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Figure S2, Related to Figure 2; Characterisation of GIT1 RNAi
(A) Western blotting of cortical neuron lysates transfected with either GIT1 or control RNAi 
constructs.  
(B) Summary graph of knockdown with GIT1 RNAi with GIT1 expression normalised to actin 
(GIT1 levels reduced to 43.0 ± 11.4 % of control, **p =0.002, n=4 experiments, values are 
mean ± SEM). 
(C,D) Analysis of dendrite length in neurons transfected with control or GIT1 RNAi. (C) Confo-
cal images of representative neurons, scale bar=40μm. (D) Bar graph of dendritic length, 
**p=0.006, n= 15 cells. Values are mean ± SEM.
(E,F) Coexpression of human GIT1 (hGIT1) with GIT1 RNAi rescues the effect of the GIT1 
knock-down surface GABAAR clusters (n=3 experiments,12-15 cells,***p=3x10-5, n.s. p=0.089). 
Values are mean ± SEM. 
(G,H)  30 min latrunculin-A treatment of neurons has no effect on extrasynaptic GABAAR 
clusters (p=0.68, n=15 cells). Values are mean ± SEM.
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Figure S3, Related to Figure 3; Characterisation of βPIX RNAi
(A) Western blotting of cortical neuron lysates transfected with either βPIX or control RNAi 
constructs.  
(B) Summary graph of knockdown with βPIX RNAi with βPIX expression normalised to actin 
(βPIX levels reduced to 51.3 ± 11.4 % of control, **p=0.002, n=5).  Values are mean ± SEM.  
(C,D) Neurons expressing control, GIT1 or βPIX RNAi and labelled with antibodies to 
GluA2-AMPA receptor subunit showed no change in AMPA receptor cluster area (no signifi-
cant difference, n=3, 15 cells). Values are mean ± SEM. 
(E,F)  Neurons expressing control, GIT1 or βPIX RNAi and labelled with antibodies to 
GABAAR-δ subunit showed no change in surface δ-subunit containing receptors (no signifi-
cant difference, n=3, 9-13 cells). Values are mean ± SEM. 
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Figure S4, Related to Figure 6; Effects of disrupting the GIT1/βPIX signalling pathway on inhibi-
tory neurotransmission
(A-E) Whole-cell recordings of sIPSCs from neurons transfected with GIT1 RNAi, βPIX RNAi, GFP-
PAK-AID or GFP control. 
(A) Representative traces showing a reduction in sIPSC amplitude in neurons expressing GIT1 RNAi, 
βPIX RNAi or GFP-PAK-AID compared with control neurons. 
(B,C) Cumulative distribution plots showing the sIPSC amplitude shifts to smaller sizes in neurons 
expressing GIT1 RNAi, βPIX RNAi or GFP-PAK-AID, whereas there is no change in sIPSC inter-event 
interval (C). 
(D,E) Summary bar graphs showing average sIPSC amplitude and interval of transfected neurons 
control neurons: 58.2 ± 5.4 pA, n=11, GIT1 RNAi neurons: 36.2 ± 1.8 pA, n=10, p=0.003, βPIX RNAi 
neurons: 36.0 ± 3.0 pA, n=11, p=0.004, PAK-AID neurons: 38.9 ± 3.1 pA, n=11, p=0.009. Values are 
mean ± SEM. 
(F) Summary bar graph showing average decay time constants for transfected neurons (GFP control, 
n=27; GIT1 RNAi, n=12, p=0.003; βPIX RNAi, n=17, p=0.004; GFP-PAK-AID, n=19, p=0.12,  non-
significant). Values are mean ± SEM. 
(G) Representative mEPSC traces from neurons transfected with GFP and βPIX RNAi. (H,I) Summary 
bar graphs of average amplitude and frequency of transfected neurons, GFP control, n=8; βPIX RNAi, 
n=7, p>0.05. Values are mean ± SEM.  
(J) Schematic showing the GIT1/βPIX/Rac1/PAK signalling pathway at inhibitory synapses.
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Supplemental Experimental Procedures 

Antibodies 

The following primary antibodies were used: rabbit anti-VGAT (Synaptic Systems (IF 

1:1000)), mouse anti-GAD6 was obtained from GAD6 hybridoma cells (IF, 1:100), 

mouse monoclonal to GFP (Neuromab)(WB supernatant 1:10, Affinity purified 1:100), 

guinea pig anti-γ2 (serum,(Kittler et al., 2001)(IF 1:100)), rabbit anti-Myc (Santacruz) (IP 

2 1:200), mouse monoclonal to β3 (supernatant (WB 1:10) and affinity purified (IF 

1:100), Neuromab), mouse monoclonal anti-gephyrin mAb 7a (Connex GmbH) (IF 

1:400), rabbit anti-gephyrin (Santa-Cruz) (IP 2ug), rabbit anti-gephyrin (Synaptic 

Systems, IF 1:500), rabbit anti-Homer (Synaptic Systems, IF 1:500), mouse anti-GIT1 

(Neuromab) (WB, supernatant 1:10, IF, affinity purified 1:200), mouse anti-Rac1 

(Millipore)(WB, 1:500, IF, 1:200), rabbit anti-βPIX (Millipore)(WB and IF, 1:500), 

Phospho-PAK (T423E)(Cell signalling, IF, 1:500), Alexa633-labelled phalloidin 

(Molecular probes, IF, 1:500), mouse anti-GluA2 (Millipore, IF, 1:500), δ-subunit 

antibody was a gift from T. Smart and described previously (Jones et al., 1997). 

cDNA cloning 

MycRac1 N17 (dominant negative construct) was a gift from Aron Jaffe. The GIT1, βPIX 

and scrambled control RNAi were inserted into the pSUPER vector using previously 

described sequences (Osmani et al., 2006; Twelvetrees et al., 2010; Zhang et al., 2005). 

GFP-PAK auto-inhibitory domain (PAK-AID) was made by inserting residues 70-150 of 

PAK into pEGFP (Clontech).  Human CFP-GIT1, PAK-CA (T423E) and GFP-βPIX were 

from Addgene (Addgene plasmids 15223, 12208 and 15234).  Human βPIX was 

generated by cloning the coding sequence into pDest-mCherry-N1 (Addgene plasmid 



31907) using the Gateway Cloning System (Invitrogen). Mutations for the SH3 domain 

and dominant-negative βPIX mutants were introduced by performing site-directed 

mutagenesis as previously described (Smith et al., 2012). 

Pharmacological treatments 

Neurons were incubated with the following compounds prior to biotinylation or 

immunofluorescence assays:  EHT (Tocris, 100 µM, 1 hr), Jasplakinolide (Millipore, 2µM, 

2 hours), IPA-3 (30 µM, 1 hour), Latrunculin-A (Tocris, 3 µM, 30 min). 

Neuronal transfections 

For biochemistry, cortical neurons were transfected by nucleofection (AMAXA) before 

plating (DIV 0) as previously described (Smith et al., 2010).  For whole-cell recordings, 

cortical neurons were transfected by Lipofectamine 2000 and recorded 2–3 days after 

transfection (Yuen et al., 2011).  For confocal imaging hippocampal neurons were 

transfected by either calcium phosphate or Lipofectamine 2000 transfection at DIV 10-11 

and expressed for 2-3 days (Twelvetrees et al., 2010). 

Slice electrophysiology 

Slices were placed in a perfusion chamber attached to the fixed stage of an upright 

microscope (Olympus) and submerged in continuously flowing oxygenated ACSF 

containing CNQX (25μM) and D-APV (25μM). Patch electrodes were filled with the 

following internal solution (in mM): 100 CsCl, 30 N-methyl-D-glucamine, 4 NaCl, 10 

HEPES, 1 MgCl2, 5 EGTA, 2 QX314, 12 phosphocreatine, 5 MgATP, 0.2 Na3GTP, 0.2 

leupeptin. A Multiclamp 700A amplifier was used for these recordings. Tight seals (2-10 

GΩ) from visualised pyramidal neurons were obtained by applying negative pressure. 



The membrane was disrupted with additional suction, and the whole-cell configuration 

was obtained. A bipolar stimulating electrode (FHC, Bowdoinham, ME) was positioned 

~100μm from the recording neuron. Membrane potential was held at -70mV.  To 

generate the input-output responses, a series of different stimulation intensities (50-

90μA) with the same duration of pulses (0.1ms) was used to elicit synaptic currents. 

Data analyses were performed with Clampfit (Axon instruments) and Kaleidagraph 

(Albeck Software). 

Coimmunoprecipitation assays from rat brain homogenate 

Coimmunoprecipitation experiments from brain were performed as previously described 

(Twelvetrees et al., 2010). Briefly, adult rat brain was homogenised in pull-down buffer 

(50 mM HEPES pH 7.5, 0.5 % triton X-100, 150 mM NaCl, 1 mM EDTA, 1mM PMSF 

with antipain, pepstatin and leupeptin at 10 µg/ml) and solubilised for 2 hours.  

Solubilised material was ultracentrifuged at 66,000 g for 40 minutes at 4°C and the 

supernatant (solubilised protein) was incubated with 2 µg of antibody overnight at 4°C.    

To precipitate complexes, 20 µl protein-A or –G beads were added for 1 hour at 4°C.  

Beads were then washed extensively and bound complexes were analysed by SDS-

PAGE and western blotting. 

GST pulldown assays from transfected COS7 cells 

GST pulldown assays were performed with bacterially expressed GST-β3 intracellular 

domain and lysates from COS7 cells expressing FLAG-GIT1, and have previously been 

described (Smith et al., 2012). 

 

Biotinylation assays 



Surface biotinylation assays have been fully described previously (Smith et al., 2010; 

Twelvetrees et al., 2010). Briefly, DIV 8-10 cortical neurons were incubated on ice with 

biotin solution (Sulpho-NHS-biotin(PIERCE) at 0.5 mg/ml in PBS containing Ca2+/Mg2+) 

and quenched with quench buffer (PBS Ca2+/Mg2+ containing 1 mg/ml BSA). Neurons 

were solubilised for 1 hour in RIPA buffer (50 mM Tris pH 7.5, 1 mM EDTA, 2 mM 

EGTA, 150 mM NaCl, 1% NP40, 0.5% DOC, 0.1% SDS, and 1 mM PMSF with antipain, 

pepstatin and leupeptin 10 µg/ml) and the lysates were then centrifuged to pellet cell 

debris. 15% of the supernatant was taken to use as a total protein sample and the 

remainder was incubated for 2h with 25 µl Ultralink immobilized NeutrAvidin (PIERCE) 

50% slurry at 4 °C to precipitate biotin labeled membrane proteins. Beads were washed 

three times in RIPA buffer and analysed by SDS-PAGE and western blotting. 

Biotinylated surface GABAARs were identified by using anti-β3 primary antibody and 

detection of enhanced chemilluminescence from HRP-coupled anti-rabbit secondary 

antibodies followed by detection with an ImageQuant LAS4000 mini imaging system and 

analysis with ImageQuant software (GE Healthcare). 

Immunofluorescence and confocal microscopy 

Neurons for surface staining were fixed with PFA (4% paraformaldehyde /4% sucrose/ 

PBS pH 7) for 6 minutes and blocked with block solution (PBS, 10 % horse serum, 0.5 % 

BSA) for ten minutes at RT. Neurons were incubated for 1 hour with primary antibody 

followed by washing and permeabilisation with block solution containing 0.2% Triton X-

100. Neurons were then incubated with a further round of primary antibody for any 

intracellular labelling and subsequently washed and incubated with appropriate Alexa-

fluorophore conjugated secondary antibodies for 1 hour (Molecular Probes 1:1000). After 

extensive washing, coverslips were mounted on microscope slides using ProLong Gold 



antifade reagent (Invitrogen) and sealed with nail varnish.  Neurons from sister cultures 

were used and at least 2 sections (25 µm) of dendrites from at least 3 cells per condition 

from at least 3 different experiments were imaged.  All images within a data set were 

obtained under the same conditions using a Zeiss 700 confocal microscope with a 63X 

oil objective (1.4 NA).  Images were digitally captured using ZEN software with excitation 

at 488nm for GFP and Alexa-Fluor 488, 555nm for Alexa-Fluor 543 and Alexa-Fluor 568 

and 633nm for Alexa-Fluor 647 and Cy5 conjugated secondary antibodies. Pinholes 

were set to 1 Airy unit creating an optical slice of 0.8µm. Using Metamorph software 

(Universal Imaging Corporation), a suitable threshold was selected for each data set and 

applied to all images and clusters above this threshold were measured.  Quantification of 

colocalisation was performed with 5-10 cells per experiment as described previously 

(Srivastava et al., 2012). ImageJ was used to generate deconvolved confocal images 

(NIH). Image stacks of 18 slices were acquired with voxel dimensions of 0.056μm x 

0.056μm x 0.25μm. The point spread function (PSF) for each channel was calculated 

using the Born and Wolf model within the PSF Generator plugin (Kirshner et al., 2013).  

Images were deconvolved using the Deconvolution Lab plugin (Vonesch and Unser, 

2008) and the Richardson-Lucy algorithm with 10 iterations. 

Statistical analysis 

All experiments were performed at least 3 times from different neuronal preparations. 

Unless otherwise stated, n numbers refer to the number of experiments performed from 

different preparations and number of cells analysed are stated per condition.  P-values 

were calculated from two-tailed t-test unless otherwise stated.  Values are given as 

mean ± SEM. Error bars represent SEM. 
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