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Toward predictive models for drug-induced liver 
injury in humans: are we there yet?

Drug-induced liver injury (DILI) is a clinical 
event that can be associated with severe outcomes 
such as acute liver failure [1]. Approximately 
1000 drugs, herbal products, vitamins and illicit 
compounds are associated with liver injury [2], 
albeit generally at a low frequency. These DILI 
events are mostly of an idiosyncratic nature and 
are host dependent [3,4]. DILI is also a major 
cause for the termination of drug development 
programs [5] and frequently results in regulatory 
actions including denied approval and black box 
warnings [6]. Notably, more than 50 approved 
drugs have been withdrawn from domestic mar-
kets in different countries worldwide owing to 
DILI [7,8]. 

Currently employed preclinical testing strate-
gies do not predict DILI in patients reliably [9], 
with less than 55 and 25% of DILI drugs being 
predicted based on the regulatory animal toxic-
ity studies and simple in vitro tests, respectively 
[10,11]. Major investments have therefore been 
made to reduce risk for DILI, including the 
search and validation of predictive biomarkers 
[12]. Diverse liver-related biological and chemical 
data have been deposited in the public domain 
to bridge the gap between DILI prediction and 
clinical outcome, enabling independent research 
teams to analyze the data. Turning data into 
knowledge remains a challenge, particularly 
with microarray-based toxicogenomic data sets. 
Likewise, very large relational databases can 
be generated by high-content screening (HCS) 
assays that simultaneously monitor multiple 

biological end points that become enormously 
valuable when combined with whole-genome 
toxicogenomics. However, these tests mostly 
rely on a limited number of drugs, which limits 
statistical power for developing robust predictive 
models. This review will focus on the current 
state of efforts to develop predictive models that 
can be used in preclinical studies for detecting 
DILI risk in humans.

Classification of drugs for DILI risk in 
humans
An improved understanding of DILI is vital for 
the development of accurate and useful predic-
tive models [13]. DILI is alleged to be either a 
drug’s inherent property or an idiosyncratic 
outcome peculiar to a case or individual; how-
ever, the value and validity of such a classifica-
tion is questionable and no conclusive evidence 
supports that intrinsic and idiosyncratic DILIs 
arise by different modes of action [14,15]. Here, 
we focused on the classification of DILI risk in 
humans instead.

Annotating a drug’s potential to cause DILI in 
humans is a huge undertaking in a clinical setting 
[16]. At least three attributes, including severity, 
causality and incidence, need to be considered 
when a drug’s DILI risk in humans is assessed 
[8]. The difficulty of accurate annotations can 
be attributed to factors such as the diverse and 
complicated clinical manifestation of DILI, 
the lack of sensitive and specific biomarkers for 
DILI diagnosis, the difficulties in determining 
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causality and the serious under-reporting of 
DILI cases. 

Some prominent data sources for the classifi-
cation of human DILI risk are listed in Table 1, 
and each are either case report-based approaches, 
drug compendium-based approaches or a com-
bination of these. Clinical investigators always 
prefer the case report-based approach. Suzuki 
et al. surveyed multiple well-documented and 
adjudicated DILI cases and developed a reposi-
tory including 319 drugs causing overall liver 
injury, 107  drugs causing acute liver failure 
and 47 drugs suspended or withdrawn from the 
market [17]. Likewise, drug compendia such as 
the Physicians’ Desk Reference are widely used 
as resources. Drug compendia are continually 
updated and provide judgmental information 
based on a body of comprehensive evidence 
and expert opinions. Chen et al. employed US 
FDA-approved drug labels to assess DILI risk 
in humans, categorizing drugs as of most-DILI-
concern, less-DILI-concern or no-DILI-concern 
[8]. The DILI concern classification is in a 
straightforward manner based on the drug label 
section and severity of DILI. Despite imperfec-
tions and limitations, drug labels reflect the 
serious thoughts and consensus of numerous 
experts and constitute one major public data 
source that comprehensively integrates case 
reports and compendia [8].

Most published DILI classifications are of 
case reports and compendia. Xu et al. defined a 
drug to be DILI positive, if it was either with-
drawn, not approved in the USA, issued with a 
boxed warning, marketed with warnings related 
to DILI or associated with a significant num-
ber (>10) of case reports of serious DILIs that 
met the criteria of the Hy’s law, which estimates 
risk of fatal DILI [18]. Sakatis et al. annotated 
a drug as DILI when at least 50  reports of 
clinical hepatotoxicity or three reports of life-
threatening events were recorded in a biblio-
graphic database of drug-related liver injuries 
and the Physicians’ Desk Reference [19].

In an effort for assessing the consistency of 
DILI classifications, four data sets were selected 
(the Suzuki et al. [17], Chen et al. [8], Xu et al. 
[18], and Sakatis et al. [19] data sets) as indicated 
in Supplementary Table 1 (see online at www.future-
medicine.com/doi/full/10.2217/BMM.13.146). 
The drugs qualified for analyses were only those 
that were classified in two or more data sets as 
well as belonging to the group of FDA-approved 
drugs. A drug was defined as equivocal classi-
fication when there was disagreement between 
any two data sets. Among the qualified drugs, 

181 drugs (74%) have consistent DILI classifica-
tion, and 64 drugs were equivocal. The equivocal 
drugs were further analyzed to identify in which 
label sections their DILI risk were disclosed. 
Some 15 drugs were in ‘Warning & Precautions’ 
(19% of the 77 ‘Warning & Precautions’ drugs), 
39 were in ‘Adverse Reactions’ (63% of the 62 
‘Adverse Reactions’ drugs), and ten were in ‘No 
Match’ (24% of the 41 ‘No Match’ drugs). 
Notably, the DILI lexeme ‘Adverse Reactions’ 
is quite debatable and accounts over 60% of the 
total 64 equivocal drugs. 

Predictive models from homogenous 
data 
The primary impediment to improving DILI 
prediction models and screening classifiers is 
the poor understanding of DILI mechanisms 
and pathogenesis. Models so far fall into three 
categories as determined by type of data used: 
first, chemical structure based; second, in vitro 
assay-based; and third, toxicogenomics based. 
The prominent predictive models selected from 
the literature are summarized in Table 2. Ani-
mal DILI models are not included since most 
are drug-specific studies (for a comprehensive 
review see [20]). 

�� Chemical structure-based in silico 
models 
Once the model has been developed, the chemi-
cal structure-based in silico model has the advan-
tage of rapidly screening an unlimited number 
of chemicals at minimal cost. The basic assump-
tion is that similar chemical structures have 
similar properties and toxicity profiles [21]. Use 
of structure-based models to screen for DILI has 
been limited, but efforts have nonetheless pro-
gressed [22] using both knowledge-based expert 
systems and quantitative structure–activity 
relationship (QSAR)-based approaches [23]. 

Knowledge-based models
The knowledge-based or expert system models 
are usually developed with commercial soft-
ware such as Derek for Windows (Lhasa Lim-
ited) from which structure alerts are derived. 
The structure alerts are chemical substructures 
or motifs the expert system statistically associ-
ates with the biological end point of interest. 
The validity of the structural alerts needs to be 
assessed by experts in order to minimize and 
balance false-positive and false-negative predic-
tions. Groups of chemicals with similar toxicity 
profiles are identified in order to ascertain the 
shared structural motifs associated with toxicity. 
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Table 2. Predictive models for assessing drug-induced liver injury risk in humans.

Data used Classification algorithm Performance assessment 
approach

Performance reported Ref.

Knowledge-based models

Structure alerts Derek for Windows 244 drugs Not reported [22]

Structure alerts Derek for Windows 137 drugs for EV 40% SEN [25]

Structure alerts Derek for Windows 623 compounds for EV 56% ACC; 46% SEN; and 73% 
SPEC

[26]

Structure alerts Toxmatch structural 
similarity tool

Not reported Not reported [21]

QSAR-based models

2D molecular descriptor Ensemble recursive 
partitioning 

382 drugs for CV CV: 76% ACC; 76% SEN; and 
75% SPEC

[27]

54 drugs for EV EV: 81% ACC; 70% SEN; and 
90% SPEC

Radial distribution function 
molecular descriptors

Linear discriminant analysis 74 drugs for CV CV: 84% ACC; 78% SEN; and 
90% SPEC

[28]

13 drugs for EV EV: 82% ACC

Molecular descriptors Four commercial QSAR 
programs

~1600 drugs for CV CV: 39% SEN; and 87% SPEC [29]

18 drugs for EV EV: 89% SEN

MolConnZ and Dragon 
molecular descriptor

k‑nearest neighbor 37 drugs for EV 84% ACC; 74% SEN; and 94% 
SPEC

[30]

2D fragments and Dragon 
molecular descriptors

Support vector machine 531 drugs for CV CV: 62–68% ACCs [31]

18 compounds for EV EV: 78% ACC

ECFC_6 molecular descriptors Linear discriminant analysis 295 compound for CV CV: 59% ACC; 53% SEN; and 
65% SPEC

[33]

237 compounds for EV EV: 60% ACC; 56% SEN; and 
67% SPEC

PaDEL molecular descriptor Ensemble of mixed learning 
algorithms

1087 compounds for CV CV: 68% ACC; 67% SEN; and 
70% SPEC

[32]

120 compounds for EV EV: 75% ACC; 82% SEN; 65% 
SPEC

ECFC_6 molecular descriptors Bayesian models Three data sets with 
40–148 drugs for EV

EV: 60–70% ACCs [34]

Mold2 chemical descriptor Decision forest 197 drugs for CV CV: 70% ACC [35]

Three data sets with 
190–348 drugs for EV 

EV: 62–69% ACCs

In vitro assay-based models

Five end points based on 
Hep G2 cell line

Logical OR algorithm 243 drugs for IV 80% SEN; and 90% SPEC [41]

Four end points based on 
human primary hepatocyes

Decision tree 344 compounds for CV 50–60% SENs; and 
95–100% SPECs

[18]

Four end points based on 
mouse liver mitochondria

Logical OR algorithm 114 compounds for IV 92% SEN; and 82% SPEC [40]

Five end points based on 
Hep G2 cell line

Logical OR algorithm 78 drugs for IV 94% SEN; and 92% SPEC [39]

Four end points based on 
human primary hepatocytes

Logical OR algorithm 45 drugs for IV IV: 66% SEN; and 90% SPEC [42]

19 drugs for EV EV: 100% SEN

ACC: Accuracy; CV: Cross-validation; EV: External validation; GSH: Glutathione; IV: Interval validation; MDI: CYP450 metabolism-dependent inhibition; 
QSAR: Quantitative structure–activity relationship; SEN: Sensitivity; SPEC: Specificity.
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Robust structure alerts with mechanistic impli-
cations have been used as screening tools to 
identify potential toxins and to mitigate the risk 
of idiosyncratic drug toxicity [24]. 

Egan et al. reported 74 structure alerts for 
predicting liver toxicity using a collection of 
244 molecules [22]. Most of the structure alerts 
were functional groups related to reactive or 
toxic metabolites. The authors did not evaluate 
the performance but stated that prediction accu-
racy of alerts was limited. Later, Marchant et al. 
derived structure alerts from both propriety and 
literature data [25]. Their alerts were able to iden-
tify 40% of 137 chemicals in one published data 
set, but the sensitivity dropped to 23% when 
challenged by another set of 300 hepatotoxins. 
The authors claimed that the performance 
could be further improved by using applicability 
domains defined by lipophilicity and molecular 
weight. Hewitt et al. utilized a published data 
set comprising of 951 compounds having anno-
tated DILI risk to develop structural alerts for 
DILI prediction [21]. Mechanistic rationales for 
the alerts were proposed, but the predictive per-
formance was not adequately assessed. Greene 
et al. developed 23 DILI structure alerts based 
on the literature knowledge and assessed its per-
formance using 623 compounds from a Pfizer-
developed data set [26]. An overall accuracy of 
56% was reported with 46% sensitivity and 
73% specificity.

QSAR-based models
QSAR models have been developed using 
supervised machine learning methods where 
chemical structure is encoded by calculated 
molecular descriptors. Given adequate chemi-
cals both active and inactive, QSAR approaches 
can be faster since the need for expert opinion 
is averted. 

Cheng and Dixon were among the first to 
report a QSAR model for DILI prediction [27]. 
Some 149 hepatotoxins with dose–response data 
and 233 nonhepatotoxins comprised the training 
set for a classifier developed with recursive par-
titioning trees. Leave-10%-out cross-validation 
yielded 76% accuracy and the external validation 
on a hold-out data set of 54 drugs was of similar 
order, that is, 81% accuracy. Cruz-Monteagudo 
et  al. employed several different classifiers to 
develop a predictive model based on 74 selected 
drugs [28]. Internal cross-validation yielded 
accuracies of 78–86% for classifiers, and 82% 
accuracy for an external data set of 13 hepato-
toxins. Matthews et al. developed models for 
five types of DILI using QSAR programs based 
on approximately 1600  chemical structures 
[29]. Their best model exhibited 39% sensitiv-
ity and 87% specificity estimated from inter-
nal cross-validation and 89% sensitivity on an 
external validation set of 18 hepatotoxic drugs. 
Roger et al. reported a QSAR model based on 
approximately 200  selected drugs from the 
FDA’s human liver adverse event database [30]. 
The model yielded 84% accuracy, 74% sensitiv-
ity and 94% specificity for predicting composite 
liver enzyme score assessed on an external valida-
tion set of 37 drugs. Fourches et al. developed 
QSAR classification models with a training set of 
248 hepatotoxins and 283 nonhepatotoxins, and 
reported cross-validation accuracies of 62–68%, 
and 78% accuracy for an external validation set 
with 18 compounds [31]. 

Despite the fact that some of the previous 
reports presented moderately high predictive 
accuracy, their external validation sets are often 
quite small, consisting of only 20–50  drugs. 
Among the published models with larger exter-
nal validation sets, the predictive performance 
seems to be less favorable. For example, Liew 

Table 2. Predictive models for assessing drug-induced liver injury risk in humans (cont.).

Data used Classification algorithm Performance assessment 
approach

Performance reported Ref.

In vitro assay-based models (cont.)

Six end points based on 
Hep G2 cell line

Zone classifier 102 drugs for IV 45% SEN; and 100% SPEC [43]

Covalent binding assay and 
daily dose

Ordinal logistic regression 
analysis

36 drugs for IV 80% ACC; 77% SEN; and 86% 
SPEC

[45]

GSH adduct formation, marked 
CYP450 MDI or covalent 
binding assay

Decision tree 223 drugs for IV IV: 73% ACC; 45% SEN; and 
90% SPEC

[19]

10 compounds for EV EV: 70% ACC

ACC: Accuracy; CV: Cross-validation; EV: External validation; GSH: Glutathione; IV: Interval validation; MDI: CYP450 metabolism-dependent inhibition; 
QSAR: Quantitative structure–activity relationship; SEN: Sensitivity; SPEC: Specificity.
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et al. reported a QSAR model for DILI predic-
tion [32]. When applied to an external validation 
of 120 compounds, the model achieved 75% 
accuracy, 82% sensitivity and 65% specificity. 
Ekins et al. developed a predictive ligand-based 
Bayesian QSAR model for assessing human 
DILI using a training set of 295 compounds [33]. 
It achieved 60% accuracy with 56% sensitivity 
and 67% specificity on an external validation 
set with 237 drugs. Liu et al. developed a DILI 
prediction system based on a group of in silico 
predictive models using 13 selected DILI-rel-
evant end points [34]. Accuracies of 60–70% 
were achieved when assessed by three external 
validation sets with a total of >200 drugs. Chen 
et al. developed a QSAR model using Mold2 
molecular descriptors, a decision forest algo-
rithm and a training set with 197 drugs [35]. The 
model achieved 69, 62 and 63% accuracies when 
assessed by three separate external validation 
sets having a total of approximately 500 drugs. 
Notably, the three studies (i.e., Liew et al. [32], 
Ekins et al. [33] and Chen et al. [35]) and except 
for Liu et al. [34] employed a relative balance of 
hepatotoxic-positive and -negative drugs in the 
validation sets. 

Considering the applicability domain of a 
model, as determined by the chemical space of 
the training set, is a powerful way to ascribe con-
fidence to predictions [36]. If a chemical’s struc-
ture is within the applicability domain of the 
model, there will be greater confidence in a given 
prediction of an untested chemical. By contrast, 
if a chemical’s structure is outside the domain, 
prediction confidence will be low. An applicabil-
ity domain has been successfully applied to the 
prediction of end points with well-established 
mechanisms by attaching statistical confidence 
to individual predictions [37,38]; however, some 
studies reported no such benefit when used for 
DILI prediction [32,33,35]. For example, Liew et al. 
reported that chemical structure-based applica-
bility domain did not delineate separate catego-
ries of high-confidence and low-confidence pre-
dictions, with corresponding higher and lower 
prediction accuracy, respectively [32], and these 
observations were confirmed independently 
[33,35]. Instead, Chen et al. proposed a therapeutic 
categories-based applicability domain approach 
and demonstrated its superiority in the predic-
tion of DILI when assessed by three independent 
external validation sets [35]. 

�� In vitro assay-based models
Due to its requirement for a low quantity 
of drug substances and the possibility of 

high-throughput screening, in vitro assays have 
been widely used in preclinical testing. How-
ever, conventional cytotoxicity assays employing 
a single end point have poorly correlated (mostly 
<25% sensitivity) with human DILI outcomes 
[11], an unremarkable results given that the assay 
has little to do with putative mechanisms and 
pathogenesis of DILI. Simultaneous use of mul-
tiple in vitro models could improve results as 
a broader spectrum of molecular mechanisms 
would be encompassed, some of which might be 
associated with DILI. HCS assays that simulta-
neously measure multiple end points and associ-
ated cellular reactions offer an opportunity to 
detect changes of DILI-related molecular signals 
in live cells with higher sensitivity [39,40].

One of the first reports using HCS for 
hepatotoxicity employed the HepG2 (human 
hepatoma) cell line [41]. The HCS assay tested 
243  drugs/chemicals that were a mixture of 
hepatotoxins, nontoxins and those known to be 
toxic in organs other than liver. Five mechanis-
tic end points (i.e.,  intracellular calcium level, 
mitochondrial membrane potential [MMP], 
cell number, nuclear area and plasma mem-
brane permeability) were measured. A predic-
tive model based on a simple logistical combina-
tion of the measured end points reported 80% 
sensitivity and 90% specificity. Later, Xu et al. 
developed a primary human hepatocyte-based 
HCS assay and tested over 300 drugs/chemicals 
at a single concentration of 100-times human 
the therapeutic plasma concentration C

max
 [18]. 

Four related assays (nuclear and lipid content, 
intracellular glutathione, mitochondrial dam-
age and oxidative stress) were measured after a 
24‑h cell incubation. A predictive model based 
on a random forest algorithm yielded sensitivi-
ties of 50–60% and specificities of 95–100%. 
Considering the rapid deterioration of primary 
hepatocytes cultured under conventional condi-
tions, Khetani et al. developed a micropatterned 
co-culture liver model that enabled long-term 
dosing in functionally viable hepatocytes [42]. 
They tested 45 drugs along with four standard 
cytotoxic end points (i.e., glutathione, ATP level, 
albumin and urea secretion). The human pri-
mary hepatocytes model yielded 66% sensitivity 
and 90% specificity. More recently, Persson et al. 
reported a HepG2 assay based on six parameters 
(nuclei counts, nuclear area, plasma membrane 
integrity, lysosomal activity, MMP and mito-
chondrial area) [43]. They developed a zone clas-
sifier based on nuclei count, MMP and human 
C

max
, and reported 45% sensitivity and 100% 

specificity when tested on 102 selected drugs. 
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Predictive models derived from other in vitro 
assays that improve prediction of DILI have 
also appeared. For example, covalent binding 
is a measure of chemically reactive metabolites, 
but alone is insufficient to discriminate positive 
from negative hepatotoxic compounds [24,44]. 
Nakayama et al. developed a zone classifier using 
an ordinal logistic regression analysis based on 
daily dose and covalent binding [45]. It correctly 
identified 17 out of 22 hepatotoxic drugs (77% 
sensitivity) and 12 out of 14 safe drugs (86% 
specificity). More recently, Sakatis et al. devel-
oped a testing strategy using a decision tree 
algorithm based on assays for covalent binding, 
daily dose, CYP450 metabolism inhibition and 
glutathione adducts [19]. The model was assessed 
using 113 hepatotoxic-positive and 110 -negative 
marketed drugs and reported 45% sensitivity 
and 90% specificity. Additionally, the in vitro 
models like those for screening intrahepatic 
cholestasis allow insight into the underlying 
mechanisms of DILI [46].

Notably, most of the in vitro-based predictive 
models required drug exposure data (i.e., human 
C

max
). These data are commonly determined in 

human safety and efficacy studies and may pos-
sibly be predicted at the preclinical stage. Jones 
et al. predicted C

max
 with reasonable accuracy 

using in  silico and in vitro data [47]. However, 
the predictions are far from perfect and tend to 
generally underestimate C

max
 [48].

�� Toxicogenomics-based models
The HCS assays alone can only offer limited 
sensitivities to identify liver liabilities of drugs 
mostly due to the mechanisms evolved in the 
available end points studied. In this regard, 
microarray-based technology enables unprece-
dented opportunities to comprehensively assess 
alterations in gene-expression profiles induced 
by hepatoxins. Consequently, the microarray 
technology was considered to be a groundbreak-
ing addition to conventional toxicology assays 
at its inception [49,50]. However, the progress 
in developing toxicogenomic predictive mod-
els has not been as effective as envisioned, 
partly due to their high cost and the lack of 
advanced knowledge discovery and data min-
ing tools [51]. Additionally, the transcriptomic 
approaches have been for end points not neces-
sarily relevant to DILI, that is, the measured 
altered gene expression might or might not be 
associated with mechanisms involving hepato-
cellular injury. Two large-scale toxicogenom-
ics data sets published recently, for example 
the Japanese toxicogenomics database [52] and 

DrugMatrix [53], might enable real progress in 
developing DILI prediction models [51]. 

Several toxicogenomic studies have been 
performed for characterizing DILI; however, 
only very few models have been developed for 
predicting human DILI based on toxicoge-
nomics data. Cha et al. developed a toxicoge-
nomic model based on HepG2 cells to predict 
human DILI risk of NSAIDs [54]. The model 
identified 77 discriminatory genes derived from 
measurements for eight hepatotoxic and eight 
nonhepatotoxic drugs, and successfully clas-
sified four additional NSAIDs. Zhang et  al. 
claimed that genomic biomarkers might not be 
more sensitive than the well-established mark-
ers of human DILI used in preclinical studies 
[55]. They demonstrated that the gene signatures 
derived from rats with abnormal ALT or bili-
rubin could predict human DILI, but the gene 
signatures derived from rats without ALT or 
bilirubin abnormal elevation cannot. Low et al. 
reported a toxicogenomic model derived from 
microarray data obtained from rat livers at 24 h 
after a single dose treatment, and the model was 
used to predict rat hepatotoxicity observed after 
28 days of continued exposure [56]. The predic-
tive model achieved a 76% correct classification 
rate (calculated as [sensitivity + specificity]/2)
when assessed by fivefold cross-validation. 

Metabolomics is yet another promising 
approach for discovering hepatotoxicity bio-
markers. The approach has the major advan-
tages of providing noninvasive sample collection 
and easy sample preparation and analysis [57,58]. 
A large-scale metabolomics study was reported 
that utilized the proton nuclear magnetic res-
onance spectra of rodent urine and serum to 
develop a predictive model for liver toxicity with 
67% sensitivity and 77% specificity [59]. Circu-
lating miRNAs also show potential to provide 
biomarkers of human DILI [60,61]. The miRNAs 
(miR‑122 and miR‑192) were observed to be 
significantly increased in the acetaminophen-
induced liver injury patients compared with the 
healthy controls [62].

Predictive models from 
heterogeneous data
Most published models were developed from 
a homogenous data source, that is, chemi-
cal structure-based, in  vitro assay-based or 
toxicogenomics-based data. Heterogeneous 
models employ one or more data types in an 
integrative approach. Rusyn et al. reviewed the 
efforts to predict in vivo toxicity by integrating 
chemical structure descriptors with in vitro assay 
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parameters to attain more predictive accuracy 
[63]. The heterogeneous models can be catego-
rized into data integration or model integra-
tion modes in accordance with the objectives 
laid out. 

�� Data integration
The data integration approach pools data from 
different sources prior to model development. 
Data integration from multiple sources can 
be challenging but provides opportunities to 
improve a model’s predictive power. For exam-
ple, Chen et al. analyzed 164 FDA-approved 
oral medications and showed an association of 
high daily doses (≥100 mg/day) and lipophi-
licity (partition coefficient [logP] ≥3) with sig-
nificant risk for DILI, thus defining a ‘rule-of-
two’ [64]. This principle was further applied and 
validated using an independent set of 179 oral 
medications, drug pairs with similar chemical 
structures and molecular targets, but different 
DILI potential, and to clinical case studies with 
complex comedication regimes. The authors 
demonstrated that the ‘rule-of-two’ caused fewer 
false positives than daily dose alone as a means 
of assessing risk for DILI in humans. Zhu et al. 
combined molecular descriptors from chemical 
structure and biological descriptors from in vitro 
assays to develop a hybrid model [65]. A fivefold 
cross-validation based on 156 DILI-positive and 
136 DILI-negative compounds indicated that 
the hybrid model performed slightly better than 
the QSAR model alone. Moreover, Low et al. 
utilized chemical descriptors and toxicogenomic 
profiles to develop a hybrid model for 127 drugs 
to predict rat hepatotoxicity [56]. Assessed by 
a fivefold cross-validation, the hybrid model 
reported a correct classification of 68–77%, 
while the QSAR and toxicogemonic models 
alone reported a correct classification of 61 and 
76%, respectively. The authors emphasized that 
the use of chemical and biological descriptors 
enriched mechanistic understanding and thus 
the model development. 

Directly pooling data does not always work 
well for data integration, especially when the 
data structures of multiple data sources are dif-
ferent. Hence, an adaptor that does not com-
promise data integrity needs to be developed. 
Another type of indirect integration approach 
was developed by largely relying on advanced 
algorithms instead of a simple combination that 
incorporates different data sources together as a 
joint model. Consequently, it has the advantage 
of retaining the data structure of different data 
sources and mostly offers a better prediction [66]. 

Zitnik and Zupan developed a matrix factoriza-
tion-based data integration approach to predict 
DILI potential of drugs from a gene-expression 
data set [101]. The model was derived from data 
of 29  different sources and achieved better 
accuracy than the conventional methods when 
assessed by cross-validation.

�� Model integration
Alternatively, models can be integrated after 
being independently developed from multiple 
data sources. The model integration approaches, 
including model consensus, have the capacity 
to improve predictive power [63,67]. Chen et al. 
reported a testing strategy by combining the 
‘rule-of-two’ model with data from an in vitro 
HCS assay [Chen M, Tung C, Shi Q et al. Improve the 

prediction of in  vitro assays for drug-induced liver 

injury by the integration of the ‘rule-of-two’. (2013), 

Submitted]. Specifically, a primary rat hepato-
cyte-based HCS assay was used to further inves-
tigate the negative predictions from the ‘rule-of-
two’ model. Assessed by a set of 73 drugs with 
clear evidence for clinically relevant DILI, the 
integrated model improved the accuracies by 
approximately 10% and reduced the number 
of drugs requiring in vitro test by approximately 
20%, compared with the corresponding in vitro 
model alone.

Conclusion
Recent advances in preclinical testing strategies 
have improved our ability to identify drugs with 
risk for DILI. The construction of predictive 
models benefits from an integration of chemi-
cal structure, cellular end points, toxicogenom-
ics data and data from multiple sources. These 
models can generate a high specificity between 
90 and 95%, but perform less well for sensitivity 
(~50%). The limited power of DILI prediction 
is mostly attributed to the complex nature of 
DILI, a poor understanding of mechanisms, a 
scarcity of human hepatotoxicity data and insuf-
ficient bioinformatics capabilities. Altogether, 
the currently reported models have not demon-
strated superiority of the predictive power over 
the regulatory-required animal toxicity studies, 
but the evolution of DILI study will continue to 
refine testing strategies. 

Future perspective
The lack of an in-depth understanding of DILI 
mechanisms limits the development of improved 
DILI models. However, the continuing research 
efforts will result in knowledge gain that can 
be translated into novel testing strategies, thus 
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leading to better predictive models. For example, 
an in vitro approach that assays for the effects 
of cytokines was proposed to screen drugs with 
inflammation-associated idiosyncratic hepato-
toxicity [68]. The assay was conceived from the 
observation that idiosyncratic hepatotoxicity 
for certain drugs has been reproduced in ani-
mals with mild inflammatory stress induced by 
bacterial LPS [9,20].

Despite the difficulty of performing mecha-
nistic studies for idiosyncratic DILI, significant 
progress has been realized in identifying an asso-
ciation between carriers of specific HLA haplo-
types and DILI events for some specific drugs 
[61]. For drugs such as flucloxacillin, abacavir, 
lapatinib, lumiracoxib, ticlopidine and ximela-
gatran that do not cause hypersensitivity, as seen 
for an immune-related response, an association 
between the HLA phenotype and risk for DILI 
was determined [12,69]. A large-scale genome-
wide association study suggested a more signifi-
cant role of common variants of immune-coding 
genes than those involved in drug metabolism 
or transport in the predisposition to DILI [70,71]. 
Similarly, the application of next-generation 
sequencing technologies (i.e., RNA-Seq) may 
help to identify rare functional variants underly-
ing disease that are potentially associated with 
DILI events [71]. The clinical use of genetic 
association data in identifying DILI-susceptible 
patients is hurdled by the infrequent allele fre-
quencies and a low incidence of drug-specific 
DILI events [71]. However, an understanding 
of the role of HLA in DILI events will stimu-
late the generation of more powerful predictive 
models for DILI [72]. 

Furthermore, enabling technologies based on 
pluripotent stem cells [73], organ-on-chips [74], 
zebrafish [75] and humanized mouse models [76] 
will provide powerful tools to investigate DILI 
mechanisms. Notably, the rapidly advancing 
research in stem cells raises possibility of using 
human pluripotent stem cells to provide more 
standardized hepatocytes for in  vitro testing 
strategies [73]. The stem cell-derived hepato-
cytes represent a new cell source for the exist-
ing human primary hepatocyte model compared 
with thawed hepatocytes after cryopreservation 
and freshly-isolated hepatocytes. Until now, the 
stem cell-derived hepatotocyte systems are not 
fully validated and most of applications are still 
in research. Additionally, it is also promising to 
combine organotypic liver culture models based 
on hepatocytes and immune cells, the latter of 
which could be derived from patients who have 
experienced DILI [77]. 

The scarcity of human hepatotoxicity data 
in the public domain is another hindrance to 
developing predictive models. Due to the lack of 
sensitive and specific biomarkers for DILI diag-
nosis in clinical practice, DILI assessment is 
still largely a diagnosis of exclusion. The causal-
ity assessment of a DILI case is a laborious task 
and requires expert knowledge [78]. The need 
to comprehensively collect human hepatotox-
icity data remains and the drug labeling-based 
approach seems to be more reliable, mostly 
owing to the intensive involvement of experts’ 
knowledge and the reliance on comprehensive 
data collection [8]. Meanwhile, many efforts 
to collect the human hepatotoxicity data have 
been explored, including the NIH’s LiverTox 
database [79,102] and the FDA’s Liver Toxicity 
Knowledge Base (LTKB) [80,103].

Advanced computational techniques are also 
needed to mine the data and develop models 
with improved predictive power. Given the 
complexity of DILI mechanisms, a systematic 
approach is necessary to make full use of a wide 
range of information (experimental, clinical and 
computational) for the development of robust 
predictive models. Integrative models are prom-
ising, which can entrain specific algorithms to 
interrogate heterogeneous data and fuse them 
together in a joint model without distorting 
the modular structure of data from different 
sources. Network modeling is another promis-
ing approach to extract significant relationships 
among the features from heterogeneous data 
that benefit DILI mechanism studies [80]. Mean-
while, topic modeling has been demonstrated as 
a powerful text mining technique and demon-
strated its utility in mining the FDA drug labels 
by extracting/discovering the relationships of 
different concepts (e.g.,  drugs, diseases and 
mechanisms) presented in the documents [81]. 
Furthermore, a unifying ontology to integrate 
histological and clinical observations for DILI 
lexeme was recently reported to improve the 
development of advanced knowledge discovery 
and data mining tools across different public 
repositories [82]. Overall, the advancement of 
bioinformatics tools will boost the development 
of DILI predictive models and help improve the 
understanding of its mechanisms. 

For a complex end point such as DILI, a 
‘one-fits-all’ model might fail to generate suf-
ficient predictive performances. The success 
of applicability domains in the predictive 
model suggests that a proper stratification of 
drug space is essential. The therapeutic cat-
egories defined in the ontology of the WHO’s 
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Anatomical Therapeutic Chemical Classifica-
tion System were demonstrated to be a poten-
tial option [35]. Lastly, the predictive models 
should be validated, and their strengths and 
weaknesses should be fully assessed [83], which 
will be critical for their applications in drug 
development. 

DILI studies are a concerted effort and 
involve multiple disciplines such as clinical 
hepatology, preclinical toxicology, molecular 
biology, and bioinformatics; an integration 
of different expert knowledge is the founda-
tion for success. Several national and interna-
tional programs have been initiated, including 
but not limited to: the AASLD-FDA-NIH-
PhRMA  –  Hepatotoxicity Special Interest 
Group Conference [104], the DILI network 
project of the NIH [105], the DILIsym project 
of the Hamner Institutes for Health Sciences 
[106], the Virtual Liver Project (v-Liver™) of the 
US Environmental Protection Agency [107] and 
the Virtual Liver Network project funded by 
the German government [108]. All these efforts 
will improve our understanding of the com-
plicated mechanisms of DILI to create better 
testing strategies that will reduce the time and 
cost of drug development and ultimately benefit 
patient safety.
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Executive summary

Background
�� Insufficient predictive power of the current preclinical testing strategies has lead to a significant drug-induced liver injury (DILI) safety 
issue in the drug development program.

Classification of human DILI risk is vital for developing robust predictive models
�� The consistencies among different DILI annotations are reasonably high.

�� DILI lexeme ‘Adverse Reactions’ is debatable, which accounts for most of drugs with equivocal annotations.

Predictive models derived from homogenous or heterogeneous data
�� The in vitro-based predictive models generally performed better than the chemical structure-based models.

�� The integrative models from heterogeneous data sources demonstrated an improved predictive performance.

Novel predictive models on the horizon
�� An association between HLA allele haplotypes and DILI risk for some drugs implicates the significant role of variants of immune-coding 
genes.

�� Stem cell-derived hepatocytes represent a promising alternative model for DILI study.

Conclusion
�� The currently reported models have not demonstrated superiority over the regulatory-required animal toxicity studies, but the evolution 
of DILI study will continue to refine testing strategies.
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