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Controlling the flow of light using inhomogeneous effective gauge field that emerges

from dynamic modulation
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We show that the effective gauge field for photons provides a versatile platform for controlling
the flow of light. As an example we consider a photonic resonator lattice where the coupling
strength between nearest neighbor resonators are harmonically modulated. By choosing different
spatial distributions of the modulation phases, and hence imposing different inhomogeneous effective
magnetic field configurations, we numerically demonstrate a wide variety of propagation effects
including negative refraction, one-way mirror, and on and off-axis focusing. Since the effective gauge
field is imposed dynamically after a structure is constructed, our work points to the importance of
the temporal degree of freedom for controlling the spatial flow of light.

It was recently recognized that when a photonic struc-
ture undergoes dynamic refractive index modulation, the
phase of the modulation creates an effective gauge poten-
tial and effective magnetic field for photons [1, 3]. The
effective magnetic field can induce photonic phenomena
similar to charged particles under real magnetic field,
such as a photonic one-way edge mode [1] and a photonic
de Haas-van Alphen effect [4]. In this paper, we further
show that the use of inhomogeneous effective gauge fields
provide additional degrees of freedom in controlling the
flow of light. As examples, we show that one can achieve
negative refraction, one-way mirrors, circulators, and fo-
cusing, based on the same resonator lattice structure sub-
ject to different configurations of inhomogeneous effective
gauge fields.
Tailoring the propagation of light has been a central

goal of nano-photonic research, which is critical for appli-
cations in on-chip communications and information pro-
cessing [5]. Examples of previous studies include the use
of waveguide arrays [6, 7], photonic crystals [8–11] and
meta-materials [12–14] to achieve various beam propaga-
tion effects within these structures. Moreover, by intro-
ducing inhomogeneity into these structures [15, 16], one
can realize photon flow that emulates electron motion
under electric field [17–19].
Complementary to these works, which have largely fo-

cused on spatial degrees of freedom, our results here show
that temporal degrees of freedom in a dynamic structure
can also be quite useful in the control of electromagnetic
wave propagations in space. Unlike the spatial (i.e. the
structural) degrees of freedom, which are mostly defined
by fabrication processes, the modulation phases can be
readily changed in the dynamic structure, after the struc-
ture is constructed. Moreover, non-reciprocity, or time-
reversal symmetry breaking, which is difficult to achieve
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in static structures unless magneto-optical materials are
used, arises rather naturally in dynamically-modulated
structures. Therefore, our approach of using photonic
gauge field provides additional degrees of flexibility in
controlling light propagation.
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FIG. 1. (Color online). A resonator lattice consisting of two
kinds of resonators (red and blue dots) with dynamically mod-
ulated nearest neighbor coupling. The lattice is divided into
two regions: the left region has an effective gauge potential
Ay = 0 and the right region has an effective gauge potential
Ay = φ(y)/a. Inset: the phase of the modulated coupling
between nearest neighbor resonators corresponds to the RF
wave that generates the modulation, and can be externally
set by RF generators or RF phase shifters.

To illustrate the idea we use the model system intro-
duced in [1] that consists of a two-dimensional photonic
resonator lattice as shown in Fig. 1. The lattice has
a square unit cell and each unit cell contains two res-
onators A and B with different resonant frequencies ωA

and ωB, respectively. We assume only nearest-neighbor
coupling with a form of V cos(Ωt+φ), where V is the cou-
pling strength, Ω and φ are the frequency and phase of
the modulation. The Hamiltonian H(t) of this resonator
lattice is

H(t) = ωA

∑

i

a†iai + ωB

∑

j

b†jbj (1)

+
∑

〈ij〉

V cos(Ωt+ φij)(a
†
i bj + b†jai),
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where a†i (ai) and b†j(bj) are the creation (annihilation)
operators of the A and B resonators, respectively, and
φij is the phase of the modulation between resonators at
nearest neighbor site i and j.

We will assume an on-resonance modulation, i.e. Ω =
|ωA − ωB|, and stay in the regime V ≪ Ω such that
the rotation wave approximation applies. In such a case,
when φij = 0 everywhere, the structure is periodic and
is described by a Floquet band structure [4], ǫ(kx, ky) =
V [cos(akx) + cos(aky)], where ǫ is quasi-energy, a is the
separation between two nearest neighbor resonators, and
~k = kxêx + ky êy is the Bloch wavevector, which has no
direct and simple relation to the free space wavelength
or wavevector of light.

In this system as described by Eq. (1), an effective
gauge field arises from the spatial distribution of the
modulation phase φij . This can be seen by going to
a rotating frame, in which case the modulation phases
then appear as the phases of the coupling constants in
a time-independent tight-binding model, which gives rise
to a gauge field structure through the Peierls substitution
[1]. The value of the effective gauge field along the bond

between sites i and j is determined by ~A = ~lijφij/a [1],

where ~lij is a unit vector that points from site i in the A
sub-lattice to site j in B sub-lattice. Furthermore, a non-
uniform φij distribution can create an effective magnetic
field. The effective magnetic flux through a plaquette is

defined as Beff =
∮

~A · d~l/a2 [1], where the integration
is along the sides of a plaquette. The consequences of

having a uniform magnetic field in the lattice has been
explored in Ref. [1, 4].
In this paper, we study the φij distribution as shown

in Fig. 1, which corresponds to a non-uniform magnetic
field as we will see later. The lattice in Fig. 1 can be sep-
arated into left and right regions. In the left region, the
phases on the bonds along both x− and y−axes are all
zero. Therefore, the left region has zero effective gauge
potential and zero effective magnetic field. We excite
a beam by placing a source in the left region. In the
right region, the phases on the bonds along the x−axis
are zero, but the phases on the bonds along the y−axis
is a function φ(y) of y and alternate between positive
and negative values. The different spatial configurations
of φ(y) then correspond to different configurations of ef-
fective gauge potential and effective magnetic field in the
right region. By choosing different modulation phase dis-
tribution in the right region, i.e. by choosing different
φ(y), we can achieve versatile control of light propaga-
tion effects, for the beam incident from the left.
To simulate the motion of light in the presence of a

source in this dynamically modulated resonator lattice
we solve the coupled-mode equation [4]:

i
d|ψ〉
dt

= H(t)|ψ〉+ |s〉, (2)

where |ψ〉 = [
∑

i

vi(t)a
†
i+

∑

j

vj(t)b
†
j ]|0〉 is the photon state

with vi(j)(t) being the amplitude at site i(j). In our
simulations, we use a source |s〉 that takes the form:

|s〉 =
∑

x,y

e−((x−x0)
2+(y−y0)

2)/w2

ei(kx0x+ky0y)−i(ωx,y+ǫ(kx0,ky0))ta†(b†){x,y}|0〉, (3)

in order to create a beam with spatial Gaussian profile.
In (3), w is the width of the beam, {x0, y0} is the center
of the source, {kx0, ky0} are the Bloch momentum of the
beam, ωx,y is the frequency of the resonator at coordinate
{x, y}.
We first study the special case where in the right re-

gion φ(y) is a constant, i.e. φ(y) ≡ φ. In this case, both
the left and the right regions have zero effective magnetic
field. Nevertheless, we demonstrate that a beam prop-
agating across the interface between these two regions
undergoes refraction; and under certain condition, even
negative refraction can happen. To understand such an
effect, we investigate the band structures for the two re-
gions of Fig. 1. For the left and right regions, the Floquet
band structures are given by ǫ(kx, ky) = V [cos(akx) +
cos(aky)] and ǫ(kx, ky) = V [cos(akx) + cos(aky − φ)],
respectively. Thus, in the momentum space, the band
structure of the right region is shifted along the y direc-
tion by ∆ky = φ/a, as compared to the band structure
of the left region. In general, arbitrary shift of the band

structure in momentum space can be accomplished by
appropriate choice of phase distribution. Such a capabil-
ity for achieving a shift of the photonic band structure
in momentum space is quite unique in our dynamically
modulated systems, and has not been noted in any other
system before.

As a beam propagates through the interface between
the left and right regions, the relation between the inci-
dent angle θi and refraction angle θr of a beam can be
obtained by considering the conservation of quasi-energy
and surface-parallel momentum. Suppose the momentum
of the beam is small and thus the band structure in the
left region can be approximated by ǫ(~k) ≈ 2V − V (ak)2.
The constant quasi-energy contour is a circle centered

around ~k = 0. At the same quasi-energy, the constant
quasi-energy contour in the right region is shifted by φ/a
along the y−axis as shown in Fig. 2a. Therefore, the
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FIG. 2. (Color online). a Analysis of beam refraction for the
structure in Fig. 1, for φ(y) ≡ φ. Blue and red circles are the
constant quasi-energy contours in the left and right regions,
respectively. k1,2 and v1,2 are the incident and refracted mo-
mentum and group velocity of the beam. k1 and k2 have
equal parallel component. k′

2 and v′2 are the time-reversal of
the refracted beam that corresponds to k2. b Simulation for
the case of φ = 0.05 showing positive refraction. c Simulation
for the case of φ = 2 demonstrating negative refraction.

relation between θi and θr becomes

sinθi − sinθr =
φ

a|~k0|
, (4)

where ~k0 is the Bloch momentum of the inci-
dent beam [20]. From Eq. (4), we see that
θr < 0, and hence negative refraction occurs, when

φ/(2a) < |~k0| and max{sin−1[φ/(a|~k0|) − 1], 0} < θi <

min{sin−1[φ/(a|~k0|)], π/2}.
We verify the above analytical theory with direct nu-

merical calculation using Eq. (2). We take θi = 45◦,

|~k0| = 1/a. In Fig. 2b, we assume φ = 0.05 in the right
region. In this case, the shift in the momentum space
for the constant quasi-energy contour is small, and the
beam passes through the interface with a small angle of
refraction. In Fig. 2c, we assume φ = 2, which gener-
ates a larger shift of the constant quasi-energy contour
in the right region, and thus the beam undergoes nega-
tive refraction as it passes through the interface. Also,
in both cases of Figs. 2b and c, we observe almost no
reflection at the interface. This is due to the impedance
matching between the two regions, since aside from the
phases of the coupling constants all other parameters of
the Hamiltonian are the same on both sides.
The refraction of beam in this lattice may seem

counter-intuitive, since the left and right regions have

zero effective magnetic fields. Scrutinizing the structure
of Fig. 1 reveals that there are non-vanishing effective
magnetic fields located at the interface of the two regions,
since the phase accumulation around the plaquettes on
the interface is non-zero. Thus, as an alternative to the
previous explanation using the shift of band structure,
one can equivalently state that the magnetic fields at the
interface supply a canonical momentum (not the con-
served Bloch momentum ky) kick to the incident beam,
leading to refraction. Such kind of magnetic flux induced
beam refraction is difficult to observe for electrons, since
one needs to achieve a magnetic field sheet with density
of the magnetic flux quantum.
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FIG. 3. (Color online). Demonstration of the interface of the
two regions in Fig. 1 functioning as a circulator. The right
region has φ = 2. Red arrows indicate the incident direction
of the beams.

In our structure, the momentum kick from the effec-
tive magnetic field at the interface is reminiscent of the
concepts of meta-surfaces [21, 22], or the nonlinear pro-
cesses that give rise to negative refraction [23]. However,
unlike the meta-surfaces in Refs. [21, 22], here the ef-
fective magnetic field breaks time-reversal symmetry. As
a result, the beam propagation is non-reciprocal. As an
illustration, we start with Fig. 3a, which reproduces Fig.
2b where a beam incident from the left region undergoes
negative refraction as it passes through the interface. In
Fig. 3b, we excite a beam, incident upon the interface
from the right region, propagating along the direction
opposite to the outgoing beam in Fig. 3a. We observe
instead total internal reflection at the interface. Such
a total internal reflection can be accounted for by also
examining Fig. 2a, where we note that in this case the
incident beam from the right region (dashed arrows in
Fig. 2a) can not excite any mode in the left region by
momentum conservation consideration. Such a one-way
total internal reflection has been previously considered in
magneto-optical photonic crystals [24]. Here we achieve
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similar effect without the use of magneto-optics.
Based on such one-way total internal reflection effect,

the interface between the left and right regions in fact
function as a four-port circulator, where the ports corre-
sponding to the four incident beam directions as shown in
the four panels of Fig. 3. Circulators has been previously
considered for guided mode using either magneto-optical
effect [25, 26] or with the use of dynamic modulation
[27]. Here we show that a single interface can behave as
a circulator for beams without guiding structure.
The previous case corresponds to a constant φ(y) in

the right region of the lattice. Next we consider the case
where φ(y) is not a constant, which provides additional
capabilities for beam manipulation. As a specific exam-
ple, we design φ(y) to realize both on-axis and off-axis
focusing effects for a collimated beam propagating along
x−axis in the left region and normally incident onto the
interface. We assume that the center of the incident beam
is located at y = 0. To design φ(y) we follow a ray tracing
procedure. For a ray incident upon a position y at the
interface, we choose φ(y) according to Eq. (4) to achieve
an angle of refraction that is appropriate for focusing. To
create a focal point located at (f, d) to the right of the
interface, the ray tracing procedure above results in

φ(y) = ak0
y − d

√

(y − d)2 + f2
. (5)
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FIG. 4. (Color online). A collimated beam is focused on-axis
(a) and off-axis (b) by designing φ(y) according to Eq. (5) in
the right region of Fig. 1.

In Fig. 4, using Eq. (5), we generate two different mod-
ulation phase distributions. Fig. 4a uses the parameters

f = 60a and d = 0a, and Fig. 4b uses the parameters
f = 60a and d = 20a. From the ray tracing procedure
above, we expect on-axis focusing with respect to the
beam axis in Fig. 4a, and off-axis focusing in Fig. 4b,
which is indeed what we observe in the numerical simula-
tions of Fig. 4. Again, we emphasize that the two cases
in Fig. 4 represent exactly the same structure, except
with different modulation phase distributions, indicating
versatile reconfigurability that is inherent in the use of
such effective gauge field.
Given the agreement between our analytic descriptions

of the effect of the gauge fields, and the numerical simu-
lations in two dimensions, below we will use the analytic
description to design 3D structures. We extend the lat-
tice of Fig. 1 in z direction to make a cubic lattice. The
two kind of resonators are alternatively distributed in the
cubic lattice with dynamically-modulated nearest neigh-
bor coupling. We separate the lattice into two regions.
In the left region (x < 0), all the modulation phases on
the bonds along the three axes are zero; in the right re-
gion (x > 0), the phases on the bonds along the x−axis
are all zero, but the phases along the y−axis (φy(y, z))
and along the z−axis (φz(y, z)) are functions of y and z.
To achieve a position-dependent refraction, the beam re-
fraction across the interface at x = 0 can be determined
by the following equations:

φy(y, z) = ak0(sinθiy − sinθry), (6)

φz(y, z) = ak0(sinθiz − sinθrz), (7)

where θi(r)y,z are the directional angle of incident (re-
fracted) beam along y− and z−axes respectively. Thus,
the desired functionality, such as focusing, which is de-
scribed by the θ′s, can then be implemented in our lattice
through Eqs. (6)-(7).
As final remarks, the experimental implementation of

the Hamiltonian of Eq. (1) has been considered in Ref.
[1], and the key arguments are reproduced in the Supple-
mentary Information. The dynamically modulated cou-
pling between the two resonances, which is the crucial as-
pect that enables the creation of an effective gauge field,
can be achieved using a mixer in the microwave frequency
range, or a modulator in the optical frequency range. In
the microwave frequency range, using such a mixer to
create a gauge potential has already been demonstrated
experimentally in Ref. [3]. In the experiment of Ref. [3],
the modulation phase is the phase of the local oscillator,
which can be arbitrarily set after the structure is con-
structed. In the optical frequency range, the weak mod-
ulation strength (∆n/n) leads to a relative weak coupling
between resonators; however the modulation phase again
can be arbitrarily set by external modulation sources, as
demonstrated in a recent experiment integrating silicon
modulators [28], and thus the amplitude of gauge field is
not limited. Such a dynamic aspect of the gauge field,
as well as the non-reciprocity generated by such a gauge
field, differs significantly from several recent proposals
and experiments that create an effective gauge field based
on a spin degree of freedom in photons [29–32]. We also
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note the effects shown in the paper are robust to cer-
tain amount of resonant frequency disorders for practical
considerations (see Supplementary Information). In con-
clusion, our work indicates significant new capabilities for
controlling the spatial flow of light, through the control

of temporal degrees of freedoms that generate an effective
gauge field for photons.
This work is supported in part by U. S. Air Force Of-

fice of Scientific Research grant No. FA9550-09-1-0704,
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I. EXPERIMENTAL IMPLEMENTATION

We discuss the physical implementation of the Hamil-
tonian of Eq. (1). This Hamiltonian describes a res-
onator lattice as schematically shown in Fig. S1(a),
where the coupling constants between nearest-neighbor
resonators are modulated dynamically in the form of
V cos(Ωt + φ). Conceptually, to implement this Hamil-
tonian, the key is to achieve such dynamical coupling
between two resonators that form a single bond (dashed
box in Fig. S1(a)).

Aω
Bω

b

Aω

Bω

1V

2V

cos( )dV tΩ +

c

a

V cos( t + )

FIG. S1. a A photonic resonator lattice with harmonically
modulated nearest-neighbor coupling. The red and blue dots
correspond to resonators A and B, respectively. b A photonic
crystal platform for implementing the dynamical coupling on
a single bond between two resonators (dashed box in a). All
dots here represent dielectric rods. The black dots here repre-
sent rods that create a photonic crystal. The periodicity here
is approximately 540 nm for light with free space wavelength
of 1.55 µm. The red and blue dots are rods with modified
radii, and correspond to resonators A and B, respectively.
Resonator A supports a monopole mode. Resonator B sup-
ports a quadrupole mode. The yellow region is a coupling
resonator supporting a pair of dipole modes. Its dielectric
constant is modulated as a function of time. The details of
the parameters can be found in Ref. [S1]. c Level diagram
illustrating the field distributions, frequencies, and coupling,
for the resonances in b.

Here we introduce a physical structure based on point-
defect resonators in a photonic crystal, as shown in Fig.
S1(b), that provides such dynamic coupling. The struc-
ture in Fig. S1(b) contains resonators A and B, support-
ing a monopole mode at frequency ωA, and a quadrupole
mode at frequency ωB, respectively, as shown in Fig.
S1(c). Due to the frequency and symmetry mismatch
between these two modes, they do not couple stati-
cally. To introduce a dynamic coupling between them,
we place an additional coupling resonator between res-
onators A and B. The coupling resonator supports a
pair of dipole modes, at frequencies ωA and ωB respec-
tively (Fig. S1(c)). The dielectric constant of the cou-
pling resonator is modulated harmonically at a frequency
Ω = ωB − ωA, with a form

∆ǫ(~r, t) = δ(~r)cos(Ωt+ φ). (S1)

The structure in Fig. S1(b) is therefore described by

a four-mode coupled mode theory,

daA
dt

= iωAaA + iV1apx
, (S2)

dapx

dt
= iωAapx

+ iV1aA + iVdcos(Ωt+ φ)apy
, (S3)

dapy

dt
= iωBapy

+ iV2aB + iVdcos(Ωt+ φ)apx
, (S4)

daB
dt

= iωBaB + iV2apy
, (S5)

where aA and aB are the amplitudes in resonators A and
B respectively, apx and apy are the amplitudes of the two
modes in the coupling resonator. Under the condition
Vd ≪ V1, V2,Ω, these equations can be further reduced
to a two-mode coupled-mode theory equations,

dãA
dt

= iωAãA + i
Vd
2
cos(Ωt+ φ)ãB , (S6)

dãB
dt

= iωBãB + i
Vd
2
cos(Ωt+ φ)ãA, (S7)

where ãA(B) = eiV1(2)taA(B) (Supplementary Information
in Ref. [S1]). The description of the effect of modula-
tions on such a four-mode resonator system, in terms of
the two-mode coupled mode theory, has been validated
by direct finite-difference time-domain simulations as dis-
cussed in details in Ref. [S1].
We therefore see that the dielectric constant modula-

tion of the coupling resonator generates a dynamic cou-
pling of the required form V cos(Ωt + φ) between the
two single-mode resonators. Here the dynamic coupling
constant is related to the dielectric constant modulation
strength via

V =
Vd
2

=

√
ωAωB

8

∫

d~rδ(~r) ~E⋆
1 · ~E2

√

∫

d~rǫ(~r)| ~E1|2
√

∫

d~rǫ(~r)| ~E2|2
,

(S8)

where ~E1,2 are the normal electric fields of the two dipole
modes. And the phase φ is the same as the phase of the
dielectric constant modulation. One should not confuse
the phase φ of the dielectric constant modulation, which
physically corresponds to the phase of the RF wave that
generates the modulation, with the phase that the optical
wave acquire as it propagates through the medium. We
note that the gauge field arises from the spatial distribu-
tion of the modulation phase φ, which can be arbitrarily
set.
In general, the achievable dielectric constant modula-

tion is weak, leading to a limited magnitude of V , which
in turn places a constraint of the quality factor Q of the
resonators. In order that the photon amplitude does not
diminish significantly after the beam steering, we require
V > ωA,B/Q. This requirement is sufficient for the beam
focusing effect shown in Fig. 4. For a modest modulation
∆ǫ/ǫ ≈ 5×10−5, we find Q ≈ 105, which is achievable us-
ing the state-of-the-art photonic crystal resonator arrays
[S2].
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II. EFFECT OF DISORDER IN RESONANT

FREQUENCIES

We consider the effect of disorders that might be in-
duced due to the modulation of the resonant cavities.
The frequency of resonators can shift in the presence of
dynamic modulation, given by a similar formula as Eq.
(S8):

δω =
ω

8

∫

d~rδ(~r) ~E⋆ · ~E
∫

d~rǫ(~r)| ~E|2
, (S9)

where ~E is the electric field of the resonance mode. The
frequency shift can be in principle eliminated by adopt-
ing an odd-symmetric profile δ(~r) of the modulation, as
of the case of Fig. S1b, since thus the numerator of Eq.
(S9) will be zero. In the general case, where the sym-

metry of the modulation is not perfect, the modulation
will introduce additional frequency fluctuation in the res-
onators. Here, we consider the general case where such
kind of frequency shift is present, and show the beam
propagation effects demonstrated in the paper are robust
to reasonable amount of resonant frequency fluctuation
as induced by dynamic modulation.

To simulate the effect of such a fluctuation in resonator
frequency, we add a frequency shift term to each res-
onator in the lattice of Fig. S1a, δωcos(Ωt+φr), where δω
is given by Eq. (S9), Ω is the modulation frequency, and
φr is a phase taking a random value between 0 and 2π,
and is generated for each resonator individually. Thus,
the dynamically modulated lattice is dressed with time-
dependent frequency disorders. The Hamiltonian (Eq.
(1)) of the lattice is modified to be

H(t) =
∑

i

(

ωA + δωcos(Ωt+ φri)
)

a†iai +
∑

j

(

ωB + δωcos(Ωt+ φrj)
)

b†jbj +
∑

〈ij〉

V cos(Ωt+ φij)(a
†
i bj + b†jai). (S10)

The Hamiltonian describes a resonator system where
the instantaneous resonance frequencies fluctuate in both
space and time.
Using Eq. (2) and the Hamiltonian of Eq. (S10), Fig.

S2 a and b show the beam trajectories corresponding to
the refraction (Fig. 2c) and focusing (Fig. 4a) effects
in the presence of the frequency disorders respectively,
with δω = V . The major features of the trajectory are
clearly preserved for such a disorder. Such robustness
arises from the fact that the non-reciprocal phase induced
by the modulation phase persists as long as the rotating
wave approximation holds. A similar result also shows
the effects are robust to static frequency disorders due to
device fabrication.
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FIG. S2. Beam trajectories in the presence of disorders of
resonant frequency: a refraction b focusing.
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