 0.86 0.30	232 157 96	0.49	115	LUB LUG LUX LVN LVV	33.58 -15.51 49.60 36.10 49.81	83 - 18 00 09 -	-101.867 167.130 6.133 -115.140 24.033	980 150 0 610 308	906 1094 428 46 1143	14 12 13 3 15	0.33 0.95 0.61 0.45 0.34	0.24 0.50 0.59 0.30	0.15 -0.35 2.14 2.13 0.37	0.17 1.38 0.25 0.24	357 271 69 0	0.28 0.23	22 100
KNB KOA KOD KON KOU	37.017 -6.224 10.233 59.649 -20.562	-112.822 155.619 77.467 9.598 164.281	1715 65 2343 200 17	112 215 2665 2685 1059	7 9 16 17 15	0.38 0.38 0.54 0.34 0.72	0.29 0.31 0.24 0.30	1 • 27 -0 • 71 0 • 89 0 • 33 0 • 52	0.41 0.61 0.28 0.96	64 185 276 14	0.08 0.17 0.43	105 132 69	LWI MAG MAIO MAR MAR	-2.23 59.55 36.30 43.01 36.72	38 50 98 17 17	28.800 150.800 59.472 47.433 -4.411	1748 80 1150 10 60	994 1791 643 711 270	18 14 15 15 13	0.56 1.46 0.38 0.70 0.72	0.47 0.55 0.24 0.47 0.50	0.75 0.29 0.53 1.59 0.40	0.45 1.85 0.47 0.69 0.67	138 186 15 224 255	0.09 0.37 0.17 0.36 0.02	74 41 108 8 45

TABLE 2. (continued)

TABLE 2. (continued)

CODE	LAT	LONG	ELEV	NOBS	NW	P-W/	VE STA	ATION CO	AI	TON E1	A2	E2	CODE	LAT	LONG	ELEV	NOBS	NW	P-WA RMSO	VE STA	TION CO	RRECT	10N E 1	A.2	F2
MAN MAT MAW MBC MBL	14.662 36.542 -67.603 76.242 -21.160	121.077 138.209 62.875 -119.358 119.833	70 440 6 15 200	558 3849 2010 3916 273	8 16 17 17 9	0.79 0.54 0.58 0.40 0.45	0.44 0.45 0.28 0.34	1.07 -0.35 -0.04 -0.29 -0.37	0.40 0.48 0.32 0.46	51 319 24 250	0.28 0.28 0.29	73 137 67	NEM NEW NGS NHA N IA	43.328 48.263 32.732 12.210 -29.042	145.587 -117.120 129.870 109.212 167.960	26 760 27 5 130	129 2936 182 234 63	8 15 11 5 3	0.96 0.39 0.59 0.24 0.59	0.31 0.22 0.51	-0.49 -0.37 1. 90 0.22 1.72	1.31 0.43 0.43	182 356 161	0.17	155
MBO MBT MCC MCK MCQ	14.391 -21.170 52.052 63.732 -54.499	-16.955 119.742 -118.585 -148.935 158.956	3 200 578 610 14	398 338 387 33 292	13 11 13 2 8	0.63 0.26 0.55 0.59 0.29	0.48 0.25 0.29 0.17	1.17 -0.53 0.78 -1.88 1.00	0.61 0.06 0.53 0.39	284 301 275 10	0.40	23	NIE NIK NIL NKM NLG	49.424 52.974 33.650 35.448 17.067	20.322 -168.853 73.252 -5.410 79.267	555 207 536 158 220	2679 265 1928 270 158	17 8 18 12 7	0.35 0.43 0.47 0.69 0.44	0.31 0.33 0.46	0.55 0.69 0.02 1.05 0.10	0.13 0.22 0.67	356 342 270	0.22 0.41	74 58
MCV MCW MDC MDR MDZ	36.634 48.680 37.882 13.000 -32.883	-116.000 -122.832 -121.914 80.183 -68.850	1158 693 1173 15 826	38 116 84 537 447	4 7 4 12 16	0.26 0.55 0.23 0.56 0.57	0.51 0.36	0.83 0.56 1.31 1.11 0.14	0.37 0.54	182 2	0.51	80	NLM NMC NNA NOR NOU	39.032 35.844 -11.988 81.600 -22.310	-76.981 -117.907 -76.842 -16.683 166.451	114 1080 575 36 105	51 42 359 1893 1008	3 3 14 18 16	0.66 0.29 0.69 0.46 0.67	0.55 0.39 0.39	0.07 1.07 -0.20 -0.09 0.49	0.12 0.07 0.60	261 153 4	0.52 0.34 0.51	149 140 38
MED MEK MEN MES MFF	3.550 -26.613 50.609 38.199 46.601	98.683 118.545 6.007 15.555 -0.143	32 515 0 45 260	338 1538 230 338 1171	12 17 11 13 15	1.12 0.25 0.91 1.18 0.37	0.95 0.22 0.70 0.56 0.26	0.61 0.80 0.75 0.59 0.30	0.84 0.13 0.84 1.57 0.27	116 257 111 181 297	0.12 0.21	47 0	NP- NPA NPL NPS NRA	76.252 -15.087 40.847 35.262 63.889	-119.372 39.254 14.258 25.612 -160.064	59 375 7 370 150	703 37 76 158 95	14 4 7 8 6	0.34 0.54 0.52 1.16 0.63	0.19 0.57	0.21 0.88 0.88 0.70 -0.20	0•26 2•06	88 175	0.31	45
MFP MFS MFW MGD MGL	3.342 36.117 45.903 60.100 39.807	8.661 -117.855 -118.406 150.700 -121.557	1338 1524 384 220 975	122 134 150 419 61	10 8 5 11 3	0.73 0.21 0.49 0.63 0.74	0.58 0.39	0.88 0.71 0.59 -0.05 -0.19	0.80 0.70	170 310			NRI NRN NRR NTI NUE	69.400 41.433 39.572 48.630 -19.076	88.100 76.000 -119.849 -116.963 -169.928	40 2849 1650 823 56	447 742 278 1525 54	15 15 10 15 3	1.22 0.44 0.30 0.55 0.13	0.54 0.22 0.24 0.24	-0.28 0.09 0.24 -0.19 1.32	1.63 0.51 0.27 0.68	284 2 33 355	0.27 0.18	112 145
MGN MHC MHI MHK MHK	40.925 37.342 36.300 39.187 39.200	32.181 -121.642 59.495 -96.579 -96.581	750 1282 1100 314 200	446 2241 256 220 366	9 17 11 12 8	0.53 0.36 0.52 0.47 0.31	0.25 0.26 0.47	1.12 0.81 0.20 -0.49 -0.81	0.33 0.85 0.11	61 39 22	0.23	22	NUR NVL NVS NWA NWAO	60.509 -70.767 54.900 -32.927 -32.927	24.651 11.833 83.300 117.234 117.234	102 87 0 265 265	4579 704 426 101 504	18 14 11 8 11	0.21 0.72 0.38 0.40 0.44	0.17 0.44 0.35 0.38	-0.17 0.10 -0.76 -0.22 -0.47	0.05 0.86 0.26 0.35	11 2 309 93	0.18 0.28	116 109
MID MIM MIN MIR MIZ	59.428 45.244 40.345 66.550 39.134	-146.339 -69.040 -121.605 93.000 141.136	37 140 1495 30 63	60 428 2091 1600 201	5 15 16 17 11	0.33 0.38 0.31 0.47 1.03	0.26 0.23 0.34 1.01	1.46 0.50 -0.07 -0.16 2.01	0.24 0.20 0.12 0.33	171 349 48 194	0.28 0.18 0.40	41 0 94	OAQ OBN OBO OFD OGA	-0.216 55.167 11.987 36.067 46.868	-78.499 36.600 43.293 1.600 11.025	2816 0 50 377 934	34 2553 31 49 268	4 17 2 3 10	0.23 0.29 0.97 0.45 0.67	0.20 0.44	1.51 0.11 1.86 0.53 0.44	0.24 0.85	99 319	0.18	167
MJP MJZ MKS MLR MLS	-43.991 -43.987 -5.067 45.492 42.958	170.459 170.466 119.633 25.944 1.083	960 1000 28 1360 450	67 1165 375 1162 241	3 13 11 17 10	0.21 0.55 1.04 0.50 0.60	0.40 0.47 0.29 0.46	0.03 0.65 0.89 0.46 0.43	0.66 1.60 0.52 0.50	67 70 42 244	0.41	140	OHC OHR OIC OIS OLC	-63.317 41.111 34.099 34.105 38.040	-57.900 20.799 135.317 135.327 -122.792	20 739 776 678 30	48 91 5 797 587 39	4 17 14 13 2	0.81 0.66 0.37 0.45 0.25	0.40 0.32 0.45	-1.15 -0.19 0.07 0.25 1.07	0.73 0.09 0.04	248 311 243	0.16 0.22	40 75
MMA MNG MNI MNL MNS	33.554 -40.619 1.450 33.147 42.387	-111.958 175.482 124.800 73.750 12.680	426 396 128 436 0	283 1633 144 439 46	11 13 7 10 5	0.33 0.68 0.61 0.64 0.43	0.30 0.26 0.32	0.93 -0.12 0.29 1.03 0.06	0.19 0.80 0.85	328 125 341			OLO OPA ORT ORV OTP	36.457 21.691 35.910 39.555 -18.168	-95.711 -158.012 -84.305 -121.500 -140.857	196 150 379 360 2	30 132 687 850 49	2 7 14 16 3	0.15 0.79 0.75 0.41 0.77	0.35 0.33	-0.84 1.29 0.50 0.05 1.14	0.75 0.30	123 131	0.33 0.19	76 156
MNT MNV MNW MNY MQA	45.502 38.433 -45.780 44.961 47.850	-73.623 -118.153 167.619 5.691 14.266	112 1507 155 422 572	1540 1240 683 878 519	18 15 11 15 14	0.57 0.41 0.67 0.81 0.50	0.26 0.19 0.57 0.43 0.23	0.17 0.19 0.55 0.52 -0.51	0.70 0.20 0.61 0.73 0.69	107 0 248 268 23	0.18 0.44 0.46	25 140 164	0TT 0UA 0UL 0X4 0Y4	45.394 -20.775 65.085 19.297 35.420	-75.716 167.244 25.896 -99.688 139.243	83 29 60 2700 600	1589 210 1403 214 587	18 7 17 10 13	0.59 0.70 0.35 0.99 0.64	0.39 0.30 0.80 0.27	0.06 0.46 -9.51 0.81 0.10	0.52 0.15 0.80 0.80	99 318 114 60	0.35 0.22 0.63	66 89 91
nok hom noo nos not	21.456 -2.042 -42.442 55.738 30.680	-1 57.737 147.402 147.190 37.625 -104.008	0 10 325 124 2020	78 306 444 3060 286	6 9 8 17 9	9.74 0.56 0.46 0.38 0.39	0.50 0.32 0.35	0.65 0.60 1.20 0.18 0.06	0.47 .10 0.27	196 156 56	0.28	160	PAA PAD PAE PAL PAO	-6.301 45.409 -17.662 41.004 40.598	155.491 11.886 -149.580 -73.909 110.018	699 12 60 91 0	298 136 494 479 164	10 8 17 14 9	0.46 0.68 0.63 0.56 0.43	0.30 0.57 0.40 0.41	-0.73 3.07 1.37 0.11 0.96	0.63 0.14 0.52 0.16	70 278 113 292	0.39 0.33	103 128
MOX MOT MPP MRG MSA	50.646 51.683 7.897 39.633 36.859	11.616 100.983 126.018 -79.954 -106.018	454 0 1200 282 3322	4074 2461 93 752 40	17 18 5 16 2	0.26 0.59 1.20 0.47 0.51	0.19 0.34 9.26	0.08 0.71 -0.98 1.12 0.86	0.23 0.65 0.53	5 279 98	0.19 0.24 0.09	96 163 72	PAS PAT PAV PBA PBJ	34.148 38.236 45.183 11.667 16.437	-118.172 21.747 9.174 92.717 -95.407	295 40 77 79 213	2291 33 151 250 169	17 3 8 11 8	0.41 0.49 1.12 0.82 0.78	0.23 0.71	0.85 0.30 0.67 1.82 0.19	0.44 0.69	78 229	0.20	16
MSH MSI MSO MSP MSZ	36.311 38.203 46.829 16.350 -44.671	59.588 15.556 -113.941 120.562 167.917	999 60 1264 2250 38	1233 52 1089 38 1199	15 4 16 2 13	0.40 1.00 0.28 0.22 0.57	0.31 0.16 0.29	1.14 0.51 -0.16 0.23 0.71	0.34 0.25 0.43	341 53 310	0•15 0•25 0•54	66 134 33	PCO PCT PDA PEC PEK	36.691 14.715 37.743 33.892 40.040	-96.978 101.427 -25.662 -117.161 116.175	331 0 35 616 0	46 77 143 105 1256	2 5 9 6 16	0.28 0.66 0.37 0.84 0.55	0.52	-0.53 0.48 1.72 0.83 0.27	0.17	204	0.19	108
MTD MTE MTN MUI MUI	-16.780 40.403 -12.846 36.312 -31.978	31.583 -7.537 131.130 59.605 116.208	967 815 155 1000 253	727 204 1430 128 2212	16 12 14 6 17	0.63 0.41 0.56 0.23 0.66	0.54 0.28 0.42 0.52	-0.24 0.47 -0.74 1.11 -0.38	0.18 0.45 0.27 0.36	171 107 180 267	0.46 0.41 0.53	147 75 65	PEL PET PGC PHC PHI	-33.144 53.017 48.650 50.707 39.959	-70.685 158.650 -123.451 -127.432 -75.175	690 25 5 33 5	380 1626 31 665 41	15 14 2 14 3	0.33 0.65 0.17 0.58 0.49	0.22 0.39 0.42	-0.25 -0.06 0.49 1.11 2.75	0.27 0.31 0.51	343 220 27	0.32 0.72 0.53	90 26 76
MWC MWI MZF MZO NAH	34.223 16.713 46.216 36.132 26.217	-118.058 -62.222 2.584 -95.300 127.683	1730 46 480 181 11	56 61 319 96 45	3 6 11 5 4	0.14 0.61 0.31 0.33 1.28	0.30	-0.18 0.86 0.09 -0.64 2.95	0.14	330			PI5 PI6 PIM PJD PJG	42.567 42.726 18.275 65.035 13.588	-109.912 -109.605 -101.882 -147.508 144.866	2273 2225 81 740 14	117 86 669 160	6 7 14 10	0.83 0.96 0.77 1.11	0.44 0.99	-0.87 0.14 -0.17 -0.55	0.92 0.67	8 177	0.21	134
NAI NAN NAO NB2 NBO	-1.274 32.063 60.824 61.040 61.031	36.804 118.783 10.832 11.215 10.777	1692 7 379 717 529	975 123 1411 420 73	17 5 17 14 6	0.91 0.54 0.60 0.43 0.35	0.44 0.34 0.33	2.03 0.65 -0.77 -0.11 -1.04	1.02 0.69 0.37	259 246 270	0.31 0.11	178 82	PKR PLG PLP PLV PMA	-30.003 40.374 11.250 20.806 55.979	24.742 23.446 125.000 106.629 -160.497	1267 580 90 314	180 634 82 320 64	11 15 5 9 6	0.60 0.62 0.66 0.80 0.35	0.59 0.51 0.25	0.67 0.08 0.81 2.60 0.54	0.18 0.47 1.17	77 184 174	0.18	82
NC3 NCE NDF NDI NEL	61.262 -0.661 -17.757 28.683 35.712	11.414 -78.497 177.450 77.217 -114.844	366 3821 30 230 1061	73 32 261 3934 67	5 2 7 18 4	0.21 0.44 1.08 0.57 0.23	0.44	-0.40 2.55 1.99 -0.30 0.61	0.49	288	0.02	148	PMG PMO PMR PNI PNJ	-9.409 -15.004 61.592 44.919 40.907	147.154 -147.897 -149.131 7.314 -74.155	70 2 0 585 31	2013 684 3869 33 64	15 16 16 5 5	0.51 0.72 0.49 0.76 0.48	0.28 0.56 0.30	0.26 0.84 -0.44 -1.66 0.91	0.54 0.54 0.62	179 295 40	0.34 0.43 0.09	140 97 65

TABLE 2. (continued)

TABLE 2. (continued)

CODE	LAT	LONG	ELEV	NOBS	NW	P-W/ RMSO	RMS1	AO	Al	ION E1	A2	E2	(CODE	LAT	LONG	ELEV	NOBS	NW	P-WA RMSO	VE STAT	TION CO AO	A1	CON E 1	A2	E2
PNL PNO PNS PNT POO	59.669 45.612 -16.267 49.317 18.533	-139.397 -118.763 -68.473 -119.617 73.850	579 402 3986 550 556	83 50 580 2521 2385	6 3 18 16 15	0.65 0.40 0.58 0.29 0.43	0.42 0.27 0.33	0.63 0.31 -0.13 -0.11 0.05	0.28 0.15 0.35	235 48 270	0.50 0.09 0.15	50 162 117	-	SDB SDV SEA SEH SEH	-14.926 8.886 47.655 23.167 50.408	13.572 -70.633 -122.308 77.083 80.250	1781 1580 30 0 209	802 127 147 61 2308	18 9 8 5 18	0.63 0.58 0.70 0.26 0.64	0.45 0.35 0.30	0.22 -0.22 2.25 1.04 -0.21	0.53 0.71 0.75	62 35 241	0.21	91 88
POW PPI PPN PPT PRA	36.152 -0.452 -17.531 -17.569 50.070	-91.185 100.384 -149.432 -149.576 14.433	156 0 100 260 225	203 258 649 760 1664	8 10 17 17 16	0 • 53 0 • 74 0 • 76 0 • 67 0 • 45	0.36 0.61 0.63 0.56 0.34	-0.61 0.34 1.27 1.35 0.53	0.68 0.77 0.52 0.45 0.50	88 222 314 331 354	0.48 0.45 0.17	95 94 117		SEO SES SET SEY SFA	37.567 50.396 36.200 62.900 47.123	126.967 -111.042 5.400 152.400 -70.827	86 770 1000 210 232	228 2583 201 593 1014	11 16 11 13 17	0.63 0.33 0.44 0.33 0.61	0.56 0.26 0.43 0.27 0.48	0.28 -0.56 -0.07 0.09 -0.03	0.40 0.27 0.12 0.33 0.34	102 70 35 258 152	0.17 0.35	150 24
PRE PRG PRI PRK PRM	-2 5. 753 43. 101 36. 142 39. 246 34. 083	28.190 12.397 -120.665 26.272 -82.363	1333 495 1187 100 254	1484 89 2267 739 149	16 5 16 15 8	0.55 0.40 0.41 0.42 0.52	0.26 0.18 0.27 0.29	-0.07 1.63 1.08 0.64 -0.20	0.46 0.36 0.48 0.76	51 358 200 80	0.44 0.40 0.12	146 16 156		SFF SFR SFS SGR SHD	-41.337 37.787 36.462 47.709 36.433	146.307 -122.389 -6.205 -0.923 54.942	213 8 24 90 1500	187 53 99 105 390	8 4 9 10	0.34 0.32 1.09 0.70 0.39	0.51 0.32	1.27 1.30 1.51 0.17 0.62	0.76 0.45	298 3		
PRS PRT PRU PRY PRZ	36.332 43.883 49.988 -26.928 42.483	-121.370 11.092 14.542 27.473 78.400	363 62 302 1445 1599	194 200 3929 272 1788	9 7 17 13 17	0.15 0.48 0.52 0.56 0.46	0.29 0.49 0.32	0.62 1.74 0.07 -0.26 0.99	0,69 0.38 0.10	3 108 186	0.33 0.43	95 104		SHE SHF SHI SHI SHK SHL	40.633 46.552 29.644 34.530 25.567	48.633 -72.763 52.526 132.678 91.883	0 60 1595 285 1600	262 141 3365 1769 3489	7 4 18 14 18	0.32 0.37 0.32 0.51 0.52	0.31 0.49 0.30	1.93 -0.48 -0.28 -0.32 -0.57	0.08 0.15 0.53	310 172 167	0-11 0-24	163 22
PSH PSI PSO PSZ PTL	33.937 2.691 1.192 47.919 38.049	71.434 98.919 -77.325 19.894 23.865	456 0 3010 940 500	849 450 252 654 278	14 11 14 14 11	0.52 1.17 0.56 0.52 0.70	0.21 1.04 0.44 0.39 0.41	0.01 -0.12 0.46 -0.15 0.30	0.53 1.06 0.25 0.62 0.92	259 204 189 356 220	0.77 0.44 0.22	74 176 82		SIA SIC SID SIM SIM	34.248 50.189 63.786 44.950 57.057	108.920 -66.740 -18.058 34.117 -135.324	0 283 26 277 19	158 720 181 1769 829	7 17 9 17 16	0.46 0.66 0.71 0.44 0.53	0.55 0.32 0.38 0.32	0.76 -0.08 1.60 0.64 0.91	0-29 1-10 0-08 0-57	108 7 270 1	0.44 0.30 0.17	12 155 133
PTN PTO PUK PUL PVC	44.572 41.139 42.043 59.767 -17.740	-74.983 -8.602 19.893 30.317 168.312	238 88 0 65 80	167 784 55 1861 605	9 15 3 16 10	0.60 0.47 0.32 0.47 0.68	0.22 0.41 0.46 0.51	0.07 -0.07 0.62 0.31 0.01	0.99 0.30 0.05 0.90	97 62 191 315	0.13 0.13	67 94		SJG SJP SKA SKI SKO	18.112 18.382 63.580 17.333 41.972	-66.150 -66.118 12.280 -62.739 21.440	457 80 580 306 346	714 88 656 133 1765	15 3 14 10 17	0.83 1.30 0.78 0.63 0.34	0.67 0.49 0.58 0.30	-0.63 -0.48 -0.07 0.31 0.01	0.78 0.80 0.37 0.12	45 303 43 250	0.11 0.48 0.22	62 109 17
PVL PYA QC P QMB	43.147 44.033 34.568 14.637 53.765	25.172 43.058 -118.741 121.077 -1.858	187 497 1247 58 116	676 1252 149 536 125	15 15 7 9 8	0.46 0.32 0.13 0.48 0.38	0.39 0.25	0.57 0.49 0.89 1.25 0.39	0.25 0.18	133 299	0.20 0.19	57 146	: : :	SKR SLA SLC SLD SLL	50.667 -24.728 40.765 37.075 60.477	156.100 -65.494 -111.848 -121.221 13.323	250 0 1425 443 420	660 43 731 814 215	13 3 16 14 9	0.85 0.44 0.41 0.35 7.53	0.42 0.25 0.30	-0.34 -0.77 0.09 1.22 -0.28	1.10 0.20 0.27	213 87 2	0.39	159
QUE QUI RAB RAC RAL	30.188 -0.200 -4.191 50.083 -4.220	66.950 -78.500 152.170 18.194 152.202	1721 2837 184 209 91	3742 295 1620 171 83	18 11 16 9 4	0.48 0.53 0.80 0.49 0.50	0.30 0.50 0.44 0.47	0.34 1.72 -0.47 0.97 0.09	0.47 0.24 0.72 0.21	218 138 260 101	0.21 0.93	179 155		SLM SMF SMY SNA SNA SNG	38.636 46.645 52.731 -70.315 7.173	-90.236 3.841 174.103 -2.325 100.620	161 459 58 57 4	293 363 334 391 376	6 12 11 13 12	0.31 0.40 0.91 0.73 0.80	0.38 0.34 0.55 0.44	-0.18 -0.17 -0.19 0.11 0.27	0.15 1.31 0.76 1.00	242 237 11 70		
RAM RAO RAR RBA RBZ	37.766 -29.252 -21.212 34.009 33.929	41.292 -177.918 -159.773 -6.841 -6.840	1185 110 28 39 116	197 48 400 254 237	7 3 14 16 11	0.42 0.35 0.88 0.92 0.50	0.79 0.62 0.50	0.42 0.88 1.15 0.60 0.28	0.68 0.41 0.13	27 11 167	0.82	138	5 5 5 5	SOC SOD SOF SOP SOR	43.583 67.371 42.685 47.683 22.792	39.717 26.629 23.334 16.558 -83.008	192 181 546 260 206	994 4982 720 1192 95	16 18 16 15 5	0.76 0.24 0.56 0.49 0.21	0.51 0.20 0.29 0.30	0.34 -0.24 0.54 -0.35 0.40	0.56 0.18 0.17 0.35	343 128 144 20	0.67 0.04 0.63 0.31	135 163 64 15
RCC RCD RCI RDJ RES	19.994 44.075 38.106 -22.895 74.687	-75.696 -103.208 15.643 -43.223 -94.900	100 995 29 29 15	43 269 72 50 3090	3 10 5 3 18	0.52 0.79 1.29 0.35 0.59	0.67 0.27	-0.06 -0.05 1.24 0.09 -0.28	0.61 0.71	236 39	0.31	89	5 5 5 5 5	S PA S PC S PF S PK S PO	-90.000 49.188 43.564 -43.038 47.732	0. 20.245 6.696 146.275 -117.344	2927 1772 340 425 713	1857 395 920 58 287	16 14 15 6 6	0.73 0.50 0.42 0.89 0.27	0.59 0.34 0.34	-0.48 1.37 0.31 1.71 0.73	0.57 0.29 0.30	281 344 274	0.18 0.56 0.09	24 87 160
REY RHO RIV RJF RKT	64.139 36.437 -33.829 45.304 -23.118	-21.906 28.224 151.158 1.516 -134.972	44 45 25 410 100	274 104 1006 395 149	10 7 14 13 6	0.58 0.45 0.61 0.29 0.36	0.35 0.29 0.28	1.91 1.17 0.85 0.20 0.73	0.69 0.68 0.12	114 338 99	0.25	167		SRI SRO SRY SSA SSB	36.758 47.813 35.608 44.531 45.279	49.383 18.313 139.274 21.559 4.542	243 150 254 0 700	890 792 1328 70 173	13 15 14 7 9	0.37 0.57 0.69 0.78 0.49	0.25 0.44 0.43 0.28	0.80 1.18 -0.09 -1.68 0.38	0.35 0.33 0.65 0.64	319 50 56 300	0.32 0.32 0.72	64 14 100
RLO RMB RMP RMU ROB	36.167 36.886 41.811 37.076 44.295	-95.026 -90.278 12.702 -110.970 7.870	384 147 380 1536 806	185 68 1029 80 188	8 4 17 4 9	0.49 0.67 0.54 1.03 0.63	0.45	-0.37 -1.04 0.36 1.10 -0.84	0.45	155	0.23	5	9 9 9 9 9	SSC SSF SSR SSS STC	48.584 47.061 44.531 13.681 36.633	-0.107 3.507 21.531 -89.198 -121.233	300 360 0 665 259	2382 3005 196 49 140	16 17 8 3 6	0.39 0.36 0.99 0.37 0.38	0.27 0.26 0.15	0.10 0.02 0.06 1.85 1.70	0.36 0.22 2.59	264 267 209	0.04 0.27	157 177
ROC ROL ROM ROX RSB	43.125 37.918 41.903 -45.476 50.888	-77.592 -91.869 12.513 169.320 5.832	155 200 45 106 0	241 561 412 125 46	10 13 11 3 5	0.69 0.49 0.65 0.19 0.60	0.53 0.42 0.46	-0.04 -0.73 1.16 0.79 0.76	0.65 0.42 0.62	56 94 242			5 5 5 5 5	STG STH STJ STK STR	-42.848 18.078 47.572 -31.882 48.585	146.207 -76.814 -52.733 141.592 7.766	350 427 62 213 135	75 36 733 1289 1541	6 3 16 17 15	0.69 0.53 0.57 0.42 0.50	0.47 0.32 0.24	1.20 0.63 0.15 -0.23 0.65	0.26 0.21 0.59	317 93 1	0.47 0.30 0.35	26 92 143
RSL RUV RXF SAL SAM	45.688 -15.189 48.865 45.607 39.673	6.626 -147.384 -115.124 10.526 66.990	1583 3 4040 70 704	1123 500 122 303 1595	15 16 8 10 16	0.63 0.70 0.56 0.53 0.29	0.39 0.59 0.38 0.39 0.21	-0.22 0.85 -0.19 0.15 0.49	0.87 0.26 0.69 0.53 0.06	331 281 42 111 279	0.08 0.55 0.25	52 98 1	5 5 5 5 5	STS STU STV SUD SUR	42.886 48.772 44.244 46.467 -32.380	-8.551 9.195 7.324 -80.967 20.812	265 360 985 267 1765	30 1286 68 391 223	2 16 5 14 13	0.22 0.61 0.68 0.64 0.47	0.35 0.39 0.47	0.41 -0.26 -1.62 0.17 0.78	0.62 0.32 0.07	5 26 117	0.35 0.65	159 73
SAN SAÒ SAP SAV SBA	-33.453 36.765 43.058 -41.721 -77.850	-70.662 -121.445 141.332 147.189 166.756	533 350 18 180 38	264 545 296 1470 2148	14 14 11 16 17	0.43 0.41 0.71 0.59 0.59	0.35 0.36 0.48 0.34 0.46	-0.11 0.73 0.50 1.07 1.01	0.28 0.27 0.84 0.60 0.44	55 4 200 339 52	0.31 0.18 0.25 0.29	90 64 101 13	S S S S	SUV SVA SVE SVE SVE	-18.149 -18.117 56.810 32.779 13.168	178.457 178.458 60.637 -108.297 -61.245	6 48 275 1932 38	35 46 3588 55 88	3 3 18 4 5	0.66 0.06 0.37 0.34 0.67	0.29	0.83 1.05 0.15 1.06 0.37	0.28	180	0.20	81
SBB SBR SBS SCB SCG	34.688 -35.259 36.867 43.717 16.029	-117.825 149.533 10.350 -79.233 -61.681	832 0 127 153 646	99 33 32 178 110	7 2 2 7 9	0.34 0.12 0.68 0.61 0.71	0.59	0.03 1.41 1.47 0.49 0.44	0.66	65			S S T T T	SWV SWV SYO TAB TAC	61.108 -31.883 -69.006 38.067 19.405	-155.622 116.065 39.503 46.327 -99.194	762 80 23 1430 2297	1109 257 438 2184 292	15 9 13 18 10	0.84 0.64 0.83 0.49 0.72	0.20 0.56 0.37 0.65	0.13 -0.11 -0.16 0.74 1.05	1.04 1.02 0.42 0.44	299 321 68 141	0.15 0.08	170 30
SCH SCM SCO SCP SDA	54.817 61.833 70.483 40.795 42.016	-66.783 -147.328 -21.950 -77.865 19.499	540 1020 69 352 0	2269 667 84 347 67	18 14 2 9 5	0.39 0.39 0.04 0.94 0.44	0.36 0.35 0.53	-0.40 0.20 1.14 -0.23 0.14	0.21 0.13 1.15	115 180 80	0.07 0.31	37 161	T T T T	TAF TAM TAN TAS TAU	34.814 22.792 -18.917 41.325 -42.910	-2.414 5.523 47.552 69.295 147.320	820 1395 1375 470 132	386 988 518 3277 1841	16 18 11 18 16	0.66 0.46 0.78 0.35 0.66	0.45 0.44 0.20 0.28 0.42	0.59 -0.13 1.12 0.50 0.95	0.53 0.16 1.13 0.22 0.55	120 158 235 201 25	0.38 0.14 0.23 0.45	104 129 71 96

TABLE 2. (continued)

CODE	LAT	LONG	ELEV			P-W	AVE ST	ATION C	ORRECT	TON			COD	E LAT	LONG	ELEV			P-W	AVE ST	ATION CO	ORRECT	ION		
				NOBS	NW	RMSO	RMS1	A0	A1	El	A2	E 2					NOBS	NW	R450	RMSI	A0	A1	E 1	A2	E2
TAV	-4.231	152.220	31	120	7	0.34		0.11					VIC	48.51	-123.415	197	1187	16	0.49	0.30	0.13	0.41	267	0.38	176
TGF	40.994	39.776	640	42 1593	16	0.72	0.25	0.68	0.21	175	0.18	6	VIE	48.24	5 16.362 7 83.300	198 41	1160 297	15	0.54	0.26	0.20	0.58	54	0.21	37
TDJ	11.787	42.890	50	39	4	0.58		1.92					VKA	48.26	5 16.318	400	1852	17	0.49	0.31	0.10	0.42	56	0.25	32
TEC	34.830	-1.283	U	-30	2	0+21		0.89					VLA	43+120	5 131.893	75	1853	14	0. 59	0+34	0.21	0.74	175	0.13	133
TEH	35.738	51.386	1360	1487	18	0.51	0.43	0.77	0,32	30	0+22	1	VLN	-1 3. 887	167.542	18	45	4	0.73	· · ·	0.56				
TET	-16.146	33.577	153	598	14	0.77	0.44	0.78	0.62	138	0.83	144	VLO VI S	40.469	19.495	0	34	3	0.35	0.42	0.05	0 93	217		_
TFO	34.268	-111.270	1492	1544	16	0.35	0.24	0.55	0.30	42	0.28	112	VLV	-39.790	-73.276	12	74	6	1.18	0.42	0.16	0.01	217	0.49	7
101	52. 905	55.155	1000	420	11	0.40	0+ 38	0.45	0.20	321			vou	46.399	5.651	495	583	12	0.37	0.25	0.26	0.44	313		
THO THT	33.875	-111.874	1134	81	4	0.28		1.12					VRI	45.870	26.725	400	1786	17	0.56	0.46	0.55	0.43	56	0.16	105
TIF	41.717	44.800	399	1 51 6	18	0.47	0.45	0.88	0.09	18	0.19	144	VIS	-19.076	47.539	1423	228	9	1.00	0.34	1.54	1.45	244		
TIK TIM	71.633	128.867	25 88	3829	17	0.57	0.31	-0.86	0.45	298	0.43	1 30	VUL	-4.283	152-146	332	102	6	0.52		0.28				
		7											1014	-10.04	1/0-404	100	200	0	0.50		0.93				
TIR	30.927	/-262 19-867	1335	559 602	16	0.49	0.45	0.78	0.2/	227	0.09	1/0	VYB	60.71	28.800	0	198	8	0.38		-0.88				
T JC	37.217	-104.691	2103	256	7	0.40	0.57	1.20					WAB WAM	-5.493	5 143.728 5 148.883	2032	871 69	14	0.84	0.46	1.12	1.21	220		
TLG	-30.167	-70.804	2200	231	14	0.36	0.26	-0.21	0.07	6	0.40	111	WAN	-4.194	152.176	25	67	ŝ	0.44		0-20				
#1 C	-5 310	150 045	40	1 96	10	0.44	0 42	0 70	0 10	286			WAR	52 . 24	2 21.024	110	102	'	0.48		0.89				
TMT	41.811	-72.799	290	210	11	0.59	0.41	0.85	0.69	94			WAS	38.892	-77.033	0	59	3	0.61		-0.04				
TNG	-6.183	106,500	14	277	11	1.17	1.11	0-34	0.88	223			WB2	-19.944	134.353	366	143	7	0.50		-1.34				
TNO	45.059	7.697	260	30	2	0.20	01.04	-0.63	0.33				WB4	-19.90	134.361	366	43	3	0.45		-1.31				
TND	38 082	-117 218	1032	077	15	0.40	0.78	0.0.30	0 27	70	0.25	129	WBN	-26.140	126.578	4 5 7	30	2	0.79		0.09				
TNS	50.224	8.449	815	269	9	0+62	0.10	0.76	0.27	/0	0+33	120	WCB	-19.93	5 134.357	366	878	13	0.49	0.44	-1 • 25	0.33	256		
TOA	62.105	-146.172	909	692	12	0.31	0.24	0.47	0.32	39	0.28	135	WCK	36.934	-88.874	137	40	3	0.36	0.91	-0.15	o	10		
T00	-37.571	145.491	604	3183	18	0.55	0.44	0.24	0.39	280	0.27	101	WDC	40,580	-122.540	300	1412	16	0.93	0.21	-0.35	1.16	289	0.31	173
тоу	9.793	-69, 793	650	139	q	0.82	0. 34	0, 51	1.32	43			WDY	35.700	-118-843	490	68	2	0.04		-0.18				
TPH	38.075	-117.222	1890	172	6	0.39		0.39					WEL	-41.286	174.768	122	667	11	0.69	0.57	0.16	0.52	98		
TPM TPT	18.983	-99.062	1500	177	8 17	0.72	0,53	1.54	0.35	325	0.47	91	WES	42.385	-71.322	60	700	15	0.51	0.42	0.77	0.39	126	0.15	59
TRD	8.483	76.950	Ō	172	8	0.87		1.02					WGL	17.985	79.530	280	135	7	0.30	0.27	0.10	0.75	10		
TRI	45.709	13.764	126	1 3 3 6	16	0.35	0.27	-0.23	0.26	268	0.12	140	WIL	-66.259	110.527	10	203	11	0.45	0.44	0.27	0.09	198		
TRJ	-21.513	-64.776	2100	52	5	1.09		-0.35					WIN	-22,567	17,100	1728	970	17	0.46	0.40	0.62	0.30	50	0.12	40
TRN	44.260	-61.403	24	619	14	1.38	0.36	0.85	1.79	107	0.53	31	WIT	52.813	6.668	17	1745	15	0.43	0.32	1.40	0.29	344	0.28	158
TRO	69.632	18.928	15	3093	18	0.30	0.17	0.29	0.33	267	0.08	112	W KR. W KD	35.814	-120.511	503	152	8	0.12		1.35				
TRR	-42.304	146.450	579	980	15	0.65	0.49	1.30	0.25	331	0.53	92	WLP	49.665	6.152	0	61	4	0.30		2.02				
TRT	-7.650	112.500	0	127	7	0.66		0.36					WLO	34.065	-97.370	284	42	3	0.22		0,50				
TSK	36.211	140.110	280	1955	14	0.80	0.37	-0.18	1.01	89	0.38	126	WLS	48.413	7.354	775	1845	18	0.43	0.23	0.04	0.48	340	0.19	164
T'TA	62.930	-1 56. 022	914	679	14	0.68	0.35	-0.34	0, 79	311			WMO WOL	34.718	-98-589	505	1094	13	0.48	0.28	-0.76	0.51	345 188		
TTN	22.750	121.150	9	149	8	1.21		4.06					WPM	46 • 752	-89+555	193	48	3	0.41		0.26				
TUA	-38.808	177.151	274	37 2885	17	0.12	0.24	-0.18	0.18	41	0.06	126		10.044	124 264	260	2562	16	0.36	0.95	1 12	0.34	152	0 17	1 76
TUL	35.911	-95.792	256	2089	16	0.35	0.32	-0.52	0.12	194	0.17	76	WRM	49.833	5.381	242	405	13	0.88	0.88	2.35	0.21	11	0.17	120
TUM	47.015	-122-908	20	345	14	0.71	0.64	0.46	0.44	321			WRS	34.150	71.408	343	2316	18	0.55	0.33	-0.14	0.44	242	0.44	84
TUP	54.433	119.900	0	1615	16	0.53	0.24	0.05	0.54	245	0.35	113	WTS	51.996	6.810	43	444	16	0.45	0.39	0.82	0.27	156	0.28	145
TYS	38.515	-149.252	175	525	15	0.39	0+64	-0.29	0.55	211	0.34	122	C1-177	27 085	176 009	4.9	1 9 2	ć	1 01		0.02				
TZZ	-5.268	141-221	700	48	4	0.39	0 55	-0.86		2.0			WUC	30.543	114.350	26	68	4	0+42		0.80				
URV	0.004	-/1.14)	1,550	270	13	0.70	0.35	0.04	0+ 62	28			W YO	42.778	-109.556	2190	45	2	0.64	0 45	-0.92	0 32	256	0.20	20
UBO	40.322	-109-569	1 596	1908	16	0.46	0.25	-0.19	0.34	358	0.38	136	YER	37.135	28.283	730	401	8	0.36	0.45	0.07	0. 32	250		20
UCT	41.832	-72.251	149	285	11	0.61	0.48	0.83	0.60	92	0.43	94		(1) (0)	114 605				.		0.00				73
עסט נסט	60,090 46,065	13.607	240	345	13	0.58	0.47	-0.58	0.46	286			YKC	62.493	-114.605	198	2816	16	0.40	0.30	-0.65	0.46	330	0.04	58
		13-237				0.45.		-0.40					YKM	48.862	-115.712	4950	66	6	0.75	0.17	-0.24	1.54	16		
UKI UME	39.137 63.815	-123.211 20.217	199 16	190 4194	9 17	0.47	0.26	1.61	0.28	232	0. 27	80	YOU	-34.278	148.382	503	747	13	0.34	0.30	0.08	0.22	137		
UNM	19.329	-99.178	2257	154	7	0.76		0.92			5-27														
UPP URS	59.858 33.538	1/+627 133+489	14 25	4180 47	17	0.27	0.23	-0.48 0.78	0.17	260	0.02	148	TSS ZAG	47.017 45.817	142.717	75 155	2798	15 15	U.36 0.56	0.27	0.51 1.00	0.14 0.35	324 93	0.25	140 146
1712	18 637	11 200	1 60	2010	17	A 11	0.05	0 50			• ••		ZAK	50.383	103.283	0	3173	18	0.44	0.29	0.44	0.39	287	0.18	112
VAH	-15.237	-147.636	3	5018 681	16	0.59	0.25	0.59	0.13	222 261	0.20 0.54	99 97	2.0B0	-16.270	-68.125	4398	49	4	0.66	0.58	-0.73	0.4/	112		
VAL	51.939	-10-244	14	947	15	0.80	0.75	0.94	0.18	315	0.33	114	_												
VAN	37.950	58.100	225	044 1643	17	0.92	0.30	-0.19	0.91	202 45	0.46	92 123	Z SC Z ST	31.097 48.196	121.187	100	147	7	0.46	0.35	0.36	0.61	22	0.17	155
U A P	25, 200	83.017	6	617	1 2	0.65	0 /2	0 59	0.00	1.44		-	ZUL	47.481	8.390	740	92 9	15	0.54	0.39	-1.09	0.64	346	0.02	135
VAY	41.321	22. 570	168	996	17	0.44	0. 37	-0.02	0.25	140 214	0.31	27	ZUR	47.369	8.580	604	104	6	0.45		-0.41				<u> </u>
VCA.	-28,741	-68.202	0	35 293	2	0.38	0.45	0.13	0. 29	100				See	text	for	exp	1ar	nati	on	of h	lead:	ings	a	nđ
ино	17.236	-96 . 732	1685	91	5	0.50		1.08	Je 40	122			cor	tents	of th	e tal	ble.								÷

Fig. 4. The effect of introduction of station corrections on the travel time curves presented, as in Figure 2, in terms of deviations from 1968 tables. Station corrections not only reduce the roughness, but also are capable of changing the trend over a large range of distances, decreasing the diffrence between the travel times for class I and class II events.

Because of the better geographical coverage, and with the appropriate reservations, we recommend the travel times for the class I events, corrected for station effects, as the best estimate of teleseismic travel times for surface focus P waves.

Figures 5a-5h show examples of the azimuthal dependence of station residuals. The principal point is to demonstrate the variety and range of the station terms as well as the consistency of the residuals for the class I and class II events. Although these figures show stations reporting a relatively large number of observations with good azimuthal coverage, the selection in terms of similarity between the two types of residuals is typical. From this we conclude that the source effect is either not as important as might have been thought, or as already mentioned, it has been, in part, absorbed by the process of relocation of events. In either case, the station residuals listed in Table 2 would seem to be dominated by the upper mantle and, perhaps, crustal structure in the vicinity of the station.

Figure 5a represents a station with nearly no azimuthal dependence of residuals and also a very small constant term. Figure 5b, on the other hand, shows a peak-to-peak variation of nearly 4 s. The residuals for class I and II events differ in the window centered on an azimuth of 330° by more than 2 s, but in the other five windows for which observations of both types exist, the data are very close to each other. Figure 5b represents a rare example of a station dominated by class II events.

Figure 5c is an example of a station dominated by the A_0 and A_1 terms, with the coefficient A_2 being virtually zero, while in Figure 5d the latter term dominates. Figures 5e and 5f are examples of stations with relatively large second azimuthal terms. Figures 5g and 5h are shown to demonstrate the consistency of the residual pattern over fairly large distances: the two stations in the Canadian Arctic are nearly 900 km apart, and yet the magnitude and the phase of the anomalies are very similar.

The consistency of different terms in our table of station corrections can be more easily judged from a map display. Figure 6a shows the size and distribution of the azimuth-independent term over the large part of the North American continent. The stations displayed reported at least 700 observations distributed in at least 10 azimuth windows. Squares designate late, or slow, stations; triangles represent early, or fast, stations. The size of the symbol is proportional to that of the anomaly; the scale for +1 and -1 s is shown.

The arrivals are systematically late for stations in the Appalachians. Most of the stations in the Great Plains and in Canada east of the Rocky Mountains are fast. Nevada and California are very slow. This picture is in excellent agreement with the results of Herrin and Taggart [1968, Figure 2].

Figure 6b displays the variation in the first azimuthal term. The arrow points toward the slow direction, and its length is proportional to the A_l coefficient (see inset for an arrow corrresponding to 1 s anomaly). To be included in this figure a station had to report at least 1000 observations for at least 15 azimuth windows. While the stations in the east and north (including Alaska) show consistency over large distances, the situation in the west is more complex. If we discard the coastal stations, which show great variability in their pattern, we notice that there are two populations of arrows that represent a very consistent pattern. One group of relatively large anomalies (~ 0.5 s) points nearly due north, and the other, consisting of anomalies of about 0.25 s, points in the direction N45°E. The two types of arrows are intermixed, but the populations are well defined. Clearly, an attempt should be made to correlate this observation with other kinds of geophysical and geological data.

Figure 6c shows the second azimuthal term. The criteria for displaying a station are the same as in the case of Figure 6b and remain so for all the figures to follow. The small square designates the position of the station and the line represents the slow azimuth. There is a great deal of regional consistency in the second azimuthal term. In the western United States and Canada the slow direction remains similar over an area about 2000 km long in the NS direction and 1000 km wide from east to west. There is some indication of a gradual rotation toward north-south slow directions as one progresses from Mexico to Canada. A group of stations near the coast of southern California represents an

Fig. 6a. Distribution of the constant station correction term for stations in the North American continent. Only stations with at least 700 observations distributed among at least 14 azimuthal windows are displayed. The size of a symbol is proportional to the anomaly.

exception: the change in direction by about 60° is very abrupt. One of the sources of a perceptible second azimuthal term could be anisotropy. The fast direction in southern California is parallel to the direction of motion of the Pacific plate. This has also been found in studies of P_n in southern California and has been attributed to upper mantle anisotropy [Vetter and Minster, 1981]. In studies of the anisotropy of olivine the fast axis is parallel to the flow direction [Christensen and Salisbury, 1980]. This raises the possibility that the second azimuthal

Fig. 6b. Distribution of the first azimuthal term in station anomalies for stations in the North American continent. Arrows point toward the slow direction, and their length is proportional to the anomaly. Only stations with at least 1000 observations distributed among at least 15 azimuth windows are displayed.

Fig. 6c. Distribution of the second azimuthal term in station anomalies for stations in the North American continent. The line centered over a station is aligned in the slow direction and its length is proportional to the anomaly. Observational requirements are the same as in Figure 6b.

term can be used to map the direction of flow in the mantle.

Figure 7a shows the azimuth-independent term for Europe. Stations distributed along the Alpide belt are generally slow; station AKU on Iceland has a positive residual of over 2 s. Stations on the Baltic Shield are generally fast. Thus the familiar pattern, first detected by Cleary and Hales [1966], is well reproduced. The most striking feature of Figure 7b is the fanlike pattern of the arrows pointing away from the Alpide belt for stations between longitudes 0 and 30° E. For the Scandinavian stations the slow direction is toward the west, although the magnitude of the arrows there is rather small. Association of the fast-slow direction with the

Fig. 7a. Same as Figure 6a but for Europe. Observational threshold: 1000 observations in 15 azimuthal windows.

major tectonic feature of Europe can also be seen in Figure 7c, which displays the second azimuthal term. The slow direction here is mostly parallel to the Alpide belt, with the trend continuing to the east, although the picture in western Europe is less clear than in Figure 7b. Thus the fast direction is perpendicular to the Alpide arc, and this reinforces the negative anomaly produced by the first azimuthal term. If the proposed association of the azimuthal variations of the travel time anomalies with the Alpide belt is correct, the structure associated with the Alps would have to extend well into the upper mantle.

On a global scale, the azimuth independent term (Figure 8a) correlates with the tectonic nature of a given region, as pointed out by Cleary and Hales [1966]: the shields are fast (western and central Australia, Siberia, South Africa, Canada), and tectonically active regions are slow (Tasmania, the west coast of North America, the Middle East, Iceland).

There seems to be a tendency among the coastal stations for the slow direction to point toward the sea: this might be associated with the relative slowness of the downdip propagation of the waves that encounter the thickening crust and possible depression of upper mantle iso-velocity surfaces. In any case, the first azimuthal term has to do with major structures in the crust and upper mantle. A simpler picture emerges from the distribution of the second azimuthal term. There are clusters of stations that show very similar behavior: Tasmania and southern and western Australia, southern Africa, a continuation of the Alpide belt into Asia, most of the Siberian stations and India, for example.

The density of station distribution is, on the global scale, much lower than that for Europe or the western United States, and therefore we do not have an opportunity to observe in comparable detail some of the gradual and sometimes abrupt but consistent changes in the pattern of different terms in station anomalies.

Establishment of the fact that under favorable circumstances, the azimuth-dependent terms show a high degree of consistency and relate to tectonic features brings the promise of an additional tool in studying the heterogeneity and anisotropy of the mantle.

The slow directions found from the second

Fig. 8b. Global distribution of the first azimuthal term. For details see caption to Figure 6b.

azimuthal term interesting bear an and potentially important relationship to the direction of principal stresses in the crust. For example, the direction of greatest principal compression is NNE-SSW in southern California, EW in the southern midcontinent and NW-SE in the Colorado Plateau [Zoback and Zoback, 1980]. The axes of horizontal extension are NW-SE in the Basin and Range province and SW-NE in the Colorado Rocky Mountains. These directions are roughly parallel with the slow directions of the second azimuthal station term. The principal stress axes are close to NS in the Pacific Northwest, swinging to NW-SE in the northern Rocky Mountains and to SW-NE in the northwestern midcontinent. The station terms show the same trend. The slow directions in South Africa and southern Australia are more-or-less normal to the African Rift and the Tertiary basalt trend in Australia, respectively. Crustal stress presum-

Fig. 8c. Global distribution of the second azimuthal term. For details see caption to Figure 6c.

ably is at least partially the result of mantle flow. The stress or flow-induced orientation of crystals in the upper mantle should therefore be related to stress directions in the overlying crust.

Acknowledgments. It is a great pleasure for us to dedicate this paper to Anton Hales who, in large measure, is responsible for its existence. Anton's dedication to the understanding of all of the uncertainties and subtleties in the travel time and location problems was a constant source of inspiration to us, and his personal advice and vast experience were tapped on many occasions. His studies with John Cleary provided many insights which we have profited from. Alan Douglas provided us with a detailed critique of our earlier travel time studies and convinced us that relocation of many events was a prerequisite for further progress in this field. This research was supported by National Science Foundation grants EAR81-20944 (Harvard) and EAR77-14675 (Caltech). Contribution 3801 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125.

References

- Carder, D. S., Travel times from Central Pacific nuclear explosions and inferred mantle structure, <u>Bull. Seismol. Soc. Am.</u>, <u>54</u>, 2271-2294, 1964.
- Chinnery, M. A., Velocity anomalies in the lower mantle, <u>Phys. Earth Planet Inter.</u>, <u>2</u>, 1-10, 1969.
- Christensen, N. I., and M. H. Salisbury, Seismic anisotropy in the oceanic upper mantle: Evidence from the Bay of Islands ophiolite complex, J. Geophys. Res., 84, 4601-4610, 1979.
- Cleary, J., and A. L. Hales, An analysis of the travel times of P waves to North American stations, in the distance range 30° to 100°, Bull. Seismol. Soc. Am., 56, 467-489, 1966.
- Davies, D., and D. P. McKenzle, Seismic travel time residuals and plates, <u>Geophys. J. R.</u> <u>Astron. Soc.</u>, 18, 51-61, 1969. Dziewonski, A. M., and D. L. Anderson,
- Dziewonski, A. M., and D. L. Anderson, Preliminary Reference Earth Model (PREM), <u>Phys.</u> <u>Earth Planet. Inter.</u>, <u>25</u>, 297-356, 1981.
- Dziewonski, A. M., and F. Gilbert, The effect of small aspherical perturbations on travel times and a re-examination of the corrections for ellipticity, <u>Geophys. J. R. Astron. Soc.</u>, <u>44</u>, 7-16, 1976.
- Dziewonski, A. M., B. H. Hager and R. J. O'Connell, Large-scale heterogeneities in the lower mantle, <u>J. Geophys. Res.</u>, <u>82</u>, 239-255, 1977.
- Gutenberg, B., Travel times of longitudinal waves from surface foci, <u>Proc. Natl. Acad. Sci.</u>, <u>39</u>, 849-853, 1953.

- Herrin, E., and J. Taggart, Regional variation in P_n velocity and their effect on the location of epicenters, Bull. Seismol. Soc. Am., 52, 1037-1046, 1962.
- Herrin, E., and J. Taggart, Regional variations in P travel times, <u>Bull. Seismol. Soc. Am.</u>, <u>58</u>, 1325-1337, 1968.
- Herrin, E., W. Tucker, J. Taggart, D. W. Gordon, and J. L. Lobdell, Estimation of surface focus P travel times, <u>Bull. Seismol. Soc. Am.</u>, <u>58</u>, 1273-1291, 1968.
- Jeffreys, H., The times of P, S, and SKS and the velocities of P and S, Mon. Not. R. Astron. Soc. Geophys. Suppl., 4, 498-536, 1939. Jeffreys, H., and K. E. Bullen, Seismological
- Jeffreys, H., and K. E. Bullen, <u>Seismological</u> <u>Tables</u>, British Association, Gray-Milne Trust, London, 1940.
- Johnson, L. R., Array measurements of P velocities in the upper mantle, <u>J. Geophys.</u> <u>Res.</u>, 72, 6309-6325, 1967. Johnson, L. R., Array measurements of P
- Johnson, L. R., Array measurements of P velocities in the upper mantle, Bull. Seismol. Soc. Am., 59, 973-1008, 1969.
- Soc. Am., 59, 973-1008, 1969. Jordan, T. H., Lithospheric slab penetration into the lower mantle beneath the sea of Okhotsk, J. Geophys., 43, 473-496, 1977.
- Julian, B. R., and M. K. Sengupta, Seismic travel time evidence for lateral inhomogeneity in the deep mantle, <u>Nature, 242</u>, 443-447, 1973.
- Lilwall, R. C., and A. Douglas, Estimation of P wave travel times using the joint epicentre method, <u>Geophys. J. R. Astron. Soc.</u>, 19, 165-181, 1970.
- Niazi, M. and D. L. Anderson, Upper mantle structure of western North America from apparent velocities of P waves, J. Geophys. Res., 70, 4633-4640, 1965.
- Sengupta, M. K., and B. R. Julian, P wave travel times from deep earthquakes, Bull. Seismol. Soc. Am., 66, 1555-1579, 1976.
- Soc. Am., <u>66</u>, 1555-1579, 1976. Toksöz, M. N., M. A. Chinnery, and D. L. Anderson, Inhomogeneities in the earth's mantle, <u>Geophys. J. R. Astron. Soc.</u>, <u>13</u>, 31-59, 1967.
- Tucker, W., E. Herrin, and H. W. Freedman, Some statistical aspects of the estimation of seismic travel times, <u>Bull. Seismol. Soc. Am.</u>, 58, 1243-1260, 1968.
- Vetter, U., and J.-B. Minster, P_n velocity anisotropy in southern California, <u>Bull.</u> Seismol. Soc. Am., 71, 1511-1530, 1981.
- Willmore, P. L., and A. M. Bancroft, The time term approach to refraction seismology, Geophys. J. R. Astron. Soc., 3, 419-432, 1960.
- Geophys. J. R. Astron. Soc., 3, 419-432, 1960. Zoback, M. L., and M. Zoback, State of stress in the conterminous United States, J. Geophys. Res., 85, 6113-6156, 1980.

(Received June 14, 1982; accepted October 22, 1982.)