

Supporting Information © Wiley-VCH 2014

69451 Weinheim, Germany

A d¹⁰ Ni–(H₂) Adduct as an Intermediate in H–H Oxidative Addition across a Ni–B Bond**

W. Hill Harman, Tzu-Pin Lin, and Jonas C. Peters*

anie_201308175_sm_miscellaneous_information.pdf

Supporting Information

Contents

Experimental Part	
NMR Spectra	4
IR Spectra	
X-Ray Diffraction Data	
DFT Calculations	

Experimental Part

General considerations. Unless otherwise noted, all manipulations were carried out using standard Schlenk or glovebox techniques under a dinitrogen atmosphere. Solvents were dried and deoxygenated by sparging with dinitrogen and passage through activated alumina in a solvent purification system from SG Waters USA, LLC. Non-halogenated solvents were tested with a standard purple solution of sodium benzophenone ketyl in tetrahydrofuran in order to confirm effective oxygen and moisture removal. All reagents were purchased from commercial suppliers and used without further purification unless otherwise noted. [MesDPBPh]Ni $(1)^{1}$ and ^{Ph}DPB^{iPr} $(3)^2$ were synthesized by previously reported procedures. Elemental analyses were performed by Midwest Microlab, LLC, Indianapolis, IN. Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc., degassed, and dried over activated 3Å molecular sieves prior to use. ¹H and ¹³C chemical shifts are reported in ppm relative to tetramethylsilane using residual solvent ¹H and ¹³C resonances as internal standards. ³¹P and ¹¹B chemical shifts are reported in ppm relative to 85% aqueous H₃PO₄ and BF₃·Et₂O, respectively. Solution effective magnetic moments (μ_{eff}) were determined by Evans' method.³ Optical spectroscopy measurements were taken on a Cary 50 UV-vis spectrophotometer using a 1 cm two-window quartz cell. IR spectra were obtained on KBR pellet samples using a Bio-Rad Excalibur FTS 3000 spectrometer or as a thin film on a Bruker Alpha FT-IR spectrometer with a diamond ATR attachment.

X-ray crystallography. Single crystal X-ray diffraction studies were carried out at the Beckman Institute Crystallography Facility on a Bruker Kappa Apex II diffractometer using Mo K α radiation ($\lambda = 0.71073$ Å). Crystals were mounted on glass fibers. Structures were solved using SHELXS and refined against F^2 on all data by full-matrix least squares with SHELXL. Relevant details for individual data collections are reported in Tables S1 and S2.

¹ Harman, W. H.; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 5080-5082.

² Bontemps, S.; Bouhadir, G.; Dyer, P. W.; Miqueu, K.; Bourissou, D. *Inorg. Chem.* **2007**, *46*, 5149–5151.

³ a) Evans, D. F. J. Chem. Soc. **1959**, 2003; b) Bain, G. A.; Berry, J. F. J. Chem. Ed. **2008**, 85, 1–5.

[^{Ph}DPB^{iPr}]NiBr (4). 3 (500 mg, 1.05 mmol) and Ni(cod)₂ (145 mg, 0.527 mmol) were dissolved in THF (15 mL). NiBr₂ (115 mg, 0.527 mmol) was added to this solution as a solid, and the resulting suspension was stirred rapidly. After 5 hours the deep red/orange mixture was filtered over celite and concentrated to 1 mL. Layering with pentane (15 mL) gave the title complex as deep red crystals (510 mg, 79%). Single crystals suitable for X-ray diffraction were grown by the slow diffusion of pentane vapor into a saturated benzene solution. μ_{eff} (Evan's method): 1.70 B.M. Anal. Calcd for C₃₀H₄₁BBrNiP₂: C, 58.78; H, 6.74; N, 0. Found: C, 58.52; H, 6.81; N, 0.

[^{Ph}DPB^{iPr}]Ni(N₂) (5). 4 (319 mg, 0.521 mmol) was dissolved in THF (10 mL) and stirred vigorously over Na/Hg amalgam (3 g, 1% wt, 1.30 mmol) resulting in a gradual color change to dark red-brown. After 16 hours, the supernatant was decanted from the remaining Hg and filtered. The volatiles were removed from the filtrate *in vacuo*. (The solution turns blue-green when exposed to vacuum.) The resulting brown residue was dissolved in benzene and filtered to give a red-brown solution that was lyophilized. The resulting residue was dissolved in pentane and concentrated to dryness three times to give a deep red powder. ¹H NMR (400 MHz, C₆D₆) δ 8.11 (d, *J* = 7.8 Hz, 2H), 7.33 – 7.23 (m, 4H), 7.20 (m, 3H), 6.98 (d, *J* = 7.4 Hz, 2H), 6.84 (t, *J* = 7.3 Hz, 2H), 2.54 (h, *J* = 7.1 Hz, 2H), 2.03 (h, *J* = 7.3 Hz, 2H), 1.13 (p, *J* = 7.1 Hz, 18H), 0.76 (q, *J* = 6.7 Hz, 6H). ¹¹B NMR (128 MHz, C₆D₆) δ 19.97. ³¹P NMR (162 MHz, C₆D₆) δ 46.61. ¹³C NMR (75 MHz, C₆D₆) δ 137.6, 132.4, 131.7, 129.4, 129.3, 125.3, 124.5, 27.6, 24.0, 20.3, 19.8, 12.4, 12.1 (assignments of the ¹³C resonances are provided in Figure S8). IR (KBr): 2152 cm⁻¹ (*v*_{NN}). UV-vis (THF, nm {M⁻¹cm⁻¹}): 479 {2400}. Anal. Calcd for C₃₀H₄₁BBrNiP₂: C, 64.22; H, 7.36; N, 4.99. Found: C, 63.83; H, 7.30; N, 4.45.

[^{Ph}DPB^{iP}]Ni(H₂) (7). In J. Young NMR tube, **5** was dissolved in toluene- d_8 and subjected to four freeze-pump-thaw cycles on a high vacuum line. Hydrogen was introduced while the solution remained frozen in liquid nitrogen. After allowing the solution to thaw, the tube was shaken vigorously and inserted into a precooled NMR probe. ³¹P and ¹H NMR spectra and T_1 measurements were recorded from 193–303 K in 10 K intervals. Formation of the dihydride species **8** was detected at temperatures above 273 K. The partially deuterated analog was prepared in an analogous fashion by substituting HD for H₂. ¹H NMR (500 MHz, toluene- d_8 , 273 K) δ 8.08 (d, J = 7.4 Hz, 2H), 7.28 (t, J = 7.4 Hz, 2H), 7.25–7.21 (m, 2H), 7.18 (t, J = 7.3 Hz, 2H), 7.09–7.04 (m, 1H), 6.80 (d, J = 5.2 Hz, 4H), 2.45 (h, J = 7.2 Hz, 2H), 1.94 (p, J = 7.2 Hz, 2H), 1.09 (dq, J = 14.4, 7.0 Hz, 12H), 1.05–0.99 (m, 6H), 0.73 (q, J = 6.6 Hz, 6H). ¹¹B NMR (128 MHz, C₆D₆, 273 K) δ 19.99. ³¹P NMR (202 MHz, toluene- d_8 , 273 K) δ 51.41. ¹³C NMR (100 MHz, toluene- d_8 , 233 K) δ 162.4, 161.5, 132.5, 131.7, 129.3, 124.22, 117.6, 116.6, 27.3, 27.0, 23.7, 22.1, 19.9, 19.5, 19.1 (three of the aromatic ¹³C resonances overlapped with the solvent peaks and were not observed, see Figure S10 for details).

[^{Ph}DPB^{iPr}](μ -H)NiH (8). In a typical preparation, 5 (~7 mg) was dissolved in C₆D₆ (0.7 mL) and the solution transferred to a J. Young resealable NMR tube. The tube was subjected to three freeze-pump-thaw cycles on a high vacuum line and refilled with H₂. Higher pressures (up to 3.8 atm) were achieved by cooling the tube during gas addition. The tube was inverted constantly for 16 h, at which point the reaction was complete by NMR. Although the rate of H₂ loss from 5 is slow, exposure to vacuum or N₂ result in H₂ loss, precluding the isolation of this material as a pure solid. The deuterated analog [^{Ph}DPB^{iPr}](μ -D)NiD was prepared in an analogous fashion by substituting D₂ for H₂. ¹H NMR (400 MHz, C₆D₆) δ 7.67 (d, *J* = 7.5 Hz, 2H), 7.31 (d, *J* = 7.4 Hz,

2H), 7.27–7.14 (m, 4H), 7.08 (t, J = 7.2 Hz, 1H), 7.03 (s, 4H), 2.09–1.93 (m, 1H), 1.08–0.94 (m, 18H), 0.74 (q, J = 7.4 Hz, 6H), -6.65 (s, 1H), -16.11 (td, ${}^{2}J_{PH} = 58.9$ Hz, ${}^{2}J_{HH} = 12.5$ Hz, 1H). ¹¹B NMR (128 MHz, C₆D₆) δ –2.28. ³¹P NMR (162 MHz, C₆D₆) δ 64.32. IR (ATR film): 1814 cm⁻¹ (v_{NiH}). UV-vis (THF, nm {M⁻¹cm⁻¹}): 500 {500}.

Kinetics experiments on the formation of 8 from 7. In a typical experiment, 5 (~7 mg) was dissolved in C₆D₆ (0.7 mL) and the solution transferred to a J. Young resealable NMR tube. The tube was subjected to three freeze-pump-thaw cycles on a high vacuum line and refilled with H₂. Higher pressures were achieved by cooling the tube during gas addition. The tube was allowed to reach room temperature, shaken vigorously and inserted into a temperature controlled NMR probe. Automated single transient scans were collected at fixed intervals. Integration data was processed using MestreNova and fit to a three parameter exponential expression of the form $y = a + be^{ct}$ where c = -k.

Kinetics experiments on the equilibrium between 1 and 2. A J. Young NMR tube was charged with 1 (~10 mg), C_6D_6 (0.7 mL) and placed under H₂ (1 atm). ¹H 2D-EXSY spectra were recorded with mixing times of 0 and 500 ms at 298 K. Data workup was performed with EXSYCalc.⁴ Resonances corresponding to the mesityl aryl protons used for kinetic analysis.

⁴ Lu, J.; Ma, D.; Hu, J.; Tang, W.; Zhu, D. J. Chem. Soc., Dalton Trans. 1998, 2267–2274.

Figure S1. Variable temperature ¹H NMR spectra of 7 under H_2 in toluene- d_8 .

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Figure S2. ¹H NMR spectrum of 7 under a mixture of H_2 and HD.

		30 °C
anita kanangananganangan akanangan na kanangan kananganang	nnangalanna. An marail lan nan Analyn an maraidal An Maraille	nimaanahantaanahyinaanayinaanahanaanahanaanahanaanahanaanahanaana
เกิดไม้สายให้ และกับสายังไป ประเทศ เพรียงกันแล้าการระบันให้สียใน เพราะนำให้ได้และประเทศได้หน่อยู่ได้สื่นมีมาแปล เกิดไม้สายให้ และกับสายใน ประเทศ เพรียงกันแล้าการระบันให้สียใน เพราะนำให้ได้และประเทศได้หน่อยู่ได้สื่นมีมาแปล สายแรง การให้เ		20°C
ar dhe fa a fillean nahalla ann fillean faeil far ai feadhlanach a da a na a in bitean ni fear i leitean faind i an na sun an a le	na dinatan da sa sa dinanda kan unkarta dinanta da finad	averale and a second
การการกระบาทสุกษณฑรรรมสาวารสุกษณฑรรรมสาวสุกษณฑรรณรรมสาวารมีระชาสุกษณฑรรรมสาวารสุกษณฑรรรมสาวารสุกษณฑรรรม	มหมุดอนการการสมบันชุดอาการสมบันชุดอาการการการการการการการการการการการการการ	
		0 °C
***************************************	an a	-10 °C
๛๛๛๛๚๚๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	าประกระบบไหน่มีรูปว่าไปสนสมบบไกรรังสมเหลาให้บารว่าสนสระบุษัตริหารับสน
		–20 °C
พไฟฟ้ามฟ้าไม่หมายรูปที่ไปมาพูหลาริโหยได้มากาฟุตรไฟซ์มฟรีเทาวิทารท่อฟุตุกุยมครามไฟทากไทยงาทาพบุทิตรูปทุกไหยไหยูไห เป็นฟ้ามฟ้าไม่หมายรูปที่ไปมาพูหลาริโหยได้มากาฟุตรไฟซ์มฟรีเทาวิทารฟตุตุกุยมครามไฟทากไทยงาทาพบุทิตรูปทางไปประกับไ	แหลงๆ กับเกิด การการการการการการการการการการการการการก	ดไทยเงค์ไฟฟร์ พรามารถสามารถสามารถสามารถ (ไม่สามารถ และ เป็นสามารถ (ไม่สามารถ และ เป็นสามารถ (ไม่สามารถ (ไม่สามา สามารถสามารถสามารถสามารถสามารถสามารถสามารถ (ไม่สามารถ (ไม่สามารถ (ไม่สามารถ (ไม่สามารถ (ไม่สามารถ (ไม่สามารถ (ไม
arban an h-nikani un tuwana daadaan mikita adi waka an tu kwalarinadah witaci nanan na nita ndiri kitaana.	ก และการกับเข้ามาก เข้ามาก การกับเรื่อง เพราะไปเป็นการกับการการการการการการการการการการการการการก	-30 °C
		-40 °C
¹ ////////////////////////////////////		-50 °C
		–60 °C
***************************************	**************************************	
		–70 °C
รงพระพัฒนาเป็นการสราวแขนของมายในปีที่หลุ่มการสราวมากครับรายายการสราวที่มีการสราวที่ได้สราวที่ได้สราวที่ได้สราวท การสราวที่สุดที่สุดการสราวที่มีที่มีสราวที่ได้ที่สุดสราวที่สาวที่สาวที่สาวที่มีสาวที่มีการสราวที่สาวที่มีสาวที่ไ	wayara any ang wayara ang ang ang ang ang ang ang ang ang an	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
างสีมาในปีเป็นกับการแก้นแปลเป็นในเป็นเป็นการการการการการการการการการการการการการก	พกนพท และเพาะเพาะเพาะเพาะเพาะเพาะ	0° 08- 1000-000-000-000-000-000-000-000-000-0
150 100 ppm	50	0

Figure S3. Variable temperature ³¹P spectra of 7 in toluene- d_8 under H₂. The dynamic process observed here corresponds to the helical inversion of the complex between enantiomeric C_1 structures, rendering the two ³¹P nuclei distinct at low temperature.

Figure S4. Sample kinetic data for the conversion of **7** to **8** at 25 °C. Spectra collected every 300 s. Every 12th spectrum shown.

Figure S5. Kinetic data for the conversion of 7 to 8 at 298 K in C_6D_6 . Black lines represent three-parameter exponential fits to the data.

Figure S6. 2D-EXSY spectrum of an equilibrium mixture of 1 and 2 under H₂ in C₆D₆ at 298 K.

Figure S7. Excerpt of the aromatic region of the 2D-EXSY spectrum of an equilibrium mixture of 1 and 2 under H_2 in C_6D_6 at 298 K.

Figure S12. Infrared spectrum of 5 as a KBr pellet.

Figure S13. Infrared spectra of (a) **8** (solid blue) and $\mathbf{8}$ - d_2 (dashed red) as thin films on a diamond ATR plate and (b) the corresponding spectral subtraction.

Table S1. Crystal data and structure refinement for $[^{Ph}DPB^{iPr}]NiBr$ (4).

Empirical formula	$C_{30}H_{41}BBrNiP_2$		
Formula weight	613.00		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	orthorhombic		
Space group	$P2_{1}2_{1}2_{1}$		
Unit cell dimensions	a = 12.9449(10) Å	a= 90°	
	b = 13.6196(11) Å	b=90°	
	c = 33.276(2) Å	g = 90°	
Volume	5866.7(7) Å ³		
Z	8		
Density (calculated)	1.388 Mg/m ³		
Absorption coefficient	2.150 mm ⁻¹		
F(000)	2552		
Crystal size	0.38 x 0.31 x 0.24 mm ³		
Theta range for data collection	1.93 to 35.68°.		
Index ranges	-21<=h<=21, -22<=k<=22	2, -54<=1<=54	
Reflections collected	224981		
Independent reflections	27096 [$R_{int} = 0.0527$]		
Completeness to theta = 35.68°	99.9 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.6264 and 0.4955		
Refinement method	Full-matrix least-squares	on F^2	
Data / restraints / parameters	27096 / 0 / 647		
Goodness-of-fit on F ²	1.027		
Final R indices [I>2sigma(I)]	$R_1 = 0.0229$, w $R_2 = 0.0486$		
R indices (all data)	$R_1 = 0.0279$, w $R_2 = 0.0498$		
Absolute structure parameter	0.0069(19)		
Largest diff. peak and hole	0.375 and -0.286 e.Å ⁻³		

Table S2. Crystal data and structure refinement for $2 [{}^{Ph}DPB^{iPr}]Ni(N_2) 0.5 \{ [{}^{Ph}DPB^{iPr}]Ni \}_2(N_2)$ (5 and 6).

Empirical formula	$C_{30}H_{41}BN_{1.67}NiP_2$		
Formula weight	556.44		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	triclinic		
Space group	<i>P</i> –1		
Unit cell dimensions	a = 10.8095(9) Å	a= 70.162(2)°	
	b = 18.0174(14) Å	b= 81.012(2)°	
	c = 24.613(2) Å	$g = 74.536(2)^{\circ}$	
Volume	4334.4(6) Å ³		
Z	6		
Density (calculated)	1.279 Mg/m ³		
Absorption coefficient	0.803 mm ⁻¹		
F(000)	1774		
Crystal size	0.30 x 0.15 x 0.13 mm ³		
Theta range for data collection	1.76 to 33.04°.		
Index ranges	-16<=h<=16, -27<=k<=2	7, - 37<=1<=37	
Reflections collected	155107		
Independent reflections	32473 [$R_{int} = 0.0580$]		
Completeness to theta = 33.04°	99.0 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.9028 and 0.7947		
Refinement method	Full-matrix least-squares	on F^2	
Data / restraints / parameters	32473 / 0 / 988		
Goodness-of-fit on F ²	1.013		
Final R indices [I > 2sigma(I)]	$R_1 = 0.0437, wR_2 = 0.0968$		
R indices (all data)	$R_1 = 0.0695, wR_2 = 0.1079$		
Largest diff. peak and hole	2.795 and -1.355 e.Å ⁻³		

Computational methods. Electronic structure calculations were performed using the Gaussian03⁵ or Gaussian09⁶ packages. The relative energies of reasonable isomers of the postulated structure were first compared using the B3LYP or M06L functional as indicated with a 6-31G(d) basis set. After locating an unambiguous global minimum, the resulting structure was further optimized with the 6-31+G* or 6-311++G** basis set, as indicated. Table S3 shows selected metrical parameters for 5 as determined by X-ray diffraction and various computational methods. Overestimation of the Ni-(B,C) distance by B3LYP calculations is a general trend in these systems, hence our use of the M06L functional. Transition state searches were begun from guesses and optimized via the quadratic synchronous transit method. Frequency calculations were performed to confirm the optimization to a true saddle point. Intrinsic reaction coordinate calculations were used to insure that the identified transition state went on to the desired product. In the case of the pathway containing TS2, there is a very shallow minimum approaching the transition state corresponding to rotation of the H₂ ligand. The coordinates for this structure and the transition state preceding it are given in Tables S14 and S15 below. See Figure S9 for a graphical explanation. Preliminary transition state calculations with B3LYP gave energies that were dramatically lower (10-20 kcal/mol) than the corresponding calculations with M06L, consistent with the tendency for B3LYP to underestimate transition state energies. Free energies were computed from frequency calculations. The NBO analysis is performed at the same level of

⁵ Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. ⁶ Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.

Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.

Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.

Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E.

Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.

A. J. Austin, K. Cammi, C. Pomein, J. W. Ochterski, K. L. Martin, K. Morokuma, V. G.

Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Forozman, J. V. Ortiz, J. Cioclavuski, and D. J. Forozman, J. W. Ortiz, J. Cioclavuski, and D. J. Forozman, J. W. Ortiz, J. Cioclavuski, and D. J. Forozman, J. W. Ortiz, J. Cioclavuski, and D. J. Forozman, J. W. Ortiz, J. Cioclavuski, and D. J. Forozman, J. W. Ortiz, J. Cioclavuski, and D. J. Forozman, J. W. Ortiz, J. Cioclavuski, and D. J. Forozman, J. W. Ortiz, J. Cioclavuski, and D. J. Forozman, J. W. Ortiz, J. Cioclavuski, and D. J. Forozman, J. W. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and D. J. Forozman, J. Y. Ortiz, J. Cioclavuski, and J. Cioclavuski, and J. Cioclavuski, and J. J. Cioclavuski, and J. J. Cioclavuski, and J. J. Cioclavuski, and J. Cioclavuski, and J. Cioclavuski, and J. J. Cioclavuski, and J. Cioclavuski, and

B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

theory using NBO 3.0 program.⁷ The electron density of the optimized structures of complexes 7 and 7' were subjected to an Atoms-In Molecules⁸ analysis using AIM2000.⁹

			В	3LYP	M06L		
	X-I	ray	6-31+G*	6-311++G**	6-31+G*	6-311++G**	
Ni–B	2.2006(17)	2.1806(19)	2.193	2.199	2.195	2.208	
Ni-P1	2.2283(5)	2.1972(5)	2.243	2.249	2.199	2.218	
Ni–P2	2.2077(5)	2.2360(5)	2.265	2.271	2.221	2.238	
Ni–C _{ipso}	2.1702(16)	2.1492(16)	2.282	2.297	2.164	2.174	
Ni–C _{ortho}	2.4842(16)	2.6595(17)	2.779	2.782	2.567	2.543	
Ni–N	1.8612(14)	1.8510(15)	1.854	1.871	1.843	1.861	
Σ(∠C-B-C)	352.6°	352.5°	351.0°	350.7°	352.5°	352.7°	
N–N	1.102(2)	1.101(2)	1.120	1.111	1.129	1.121	

Table S3. Selected distances [Å] and angles $[^{\circ}]$ for $[^{Ph}DPB^{iPr}]Ni(N_2)$ (5) from X-ray diffraction and DFT calculations, as indicated.

Figure S14. Energy diagram for H_2 cleavage by [^{Ph}DPB^{Me}]Ni.

⁷ Weinhold, F.; Landis, C. R. *Valency and Bonding*; Cambridge University Press, 2005.

⁸ R. F. W. Bader *Atoms in Molecules: A Quantum Theory*; Oxford University Press: Oxford, 1994.

⁹ F. B. Konig; J. Schonbohm; D. Bayles J. Comput. Chem. 2001, 22, 545-559.

Figure S15. Comparison of the calculated structures $(M06L/6-31+G^*)$ of 7 (top) and an analogous hypothetical alkene complex 7' (bottom) showing the homology between the B–Ph donor and an alkene donor.

Table S4. Selected distances [Å] and angles [°] calculated for 7 and 7' (M06L/6-31+G*).

	7	7'
Ni–B	2.193	_
Ni–C1	2.168	2.012
Ni–C2		2.009
Ni-P1	2.194	2.192
Ni-P2	2.178	2.185
∠P–Ni–P	119.6°	116.0°
H–H	0.829	0.834

Figure S16. Calculated electron density contour plots for 7 (left) and 7' (right) with (3, -1) bond critical points. The maps are drawn in the plane containing Ni, B1, and C1 for 7 and Ni, C1, and C2 for 7'.

	Critical Point	7	7'
	dNi (Å)	1.160	0.992
N: $D1$ (or $C2$)	dB1 (or dC1) (Å)	1.041	1.017
NI-B1 (or C2)	$\rho(\mathbf{r})$ (e bohr ⁻³)	0.067	0.099
	$\mathbf{L} = -1/4 \nabla^2 \rho(\mathbf{r})$	-0.011	-0.042
	dNi (Å)		0.997
N: C1	dC (Å)	а	1.015
NI-CI	$\rho(\mathbf{r})$ (e bohr ⁻³)	-	0.097
	$\mathbf{L} = -1/4 \nabla^2 \rho(\mathbf{r})$		-0.047
\mathbf{P}_{1} (cos \mathbf{C}_{2}) \mathbf{C}_{1}	dB1 (or C1) (Å)	0.516	0.725
	dC2 (Å)	1.065	0.696
$\mathbf{D}\mathbf{I} (0\mathbf{\Gamma} \mathbf{C} 2) - \mathbf{C}\mathbf{I}$	$\rho(\mathbf{r})$ (e bohr ⁻³)	0.167	0.287
	$L = -1/4 \nabla^2 \rho(r)$	0.005	0.170

Table S5.	Bond	critical	points	associated	with	the	Ni-B	and	Ni-C	interactions	in	comple	exes	7
and 7' .														

^{*a*}A bond critical point could not be found.

Table S6. Optimized coordinates (Å) for [^{Ph}DPB^{iPr}]Ni(N₂) (5) (B3LYP/6-31+G*).

С	2.66800000	0.61200000	-0.65900000
С	-0.03500000	1.72500000	1.31700000
С	-1.27000000	2.22400000	1.80800000

Н	-2.08700000	2.36800000	1.10900000
С	1.74000000	1.67300000	-0.68900000
С	-0.99400000	1.66900000	-1.26400000
С	1.01100000	1.61400000	2.27300000
Н	1.99900000	1.31400000	1.94300000
С	-0.98900000	2.77400000	-2.14200000
Н	-0.11400000	3.41300000	-2.19100000
С	-2.15100000	0.84700000	-1.28600000
С	-3.23500000	2.30100000	-2.91000000
Н	-4.09700000	2.54700000	-3.52500000
С	-1.45500000	2.57500000	3.14200000
Н	-2.41200000	2.97400000	3.47100000
С	-3.26100000	1.18000000	-2.08000000
Н	-4.15700000	0.56400000	-2.05700000
С	-3.77200000	-0.83000000	0.53600000
Н	-4.47900000	-0.94300000	-0.29700000
С	3.17200000	-1.96200000	0.74000000
Н	4.06300000	-2.03700000	0.10400000
С	-2.01000000	-2.09800000	-1.50700000
Н	-1.23600000	-1.75100000	-2.20000000
С	-0.40800000	2.41700000	4.06200000
Н	-0.55300000	2.68400000	5.10600000
С	0.82500000	1.93600000	3.62200000
Н	1.65000000	1.82700000	4.32200000
С	2.24200000	2.95000000	-1.01400000
Н	1.58000000	3.81300000	-0.99800000
С	1.81700000	-1.88600000	-1.90400000
Н	1.10500000	-2.70600000	-1.75000000
С	-2.08300000	3.09000000	-2.95100000
Н	-2.03800000	3.95700000	-3.60600000
С	4.02700000	0.81100000	-0.95000000
Н	4.73000000	-0.01800000	-0.90800000
С	-1.51000000	-3.41700000	-0.88500000
Н	-2.28600000	-3.90900000	-0.28800000
Н	-0.64200000	-3.26100000	-0.23700000
Н	-1.22500000	-4.11800000	-1.68000000
С	3.59100000	3.15500000	-1.31100000
H	3.94700000	4.15600000	-1.54800000
С	1.26200000	-0.95700000	-2,99900000
H	2.01000000	-0.21200000	-3.29000000
Н	0 36800000	-0 41100000	-2 68800000
H	1.01100000	-1.54600000	-3.89200000
C	-4.18500000	0.41700000	1.33300000
Ĥ	-5.21100000	0.28800000	1.70300000
Н	-4.16400000	1.32500000	0.72300000
Н	-3.53400000	0.57000000	2.19900000

С	-3.28600000	-2.34300000	-2.32600000
Н	-3.09300000	-3.11700000	-3.08100000
Н	-3.62000000	-1.44700000	-2.85700000
Н	-4.11300000	-2.70400000	-1.70200000
С	3.14900000	-2.48800000	-2.38400000
Н	3.00200000	-2.95400000	-3.36800000
Н	3.54100000	-3.26100000	-1.71500000
Н	3.91700000	-1.71500000	-2.50500000
С	4.49100000	2.08400000	-1.28200000
Н	5.54300000	2.24300000	-1.50400000
С	2.67000000	-3.38500000	1.04300000
Н	3.45500000	-3.95800000	1.55200000
Н	2.39300000	-3.93800000	0.13800000
Н	1.79600000	-3.36400000	1.70200000
С	3.57300000	-1.24300000	2.03700000
Н	2.71700000	-1.12600000	2.71000000
Н	3.99000000	-0.24900000	1.84300000
Н	4.33700000	-1.82900000	2.56500000
С	-3.88200000	-2.07700000	1.43100000
Н	-3.15200000	-2.04800000	2.24700000
Н	-3.73500000	-3.01000000	0.88000000
Н	-4.88200000	-2.12000000	1.88300000
Ni	-0.05200000	-0.50200000	0.81800000
Р	-2.04700000	-0.67100000	-0.24300000
Р	1.87500000	-0.98300000	-0.22300000
Ν	-0.19600000	-1.49200000	2.37900000
Ν	-0.31900000	-2.03300000	3.35200000
В	0.21400000	1.40700000	-0.22800000

Table S7. Optimized coordinates (Å) for $[{}^{Ph}DPB^{iPr}]Ni(N_2)$ (5) (B3LYP/6-311++G**).

С	2.66353600	0.61611600	-0.67085400
С	-0.03928100	1.73627900	1.29751900
С	-1.26811000	2.25018400	1.78152800
Н	-2.08345400	2.39149400	1.08380200
С	1.72701100	1.66614600	-0.70969200
С	-1.00641000	1.64868000	-1.27526400
С	1.00519500	1.63066000	2.25036300
Н	1.99018800	1.32558400	1.92329500
С	-1.00442000	2.74384500	-2.16078000
Н	-0.12935900	3.37845200	-2.22350100
С	-2.16372800	0.83283900	-1.28093400
С	-3.25308600	2.27335500	-2.90287700
Н	-4.11725400	2.51843200	-3.51074800

С	-1.44672800	2.61692500	3.10863200
Н	-2.39715800	3.02741800	3.43378600
С	-3.27667500	1.16118500	-2.06711400
Н	-4.17120200	0.54979900	-2.03339100
С	-3.76642900	-0.83749200	0.56228500
Н	-4.47703400	-0.94539700	-0.26396400
С	3.19700100	-1.93827400	0.74736000
Н	4.08339400	-2.00287500	0.10875300
С	-2.03099700	-2.10795100	-1.49716300
Н	-1.26673800	-1.75905100	-2.19575900
С	-0.40337500	2.46211100	4.02682500
Н	-0.54395800	2.74234300	5.06529000
С	0.82237800	1.96823400	3.59262200
Н	1.64554500	1.86437900	4.29168600
С	2.21566400	2.94222300	-1.04589000
Н	1.54794200	3.79690700	-1.03635600
С	1.83621300	-1.90161900	-1.88844700
Н	1.14413800	-2.73076300	-1.71409500
С	-2.10111700	3.05597100	-2.95971800
Н	-2.06046600	3.91568900	-3.62061800
С	4.01719800	0.82518200	-0.96477600
Н	4.72653200	0.00588900	-0.91724800
С	-1.52429400	-3.42396100	-0.88111700
Н	-2.28535300	-3.90814600	-0.26550800
Н	-0.64253000	-3.26794200	-0.25735700
Н	-1.26105300	-4.12809600	-1.67776200
С	3.55918400	3.15608800	-1.34499300
Н	3.90475100	4.15499800	-1.59063300
С	1.25002700	-0.99670300	-2.98437600
Н	1.97428600	-0.23587200	-3.28442200
Н	0.34676900	-0.47460500	-2.66918700
Н	1.00854000	-1.59562000	-3.86862200
С	-4.16425900	0.40788600	1.36492500
Н	-5.18219900	0.28127300	1.74877900
Н	-4.14975300	1.31383700	0.75686900
Н	-3.50210900	0.55848700	2.21976100
С	-3.31670600	-2.34804800	-2.29998700
Н	-3.13748300	-3.12700300	-3.04925300
Н	-3.64619800	-1.45596800	-2.83414400
Н	-4.13741200	-2.69640100	-1.66700100
С	3.17489100	-2.48112100	-2.37126700
Н	3.02710400	-2.96999000	-3.34032500
Н	3.59203700	-3.22689300	-1.69314500
Н	3.91955500	-1.69442000	-2.51955200
С	4.46667700	2.09666200	-1.30777700
Н	5.51459600	2.26375500	-1.53190600

С	2.71496500	-3.36523500	1.05463500
Н	3.50198100	-3.92154300	1.57393200
Н	2.45649400	-3.92628200	0.15354000
Н	1.83712400	-3.35417500	1.70467400
С	3.59175400	-1.20743100	2.03808700
Н	2.73805600	-1.09761100	2.71071200
Н	3.99677000	-0.21342000	1.83751900
Н	4.36095600	-1.78004700	2.56684900
С	-3.87027700	-2.08714100	1.45131100
Н	-3.12985700	-2.06604700	2.25488100
Н	-3.73732000	-3.01518100	0.89464000
Н	-4.86051600	-2.12552200	1.91695400
Ni	-0.04893700	-0.51066800	0.82078900
Р	-2.05248200	-0.68152600	-0.23452900
Р	1.88888900	-0.98268900	-0.21935800
N	-0.18262100	-1.49217000	2.40780200
Ν	-0.27938100	-2.00317400	3.38931300
В	0.20499700	1.39718000	-0.24264300

Table S8. Optimized coordinates (Å) for $[^{Ph}DPB^{iPr}]Ni(N_2)$ (5) (M06L/6-31+G*).

C	2 (000/700	0.00505000	0.05002000
C	2.68086/00	0.80585200	-0.05883900
С	0.00343500	0.43069500	2.07830300
С	-1.23481800	0.43527100	2.76728000
Н	-2.03509600	1.07011500	2.38495600
С	1.79405900	1.69900900	0.57277100
С	-0.91836900	2.14523500	0.16153500
С	1.02208900	-0.39214700	2.62787400
Н	2.01783100	-0.36411400	2.18600600
С	-0.89051100	3.55040500	0.21025400
Н	0.00177200	4.05506700	0.58018600
С	-2.08555100	1.55172400	-0.37632000
С	-3.14209100	3.71614900	-0.64941400
Η	-4.00088200	4.31731500	-0.94494800
С	-1.44621700	-0.31990600	3.91099100
Η	-2.40913000	-0.27841500	4.42032800
С	-3.18950600	2.32885300	-0.74863700
Η	-4.09633600	1.85054600	-1.12248700
С	-3.71910900	-0.84714100	-0.15841600
Η	-4.40691100	-0.29628800	-0.82125600
С	2.97795200	-2.02381000	-0.79086900
Н	3.89479800	-1.69409200	-1.30499700
С	-1.90218400	-0.52376800	-2.43774800
Н	-1.12329800	0.19507500	-2.73101700

С	-0.42775500	-1.14592100	4.40444700
Н	-0.59869400	-1.74996800	5.29475700
С	0.80433100	-1.17997000	3.76250300
Н	1.60599800	-1.81201500	4.14446800
С	2.35152100	2.86533300	1.12137000
Н	1.71713700	3.56926900	1.66178100
С	1.71543400	-0.08438500	-2.59425000
Н	0.97891300	-0.75784400	-3.05856800
С	-1.97731900	4.32609300	-0.18484800
Н	-1.92053300	5.41247000	-0.12076800
С	4.05559100	1.05146900	-0.13234400
Н	4.72219400	0.33034700	-0.60977200
С	-1.39147700	-1.92184200	-2.78640100
Н	-2.16275300	-2.68951500	-2.65287000
Н	-0.53381400	-2.20894300	-2.16291500
Н	-1.07795300	-1.96272000	-3.83899200
С	3.71880100	3.12541100	1.04182400
Н	4.12345000	4.03318400	1.48878100
С	1.21296800	1.35279500	-2.71222200
Н	1.99314700	2.06225800	-2.40721700
Н	0.33793100	1.55529500	-2.08263100
Н	0.94386200	1.57857400	-3.75270900
С	-4.08460700	-0.52507800	1.28402200
Н	-5.11740400	-0.83732700	1.48882200
Н	-4.01069000	0.54714900	1.50208000
Н	-3.42864800	-1.05801100	1.98426900
С	-3.16499600	-0.18518700	-3.21817400
Н	-2.97558400	-0.26152600	-4.29750400
Н	-3.51515700	0.83462200	-3.02056500
Н	-3.98568700	-0.87770400	-2.98892100
С	3.04115000	-0.22585500	-3.33347500
Н	2.93961900	0.15664200	-4.35806700
Н	3.38869100	-1.26263500	-3.40545800
Н	3.82950700	0.36567200	-2.84791900
С	4.57746600	2.21846500	0.41937500
Н	5.64724400	2.41756800	0.37281600
С	2.37459200	-3.19551000	-1.55845700
Н	3.07730200	-4.03786900	-1.59987200
Н	2.11142700	-2.93289400	-2.59174400
Н	1.46055200	-3.55485600	-1.06762300
С	3.33844800	-2.42207300	0.63525200
Н	2.44562000	-2.72122600	1.20082500
Н	3.81740500	-1.59923400	1.18131800
Н	4.03321900	-3.27230500	0.63377600
С	-3.88809600	-2.33966700	-0.42370900
Н	-3.13275400	-2.93116900	0.10959900

Н	-3.81995900	-2.59137900	-1.48724900
Н	-4.87311200	-2.67587900	-0.07378800
Ni	-0.07383100	-0.87900400	0.35774100
Р	-1.99077000	-0.25898700	-0.57675700
Р	1.78485200	-0.59450100	-0.78180500
Ν	-0.29132100	-2.64422400	0.84063200
Ν	-0.46261700	-3.69855200	1.20621800
В	0.26675600	1.25352700	0.74935400

Table S9. Optimized coordinates (Å) for $[^{Ph}DPB^{iPr}]Ni(N_2)$ (5) (M06L/6-311++G**).

С	2.67908300	0.81851100	-0.04430800
С	-0.01316900	0.43002600	2.08133800
С	-1.24719500	0.44016700	2.77541600
Н	-2.03987700	1.08555200	2.40611300
С	1.78252700	1.69858000	0.58762000
С	-0.92797300	2.13912100	0.16100400
С	0.99926500	-0.40944100	2.61370200
Н	1.99253400	-0.37785900	2.17637900
С	-0.89752600	3.54292100	0.20568800
Н	-0.00605400	4.04576700	0.56806500
С	-2.09609200	1.54679700	-0.37121200
С	-3.15014400	3.70857300	-0.64011800
Н	-4.00692000	4.30869100	-0.93018200
С	-1.45816500	-0.32319900	3.91019300
Н	-2.41299900	-0.27623000	4.42624200
С	-3.19967400	2.32374100	-0.73842000
Н	-4.10575300	1.84879200	-1.10599000
С	-3.72783400	-0.85852600	-0.16655100
Н	-4.41124400	-0.30395000	-0.82464800
С	3.01200700	-2.00408300	-0.79748700
Н	3.92295900	-1.65838100	-1.30370600
С	-1.90896500	-0.51257700	-2.44572800
Н	-1.13246000	0.20952400	-2.72365000
С	-0.44773600	-1.16596100	4.38718200
Н	-0.61940900	-1.77434300	5.26995800
С	0.77733100	-1.20708600	3.73946200
Н	1.57102300	-1.84903200	4.11106200
С	2.32751000	2.86167500	1.15182700
Н	1.68700500	3.55297600	1.69349500
С	1.73999600	-0.06159700	-2.59556300
Н	1.01311400	-0.73882800	-3.06094300
С	-1.98394500	4.31696300	-0.18478800
Н	-1.92656700	5.39991400	-0.12378300

С	4.05099900	1.07462000	-0.10405900
Н	4.72468300	0.36554700	-0.57998000
С	-1.39197500	-1.90554200	-2.80473900
Н	-2.15516000	-2.67610300	-2.67131700
Н	-0.53131800	-2.18878000	-2.19087600
Н	-1.08672500	-1.93893600	-3.85636200
С	3.69097600	3.13118700	1.08520900
Н	4.08524700	4.03395300	1.54280000
С	1.22086400	1.37047200	-2.70189500
Н	1.98969000	2.08444700	-2.39076800
Н	0.34566700	1.55477200	-2.07398600
Н	0.95217200	1.60235300	-3.73741500
С	-4.09100400	-0.54615100	1.27832500
Н	-5.11848700	-0.86336000	1.48378600
Н	-4.02247600	0.52158700	1.50097200
Н	-3.43332700	-1.07792600	1.97213500
С	-3.16987100	-0.16852200	-3.22666200
Н	-2.97782900	-0.23564100	-4.30271900
Н	-3.52038600	0.84579100	-3.02339500
Н	-3.98759800	-0.86187900	-3.00734500
С	3.06931100	-0.18492500	-3.33121700
Н	2.96789700	0.20366200	-4.34990000
Н	3.42503600	-1.21418600	-3.41108700
Н	3.84800100	0.40836900	-2.84070400
С	4.55900500	2.23803800	0.46152200
Н	5.62408100	2.44456400	0.42574700
С	2.42474300	-3.17619900	-1.57667700
Н	3.13129900	-4.01094200	-1.61476800
Н	2.17188200	-2.91124400	-2.60766100
Н	1.51120300	-3.54332100	-1.09845500
С	3.36842100	-2.40696800	0.62813500
Н	2.47823900	-2.71657700	1.18529200
Н	3.83666000	-1.58645700	1.17936500
Н	4.06830900	-3.24849200	0.62584500
С	-3.89294800	-2.34897400	-0.44496600
Н	-3.13514500	-2.94080900	0.07743500
Н	-3.83034700	-2.58950700	-1.50738700
Н	-4.87125900	-2.69144200	-0.09326100
Ni	-0.07066000	-0.89394500	0.35851200
Р	-2.00120500	-0.26355200	-0.58206200
Р	1.80397700	-0.58626400	-0.78686300
Ν	-0.28061500	-2.68173200	0.82878700
Ν	-0.42553000	-3.73251800	1.19214600
В	0.25552600	1.25311200	0.75624800

Table S10. Optimized coordinates (Å) for $[{}^{Ph}DPB^{iPr}]Ni(H_2)$ (7) (M06L/6-31+G*).

C	2 64544200	0 42084100	0 60052700
C C	2.04344300	-0.42084100	0.00033700
C C	-0.00897900	-1.93400300	-0.94039400
С U	-1.29790000	-2.33900000	-1.30301400
II C	-2.08209400	-2.01228000	-0.349/1100
C C	1.73280000	-1.43004600	0.902/0400
C	-0.9/9/0100	-1.2082/300	1.34000300
C II	0.93061600	-1.88444300	-1.94/69200
H	1.93214600	-1.54593800	-1.68308/00
C	-0.98942300	-2.08413800	2.685/5300
H	-0.11653100	-2.69634900	2.91308500
C	-2.12091600	-0.45861700	1.32607000
C	-3.22901600	-1.39144400	3.26968100
Н	-4.09836800	-1.45109400	3.92317600
C	-1.51967700	-3.05065300	-2.57341900
Н	-2.47209300	-3.52569300	-2.80995900
С	-3.23804000	-0.54340700	2.16595400
Н	-4.12609600	0.05680700	1.96096000
С	-3.68678700	0.70684500	-0.83118200
Н	-4.38429200	0.99857100	-0.02892300
С	3.03835700	1.76389100	-1.32013700
Η	3.94277200	1.99172700	-0.73470400
С	-1.88510300	2.40364500	0.73513900
Η	-1.13523000	2.23852200	1.52250000
С	-0.52611800	-2.94579000	-3.55752100
Н	-0.70597900	-3.33681300	-4.55841400
С	0.69425700	-2.36248900	-3.24383900
Н	1.48120900	-2.29700900	-3.99567700
С	2.25638000	-2.55176700	1.62729400
Н	1.59928200	-3.38174000	1.89136100
С	1.72855000	2.20646300	1.26391200
Н	1.01425200	2.98319800	0.94989700
С	-2.08947000	-2.14949600	3.53725900
Н	-2.06303600	-2.80268400	4.40922100
С	4.01268400	-0.52407200	0.87619700
H	4.70113800	0.26507700	0.56659100
C	-1 32251400	3 45534000	-0 22050800
Ĥ	-2 06562000	3 78284500	-0 95751000
Н	-0 45415000	3 07449100	-0 77570500
H	-1.00797800	4.34977100	0.33556500
C	3 61601700	-2.65844000	1 91573600
Ĥ	3 99417400	-3 54692300	2 42101300
Ċ	1 18264700	1 51287700	2 50982100
Ĥ	1 93478800	0.83860600	2,93972700
	1.72.10000	5.05000000	, _, _, _, 00

Н	0.29227600	0.90546900	2.30659000
Н	0.92154900	2.25474500	3.27638100
С	-4.08275900	-0.67577500	-1.32996400
Н	-5.11139500	-0.65716200	-1.71469200
Н	-4.03547200	-1.43223800	-0.53748100
Н	-3.42549900	-1.00288800	-2.14518400
С	-3.16207700	2.89598600	1.40226500
Н	-2.97131500	3.83435500	1.94071300
Н	-3.55624500	2.17777700	2.13043400
Н	-3.95184800	3.10515600	0.66830400
С	3.06114800	2.87111100	1.58909800
Н	2.95450300	3.50652100	2.47873700
Н	3.43756000	3.50628300	0.77915400
Н	3.83086400	2.12225700	1.82151800
С	4.50088000	-1.64764500	1.53817100
Н	5.56494300	-1.74026400	1.75165700
С	2.47325300	3.06166800	-1.88587100
Н	3.19720200	3.54842200	-2.55232000
Н	2.20368900	3.78349400	-1.10336100
Н	1.56582700	2.86278800	-2.47451000
С	3.41368700	0.79763400	-2.43603700
Н	2.52976200	0.52009700	-3.02828200
Н	3.85581700	-0.12847800	-2.04710800
Н	4.14124300	1.25756200	-3.11783900
С	-3.79634600	1.72642800	-1.95914600
Н	-3.01704200	1.56481400	-2.71767800
Н	-3.70915100	2.76005300	-1.60711200
Н	-4.76740400	1.63480500	-2.46357700
Ni	-0.05758900	0.23203600	-1.03431800
Р	-1.97264600	0.70387300	-0.07424400
Р	1.79460100	0.98522800	-0.17079400
В	0.21203200	-1.29699800	0.48072200
Н	-0.58949600	0.71825400	-2.55754300
Н	0.22338300	0.88160500	-2.56687900

Table S11. Optimized coordinates (Å) for $[^{Ph}DPB^{iPr}]Ni(H_2)$ (7) (M06L/6-311++G**).

С	2.64521200	-0.42285000	0.60726700
С	-0.07713000	-1.94691700	-0.91381200
С	-1.30164000	-2.56463700	-1.26699500
Η	-2.08077700	-2.63466000	-0.51190100
С	1.72421400	-1.41961800	0.97626900
С	-0.98829700	-1.24201200	1.55157100

С	0.91999500	-1.90305800	-1.92211300
Н	1.91758700	-1.56080600	-1.66385300
С	-0.99627500	-2.04249600	2.70570700
Н	-0.12301700	-2.64229800	2.94472700
С	-2.13288500	-0.44431100	1.32348300
С	-3.24209900	-1.36478200	3.26718900
Н	-4.11152900	-1.42570600	3.91435400
С	-1.51957500	-3.09511900	-2.52524100
Н	-2.46423200	-3.58104600	-2.75335300
С	-3.25274200	-0.52969700	2.15674000
Н	-4.14161400	0.05814300	1.94211300
С	-3.69045700	0.70962600	-0.85202700
Н	-4.38909000	0.99331100	-0.05286300
С	3.06821600	1.74547100	-1.32728900
Н	3.96456300	1.96856500	-0.73451600
С	-1.89531800	2.41350600	0.72243800
Н	-1.14656000	2.24502500	1.50514400
С	-0.53031700	-2.99546500	-3.51149300
Н	-0.70824100	-3.40086900	-4.50299900
С	0.68349600	-2.39971600	-3.20945400
Н	1.46500400	-2.33998600	-3.96206200
С	2.23685600	-2.53986900	1.64780200
Н	1.57542800	-3.36029800	1.91464000
С	1.74713400	2.21717700	1.24947000
Н	1.03969700	2.98939700	0.92246400
С	-2.09879300	-2.10685200	3.54996800
Н	-2.07225500	-2.74706600	4.42709400
С	4.00981500	-0.53740000	0.88378200
Н	4.70417900	0.23842900	0.56872000
С	-1.33238900	3.46399500	-0.23438300
Н	-2.07284200	3.78977600	-0.96917200
Н	-0.46680500	3.08521400	-0.78699700
Н	-1.02077400	4.35651500	0.31941100
С	3.59274900	-2.65625500	1.93732400
Н	3.96181600	-3.54165000	2.44702800
С	1.18985400	1.53368400	2.49585900
Н	1.93593100	0.86540500	2.93689900
Н	0.30460900	0.92727900	2.28931500
Н	0.92352500	2.27884800	3.25231400
С	-4.07283300	-0.67372400	-1.35851100
Н	-5.09367500	-0.66006700	-1.75415000
Н	-4.03128900	-1.42926600	-0.57011300
Н	-3.40693800	-0.99419400	-2.16456900
С	-3.17195700	2.90395700	1.39166200
Н	-2.98285100	3.84207400	1.92422000
Н	-3.55986500	2.19041400	2.12180300

Н	-3.96185700	3.10834000	0.66209000
С	3.08109100	2.87831100	1.57601200
Н	2.97288700	3.51864200	2.45772700
Н	3.46261600	3.50454300	0.76683700
Н	3.84387000	2.13087400	1.81801000
С	4.48554500	-1.65821700	1.55394000
Н	5.54492300	-1.75947100	1.76816200
С	2.51877900	3.04350800	-1.90739500
Н	3.24858500	3.51472200	-2.57289700
Н	2.25560700	3.77275200	-1.13530000
Н	1.61497900	2.85001800	-2.49656200
С	3.44459800	0.76520600	-2.43050500
Н	2.56734400	0.49047800	-3.02703600
Н	3.87522800	-0.15703500	-2.03028300
Н	4.17982600	1.21111500	-3.10780500
С	-3.79721400	1.73509700	-1.97486800
Н	-3.00894800	1.58847100	-2.72190700
Н	-3.72822100	2.76352000	-1.61616500
Н	-4.75708900	1.63473400	-2.49121600
Ni	-0.05735000	0.23319300	-1.06046200
Р	-1.98241400	0.71141400	-0.08239200
Р	1.81165200	0.98660100	-0.17766800
В	0.20420300	-1.28840300	0.49523600
Н	-0.59354700	0.69127500	-2.56318700
Н	0.22426000	0.86965100	-2.57089800

 Table S12. Optimized coordinates (Å) for [^{Ph}DPB^{Me}]Ni(H₂) (M06L/6-31+G*).

2.54509000	-0.58485100	0.21022400
-0.16903600	1.09255300	-1.35374800
-1.43740400	1.46476800	-1.87784100
-2.20548700	0.69361000	-1.97241300
1.69175300	-0.81474600	-0.88413900
-0.97441800	-1.44462800	-0.77090500
0.80501800	2.12329000	-1.26048800
1.82646100	1.86080000	-0.98232700
-0.93819900	-2.60602700	-1.56261200
-0.06025600	-2.80843700	-2.17700600
-2.11845200	-1.25948000	0.03315400
-3.13270700	-3.28697500	-0.80758400
-3.96028700	-3.99494400	-0.82375500
-1.71189900	2.75780600	-2.28769600
-2.68811900	3.00275400	-2.70614600
	2.54509000 -0.16903600 -1.43740400 -2.20548700 1.69175300 -0.97441800 0.80501800 1.82646100 -0.93819900 -0.06025600 -2.11845200 -3.13270700 -3.96028700 -1.71189900 -2.68811900	2.54509000-0.58485100-0.169036001.09255300-1.437404001.46476800-2.205487000.693610001.69175300-0.81474600-0.97441800-1.444628000.805018002.123290001.826461001.86080000-0.93819900-2.60602700-0.06025600-2.80843700-2.11845200-1.25948000-3.13270700-3.28697500-3.96028700-3.99494400-1.711899002.75780600-2.688119003.00275400

С	-3.18667300	-2.16087300	0.00865200
Н	-4.06094000	-1.99575700	0.64240200
С	-3.64276800	1.03258100	0.91040400
Н	-4.49255100	0.34026600	0.97040800
С	2.98109900	1.16839800	2.46888000
Н	3.81652500	0.53281900	2.78961100
С	-2.33961000	-0.58548100	2.80612400
Н	-1.54395300	-1.29949900	3.04067700
С	-0.73376900	3.75800600	-2.16160000
Н	-0.95297300	4.77677000	-2.47938200
С	0.51538600	3.44169500	-1.64937900
Н	1.28306200	4.21078900	-1.56679700
С	2.25496400	-1.42261300	-2.01824300
Н	1.64009000	-1.58682400	-2.90494600
С	1.42276300	-1.17313200	2.76743100
Н	0.93772700	-0.81750800	3.68427400
С	-1.99754700	-3.50970600	-1.58805400
Н	-1.93820900	-4.39722100	-2.21765000
С	3.89497900	-0.94796400	0.18321500
Н	4.53828500	-0.75712000	1.04419300
С	3.60069700	-1.78303100	-2.05596000
Н	4.01516800	-2.23769700	-2.95548100
С	4.42518200	-1.55085300	-0.95415200
Н	5.47730000	-1.83084400	-0.98694500
Ni	-0.11117200	1.14630400	0.78956500
Р	-2.03296600	0.17481900	1.15557700
Р	1.67350000	0.22033500	1.58859600
В	0.17074500	-0.33922700	-0.79102300
Н	-0.66065600	2.64675500	1.32040500
Н	0.14737900	2.64892000	1.49715600
Н	-3.30105300	-1.11410600	2.84046700
Н	-2.34110800	0.19000300	3.58079600
Н	-3.65528300	1.52237200	-0.06924200
Н	-3.77148900	1.80618600	1.67624600
Н	3.37078500	1.95646200	1.81524600
Н	2.55607200	1.64669400	3.35815400
Н	2.37408500	-1.65243000	3.03217800
Н	0.77382500	-1.92290200	2.30048700

Table S13. Optimized coordinates (Å) for $[^{Ph}DPB^{Me}](\mu-H)NiH$ (M06L/6-31+G*).

С	-2.56738100	0.58043800	-0.02108200
С	1.20368300	1.84351400	-0.27476900

С	2.22669600	2.12264200	0.64513800
Н	2.28733500	1.53994200	1.56716000
С	-1.39485600	1.31593100	0.24808500
С	0.54944100	-0.34627100	1.12391700
С	1.18028800	2.62364500	-1.44431900
Н	0.39691700	2.43963500	-2.18412200
С	0.10335700	-0.18185200	2.44709600
Н	-0.65360700	0.57773800	2.65224000
С	1.52768800	-1.36008800	0.91301000
С	1.57000800	-1.91709200	3.27091100
Н	1.96498500	-2.51270100	4.09270900
С	3.17797000	3.11778500	0.41256600
Н	3,95875400	3.30567200	1,14997600
C	2.01694800	-2.13568500	1.97011100
Н	2.74805100	-2.92224100	1.77959300
С	3.21292900	-0.73101000	-1.47015900
Н	3.46803800	-1.05044200	-2.48696800
С	-3.49523400	-1.11777300	-2.19472100
Н	-4.52582000	-0.89108800	-1.89512500
С	2.57944300	-3.43691400	-0.84328700
Н	1.90494000	-4.14059400	-0.34666200
С	3.13472400	3.86599100	-0.76167100
Н	3.87892600	4.63889700	-0.95073500
С	2.12516400	3.61612900	-1.69255200
Н	2.07836200	4.19606700	-2.61452400
С	-1.57044000	2.58498500	0.82368200
Н	-0.68670300	3.18981400	1.03606300
С	-3.16563900	-2.21316400	0.41895200
Н	-3.17125800	-3.22891500	0.01038700
С	0.60258100	-0.94139900	3.50360900
Н	0.23471400	-0.77147100	4.51539300
С	-3.83890600	1.08287800	0.28244000
Н	-4.73246000	0.49372900	0.06273100
С	-2.83138600	3.09342900	1.12706900
Н	-2.92532500	4.08347000	1.57296200
С	-3.97539800	2.34243700	0.85711200
Н	-4.96432700	2.73747300	1.08541100
Ni	-0.26793900	-1.37619900	-1.08515700
Р	1.84707400	-1.76655500	-0.83177600
Р	-2.36004800	-1.07122900	-0.76071800
В	0.08187900	0.70476800	-0.02411000
Н	0.02844700	0.20844500	-1.23721900
Н	-0.57013900	-2.81078000	-1.29660100
Н	-4.19665000	-1.90455100	0.63093500
Н	-2.60075600	-2.22195900	1.35675900
Н	-3.47086600	-2.11221500	-2.65222900

Η	-3.17903500	-0.38577600	-2.94353700
Η	2.71306500	-3.76796800	-1.87830800
Η	3.55740100	-3.45975500	-0.34718900
Η	2.91338100	0.32074800	-1.49978600
Н	4.10104200	-0.82603300	-0.83379700

 Table S14. Optimized coordinates (Å) for TS1 (M06L/6-31+G*).

С	-2.62346000	0.52903600	-0.09439400
С	1.07070000	1.79685400	0.11547500
С	2.05541900	2.01634900	1.09571500
Н	2.07155900	1.37692400	1.98152000
С	-1.53424400	1.27071900	0.39867600
С	0.27763500	-0.58330800	1.15628100
С	1.08255100	2.66163900	-0.99507800
Н	0.32421200	2.52999200	-1.77044100
С	-0.56091300	-1.06449000	2.20393300
Н	-1.46758500	-0.49975500	2.43125700
С	1.43063800	-1.39418200	0.85056900
С	0.94658800	-2.88724900	2.70081800
Н	1.20999800	-3.74734900	3.31484000
С	3.01743600	3.01792000	0.96432000
Н	3.76769700	3.15866100	1.74293900
С	1.74851800	-2.52593100	1.63982100
Н	2.63181100	-3.11836500	1.40295100
С	3.56035800	0.09474800	-0.93228000
Н	4.17365600	-0.23166600	-1.78025300
С	-2.72884900	-0.63759000	-2.73320300
Н	-3.81881300	-0.51631500	-2.73525600
С	3.06747900	-2.65825000	-1.16849500
Н	2.39996500	-3.50996100	-1.01386200
С	3.02373100	3.83544900	-0.16405800
Н	3.77814600	4.61321000	-0.27686400
С	2.04412700	3.65648000	-1.14441800
Н	2.03459200	4.29715100	-2.02633400
С	-1.83679900	2.48133200	1.04791700
Н	-1.02033800	3.09888200	1.42689400
С	-3.13339800	-2.30862500	-0.46407400
Н	-2.93570800	-3.19170300	-1.07995400
С	-0.23095600	-2.16310500	2.96988500
Н	-0.87460500	-2.46704200	3.79505300
С	-3.94875400	0.93322900	0.09091400
Н	-4.77343700	0.33591700	-0.30425000
С	-3.15220600	2.90108000	1.22733600

Н	-3.35652800	3.84177200	1.73868800
С	-4.21515400	2.12539400	0.75780500
Н	-5.24266100	2.46033400	0.89414200
Ni	0.03392700	-1.21945700	-0.89723400
Р	2.17925500	-1.10961900	-0.77921300
Р	-2.09452400	-0.91849200	-1.04200400
В	-0.04959400	0.69788300	0.29884900
Н	0.07180600	-1.13174200	-2.33453000
Н	-0.03890000	-2.75132100	-1.20571500
Н	-2.27023500	0.26488000	-3.14882600
Н	-2.46208100	-1.48728800	-3.37070700
Н	-4.20206400	-2.06348300	-0.51607600
Н	-2.87319800	-2.55300000	0.57104200
Н	3.97461800	-2.77594200	-0.56141900
Н	3.36694700	-2.64523300	-2.22207600
Н	3.21307500	1.11278400	-1.11639700
Н	4.18245200	0.09170400	-0.03060800

Table S15. Optimized coordinates (Å) for TS2 (M06L/6-31+G*).

С	-2.46708700	0.74987000	-0.15206900
С	1.41393000	1.82610200	0.05721700
С	2.47317600	1.72646600	0.97711500
Н	2.43844200	0.94611300	1.74000200
С	-1.29980300	1.48821600	0.17785300
С	0.31745500	-0.48968500	1.00203800
С	1.50419800	2.85608800	-0.89781600
Н	0.69739100	2.97279400	-1.62578100
С	-0.44904100	-0.55249100	2.19817600
Н	-1.10042000	0.29129100	2.42948000
С	1.15257800	-1.63536100	0.71382900
С	0.45541700	-2.69608700	2.80489200
Н	0.53570600	-3.52613200	3.50602800
С	3.56664800	2.59078500	0.93980900
Н	4.36897400	2.48445200	1.66997500
С	1.16550500	-2.72533400	1.61973800
Н	1.78038800	-3.59628900	1.40193200
С	3.36911800	-0.79062400	-1.15404200
Н	3.89420700	-1.09726400	-2.06652700
С	-3.45626800	-0.97426100	-2.23271200
Н	-4.47775100	-0.70815300	-1.93316000
С	2.67886300	-3.51024200	-0.90374600
Н	1.93244500	-4.29548500	-0.75274800

С	3.63470100	3.58904800	-0.02967600
Н	4.48880400	4.26414400	-0.06634900
С	2.59343800	3.72103700	-0.95023700
Н	2.63361700	4.50107700	-1.71032000
С	-1.48711500	2.80708100	0.62585700
Н	-0.60837000	3.40154800	0.88135500
С	-3.20412900	-1.98278400	0.39628100
Н	-3.30548600	-3.00603600	0.01765400
С	-0.36203300	-1.59705100	3.09876900
Н	-0.92651500	-1.56579000	4.03015700
С	-3.73514600	1.32193000	-0.00748000
Н	-4.62634900	0.74402400	-0.26166100
С	-2.75197500	3.37336500	0.76769500
Н	-2.85350300	4.39791800	1.12474600
С	-3.88587800	2.62735900	0.45440200
Н	-4.88025500	3.05900000	0.56247700
Ni	-0.09864200	-1.00776800	-1.03226900
Р	1.88519100	-1.85298900	-0.95892700
Р	-2.27869100	-0.96322200	-0.82125200
В	0.16781000	0.84284200	0.13209500
Н	0.23158300	0.48256000	-1.46937300
Н	-0.04798600	-0.09797700	-2.25611000
Н	-4.20574000	-1.57684900	0.58922500
Н	-2.65178400	-2.02229500	1.34106600
Н	-3.47671700	-1.97421200	-2.67972300
Н	-3.12193300	-0.26845500	-2.99975600
Н	3.15585000	-3.68934600	-1.87363400
Н	3.44986000	-3.58774200	-0.12532700
Н	3.08525400	0.25965700	-1.25820800
Н	4.05639800	-0.88667800	-0.30503600

Total Energy (a.u.): -3070.15723383 a.u.

Table S16. Optimized coordinates (Å) for INT (M06L/6-31+G*).

С	-2.49845500	0.65331400	-0.12706400
С	1.32426900	1.85214900	0.12592100
С	2.43386000	1.76169000	0.98691200
Н	2.46006900	0.96269000	1.73052800
С	-1.36959500	1.43006600	0.24695800
С	0.31321600	-0.50947200	1.04696700
С	1.33387300	2.90886900	-0.80521200
Н	0.48446300	3.02119500	-1.48382300
С	-0.47398100	-0.66653400	2.21890000
Η	-1.17656300	0.12913400	2.47030400

С	1.20965800	-1.59383700	0.71582800
С	0.53367700	-2.77961900	2.75020400
Н	0.65200800	-3.63438300	3.41553500
С	3.49824700	2.65878900	0.91483700
Н	4.34060600	2.55981400	1.59942500
С	1.26341600	-2.71735400	1.57510400
Н	1.92355800	-3.54719100	1.33332500
С	3.45175200	-0.64372600	-1.08792700
Н	4.02895700	-0.96203900	-1.96452100
С	-3.39192600	-1.03717700	-2.26979300
Н	-4.42997500	-0.86369200	-1.95898700
С	2.79708400	-3.36699800	-0.94520100
Н	2.06620400	-4.17274400	-0.83016300
С	3.48729100	3.67952000	-0.03353600
Н	4.31960200	4.37922900	-0.09848700
С	2.39564700	3.80322700	-0.89567700
Н	2.37499500	4.60127100	-1.63746200
С	-1.61752200	2.73672000	0.70546400
Н	-0.76901400	3.35975400	0.99284500
С	-3.08612700	-2.13961900	0.30851000
Н	-3.14096900	-3.14616200	-0.12121500
С	-0.34867500	-1.74546300	3.07690900
Н	-0.93229000	-1.78669600	3.99590500
С	-3.78982600	1.17558300	-0.00791100
Н	-4.65136000	0.57027700	-0.29711800
С	-2.90615900	3.25239600	0.82182700
Н	-3.05639700	4.26734800	1.18873600
С	-4.00158700	2.46717500	0.46976800
Н	-5.01420200	2.85922900	0.55776400
Ni	-0.03688400	-0.92434000	-1.07403600
Р	1.96870800	-1.72388200	-0.96149800
Р	-2.21055000	-1.01990700	-0.85806100
В	0.11371700	0.84796300	0.26079500
Н	0.27255800	0.57328900	-1.72633100
Н	-0.02812900	0.09541700	-2.35016800
Н	4.09405800	-0.71782300	-0.20206300
Н	3.16604500	0.40164800	-1.22793100
Н	3.28830000	-3.50231600	-1.91516600
Н	3.56140400	-3.45617200	-0.16112700
H	-3.34082300	-2.01049700	-2.77003600
H	-3.11306100	-0.26875400	-2.99820200
H	-4.10549100	-1.79031300	0.51945600
Н	-2.53158500	-2.20118000	1.25067700

Table S17.	Optimized coordinate	s (Å) for TS2'	(M06L/6-31+G*).

С	-2.51129800	0.60549500	-0.11671700
С	1.28530100	1.86797500	0.12616100
С	2.40822000	1.79804100	0.97170000
Н	2.46173600	0.99679800	1.71147600
С	-1.39698100	1.39982300	0.26187200
С	0.32361300	-0.50970500	1.06006800
С	1.25951500	2.92850300	-0.80062800
Н	0.39841600	3.02514800	-1.46673400
С	-0.45334100	-0.67482100	2.23560200
Н	-1.17215100	0.10650700	2.48604800
С	1.23978000	-1.57465200	0.73094700
С	0.59906400	-2.76389100	2.77390200
Н	0.73813200	-3.61351200	3.44178600
С	3.45191500	2.71841300	0.88894200
Н	4.30535800	2.63505000	1.56176500
С	1.32336600	-2.69040500	1.59378900
Н	1.99885800	-3.50777000	1.35193800
С	3.48802800	-0.63279000	-1.05275600
Н	4.06473000	-0.94014400	-1.93360300
С	-3.37253400	-1.08546100	-2.27345200
Н	-4.41285600	-0.95372400	-1.95018500
С	2.79974300	-3.34677500	-0.95208900
Н	2.06132300	-4.14460400	-0.82940200
С	3.40622700	3.74195800	-0.05531900
Н	4.22243900	4.45958500	-0.12853300
С	2.30064400	3.84527200	-0.90241200
Н	2.25296200	4.64546400	-1.64060600
С	-1.66844200	2.69699700	0.73359900
Н	-0.83156600	3.33385100	1.02485900
С	-3.00601300	-2.21241000	0.28648400
Н	-3.03815700	-3.21222900	-0.16094900
С	-0.30263200	-1.74847100	3.09898600
Н	-0.88301500	-1.79783500	4.01961900
С	-3.81251800	1.09981400	0.01037200
Н	-4.66254700	0.48085000	-0.28385800
С	-2.96697000	3.18584100	0.85793900
Н	-3.13639800	4.19428000	1.23432500
С	-4.04777400	2.38265200	0.50110100
Н	-5.06747200	2.75449000	0.59476900
Ni	-0.02112200	-0.88273100	-1.11509000
Р	1.98898600	-1.69466100	-0.95290600
Р	-2.18023700	-1.04682600	-0.87180600
В	0.09492400	0.84235700	0.27194500
Н	0.38901400	0.56950600	-1.81034400

Н	-0.09065200	0.17085300	-2.36748500
Н	4.12595700	-0.73424600	-0.16619600
Н	3.21698900	0.41916400	-1.17202200
Н	3.27640200	-3.48411200	-1.92902000
Н	3.57401000	-3.44770600	-0.17922000
Н	-3.29208900	-2.04899500	-2.78845600
Н	-3.12803000	-0.29701100	-2.99266800
Н	-4.03171100	-1.89658100	0.51844100
Н	-2.43559800	-2.27447100	1.21921000

Table S18. Optimized coordinates (Å) for 7' (M06L/6-31+G*).

С	-2.53404885	0.55008429	-0.07217188
С	0.08180252	1.10664294	-2.24382474
С	-1.75655220	1.59291899	-0.60729527
С	0.72014724	1.97217298	0.01893777
С	0.51226685	3.24371193	0.57260243
Н	-0.43015320	3.75806330	0.39296491
С	1.93105368	1.30284624	0.31929129
С	2.70860215	3.23903824	1.57338797
Н	3.48422169	3.73069319	2.15863927
С	2.91957383	1.96311171	1.05874654
Н	3.87133183	1.46567811	1.24654754
С	3.70695509	-0.49755752	-1.07836826
Н	4.47186759	-0.14567608	-0.36549295
С	-2.85307453	-2.33604240	-0.26172920
Н	-3.73146900	-2.19062318	0.38665258
С	2.36421583	-1.40421322	1.38715232
Н	1.67017472	-0.91981845	2.09205505
С	-2.37861940	2.80897777	-0.91473089
Н	-1.79418165	3.60604894	-1.37510888
С	-1.47159284	-1.14912463	2.02248579
Н	-0.74824004	-1.96476668	2.18971776
С	1.48660762	3.86772429	1.34564328
Н	1.29339344	4.85634080	1.76027366
С	-3.90046778	0.74205659	0.15931924
Н	-4.50798089	-0.07729739	0.54680537
С	1.91003634	-2.85372513	1.22278850
Н	2.58821232	-3.42190305	0.57218938
Н	0.90839298	-2.91065251	0.77619952
Н	1.88797817	-3.36518021	2.19518198
С	-3.74030389	2.99435591	-0.68035052
Н	-4.21043917	3.94160442	-0.94137463

С	-0.87817112	0.13925345	2.58332910
Н	-1.59334946	0.96903757	2.49942019
Н	0.03271710	0.44745663	2.05678255
Н	-0.63029856	0.02079917	3.64665225
С	3.69017955	0.43916991	-2.27978724
Н	4.66675205	0.43944111	-2.78215886
Н	3.45784157	1.47311541	-1.99592209
Н	2.93868703	0.11498825	-3.01239928
С	3.76495537	-1.34101913	1.98345847
Н	3.79865651	-1.89593887	2.93114979
Н	4.08945545	-0.31738220	2.19898019
Н	4.51275003	-1.79694144	1.32164745
С	-2.76650511	-1.48572478	2.75099802
Н	-2.59579515	-1.50354650	3.83622547
Н	-3.17818280	-2.46242808	2.47123274
Н	-3.53692170	-0.72565883	2.56178828
С	-4.50399185	1.96219812	-0.13837766
Н	-5.57073648	2.10046126	0.03212857
С	-2.24802961	-3.70625970	0.02684799
Н	-2.96625763	-4.50648962	-0.19547119
Н	-1.94042799	-3.81939767	1.07485515
Н	-1.35868827	-3.87617686	-0.59599790
С	-3.30398455	-2.22878118	-1.71220414
Н	-2.46071558	-2.37790981	-2.39909469
Н	-3.74148347	-1.24834429	-1.93680017
Н	-4.05729848	-2.99516304	-1.93875777
С	4.05345456	-1.91573423	-1.51746175
Н	3.26753710	-2.32468712	-2.16787785
Н	4.17440766	-2.60519467	-0.67382427
Н	4.99279175	-1.92577952	-2.08656368
Ni	0.08793615	-0.59967954	-1.17707069
Р	2.05003310	-0.45395392	-0.21170007
Р	-1.60127231	-1.01415325	0.14624766
Н	0.38162905	-1.88196412	-2.18236047
Н	-0.30897068	-1.51175806	-2.48436049
С	-0.29783109	1.35221551	-0.89728414
Н	-0.69145326	1.09767944	-3.01375632
Н	1.07055447	1.41212373	-2.58942083

Table S19. Optimized coordinates (Å) for (dmpe)Ni(PPh₃)(C₂H₄) (M06L/6-31+G*).

Ni	1.06856204	-0.05857975	-1.02310495
Р	-0.87372358	0.02098044	-0.05593275
Р	2.26093429	-1.64505591	-0.15203348

Р	2.41575620	1.45433356	-0.13334915
С	1.41309599	-0.44498844	-2.97354034
С	0.56435860	0.66686320	-2.84246805
С	3.40615564	-0.83964261	1.07407399
С	3.88228703	0.49426122	0.50753201
С	3.47346772	-2.49182926	-1.25085332
С	1.65487015	-3.08839250	0.81564215
С	3.25221594	2.72625678	-1.17405060
С	2.04848554	2.49429582	1.35175773
С	-1.05302556	-0.93056757	1.50492808
С	-1.80470350	-2.10743197	1.60504724
С	-1.76650737	-2.88047540	2.76599945
С	-0.98756889	-2.48612717	3.85140304
С	-0.24420339	-1.30647592	3.77031338
С	-0.27164878	-0.54574869	2.60678480
С	-2.32244640	-0.58227216	-1.02287481
С	-3.63755140	-0.15375578	-0.80702196
С	-4.68549348	-0.68204323	-1.55767823
С	-4.43266186	-1.64814018	-2.53158050
С	-3.12650871	-2.07911057	-2.75774130
С	-2.07872701	-1.54286738	-2.01195774
С	-1.43821419	1.70394650	0.44719005
С	-2.13388503	1.98795504	1.62863615
С	-2.48752665	3.29887749	1.94873322
С	-2.16972450	4.34304721	1.08284793
С	-1.49183371	4.07045672	-0.10598794
С	-1.11974103	2.76501296	-0.41312572
Н	1.01072133	-1.41378757	-3.27799229
Н	2.46888036	-0.30623105	-3.21824008
Н	0.95807917	1.67401083	-2.99675602
Н	-0.50284332	0.56708696	-3.05457925
Н	4.24677418	-1.49786115	1.34125109
Н	2.82021603	-0.67827018	1.99312788
H	4.45352188	1.07432622	1.24782872
H	4.55405822	0.32140679	-0.34696014
H	2.94319878	-3.07796728	-2.00974540
H	4.07820687	-1.74781975	-1.78172536
H	4.14305773	-3.16088307	-0.69395393
H	1.06268566	-2.75334405	1.67442363
H	1.00343745	-3.70935721	0.18961265
H	2.48481295	-3.70848272	1.18029368
H	3.63179054	2.26606347	-2.09412987
H	2.52601565	3.49515170	-1.46537593
H	4.08545342	3.21912120	-0.65496222
H	1.18600394	3.14492156	1.16547973
Н	1.79179712	1.85071640	2.20203618

Н	2.90605511	3.11758813	1.64114223
Н	-2.42105343	-2.42972571	0.76570651
Н	-2.35336871	-3.79664573	2.82049757
Н	-0.95986382	-3.09049269	4.75662141
Н	0.36405631	-0.98369058	4.61477646
Н	0.32280576	0.36779433	2.54198384
Н	-3.84308163	0.60006895	-0.04593787
Н	-5.70436453	-0.33909326	-1.38143969
Н	-5.25309782	-2.05895144	-3.11830221
Н	-2.92206124	-2.82689281	-3.52291418
Н	-1.04710123	-1.85916481	-2.18763865
Н	-2.39694881	1.17907512	2.31071245
Н	-3.01846747	3.50249584	2.87803353
Н	-2.44740505	5.36581804	1.33340618
Н	-1.24029007	4.88072045	-0.78960685
Н	-0.55371310	2.55203200	-1.32205652