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ABSTRACT

Using stellar structure calculations in the Hartle-Thorne approximation, we derive analytic expres-
sions connecting the ellipticity of the stellar surface to the compactness, the spin angular momentum,
and the quadrupole moment of the spacetime. We also obtain empirical relations between the com-
pactness, the spin angular momentum, and the spacetime quadrupole. Our formulae reproduce the
results of numerical calculations to within a few percent and help reduce the number of parame-
ters necessary to model the observational appearance of moderately spinning neutron stars. This
is sufficient for comparing theoretical spectroscopic and timing models to observations that aim to
measure the masses and radii of neutron stars and to determine the equation of state prevailing in
their interiors.
Subject headings: graviation — relativistic processes — stars: neutron

1. INTRODUCTION

Measuring the masses and radii of neutron stars pro-
vides one of the most stringent tests of our understand-
ing of the properties of matter under extreme conditions.
Several methods of measuring these properties involve
analyzing the emission originating from the stellar sur-
face. In order to correctly interpret this surface emis-
sion, it is necessary to understand the strong-field grav-
itational lensing experienced by the photons when trav-
eling through the curved spacetime in the vicinity of a
neutron star.

To date, considerable effort has been expended to ac-
curately measure neutron-star radii, primarily through
the spectroscopic observations of quiescent neutron stars
(e.g., Heinke et al. 2006; Webb & Barret 2007; Guillot

et al. 2011) and X-ray bursters (e.g., Özel et al. 2009:

see Özel 2013 for a recent review). In the near future,
X-ray missions such as NICER and LOFT as well as
gravitational-wave detectors such as Advanced LIGO will
allow even more precise measurements of various neutron
star properties.

Many of the primary targets for future measurements
have moderate spins (∼300–800 Hz; e.g., Galloway et al.
2008; Bogdanov et al. 2008). At these frequencies, gravi-
tational effects depend not only on the mass and radius,
but also on other parameters, such as the quadrupole mo-
ment of the neutron star and the oblateness of its surface
(Morsink et al. 2007; Bauböck et al. 2013). Exploiting
the upcoming high-quality observations and measuring
the masses and radii of neutron stars at the accuracy
necessary to constrain their equation of state requires
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taking these non-negligible effects into account.
For the moderate spin frequencies of weakly mag-

netic neutron stars, the Hartle-Thorne metric provides
an accurate approximation to their spacetime (Hartle &
Thorne 1968). In this regime, the appearance of a neu-
tron star as measured by an observer at spatial infinity
depends on seven macroscopic parameters: the mass M ,
the equatorial radius Req, the spin frequency f , the incli-
nation of the rotational pole with respect to the observer
θ0, the angular momentum J , the quadrupole moment
Q, and the eccentricity of the surface es. Three of these
parameters (f , θ0, and, e.g., M) are independent of the
equation of state for any given observed source. The re-
maining four parameters (Req, J , Q, and es) are uniquely
determined by the equation of state, given a neutron star
mass and spin frequency. Therefore, it is any of these four
parameters that need to be measured observationally, in
addition to the mass and spin frequency, in order for the
underlying equation of state to be constrained.

Even though measuring only one of the four depen-
dent parameters with high precision would be sufficient,
typical observables depend on all seven parameters in
a complex manner. It is unlikely that spectroscopic or
timing observations in the near future will be accurate
enough to allow for independent measurements of all of
these parameters in individual neutron stars. In order
to make progress, we can reduce the dimensionality of
the problem by using approximate relations that con-
nect quantities that are higher order in spin frequency
(such as the spin angular momentum J , the spacetime
quadrupole Q, and the ellipticity of the stellar surface
es) to ones that are of lower order (such as the mass M
and equatorial radius Req). In this way, observable phe-
nomena from a moderately spinning neutron star can be
calculated based only on its mass and equatorial radius,
given a spin frequency and an observer’s inclination.

This reduction of the parameter space by means of
approximate relations allows for the properties of dense
matter to be constrained only if the relations themselves
do not depend strongly on the details of the equation of
state. Andersson & Kokkotas (1998) modeled pulsation
modes of neutron stars and showed that the relations
between several parameters of interest have a significant
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dependence on the equation of state. However, given the
constraints imposed on the equation of state of dense
matter by recent observations (e.g., Demorest et al. 2010;
Antoniadis et al. 2013), we show that it is possible to
find relations between the parameters described above
that are valid over the astrophysically relevant parameter
range and for a variety of equations of state.

Several authors to date have explored such approxi-
mate relations in different contexts. Ravenhall & Pethick
(1994) and Lattimer & Prakash (2001) provide empirical
formulae for the moments of inertia and binding energies
of slowly spinning neutron stars as a function of their
masses and radii. Morsink et al. (2007) obtained empiri-
cal formulae that connect the ellipticity of the surfaces of
spinning neutron stars to their masses, equatorial radii,
and spin frequencies. More recently Urbanec et al. (2013)
modeled the angular momenta and quadrupole moments
of both neutron stars and strange stars, showing that
different relations exist for these two classes of objects.
Finally, Yagi & Yunes (2013a) found relations between
the moment of inertia, the quadrupole moment, and the
tidal Love number that are highly accurate for several
equations of state.

In this paper, we model the properties of moderately
spinning neutron stars in the Hartle-Thorne approxima-
tion, which is adequate for spin frequencies . 800 Hz. We
derive an analytic expression connecting the ellipticity of
the stellar surface to the compactness, the spin angular
momentum, and the spacetime quadrupole. We also ob-
tain empirical relations between the compactness, the
spin angular momentum, and the spacetime quadrupole
similar to those found in Lattimer & Prakash (2001)
and Yagi & Yunes (2013a). These relations allow us to
fully determine the parameters of a neutron star given
a measurement of its mass, radius, and spin frequency.
We demonstrate that our formulae reproduce the results
of numerical calculations of neutron-star spacetimes to
within a few percent. This is sufficient for comparing
theoretical spectroscopic and timing models to observa-
tions that aim to measure the masses and radii of neutron
stars and to determine the high-density equation of state
prevailing in their interiors.

2. NUMERICAL MODELS IN THE HARTLE-THORNE
APPROXIMATION

The Hartle-Thorne metric is based on a slow-rotation
expansion. If the expansion is truncated at second order
in the spin frequency, the spacetime exterior to a rotating
object can be described by three parameters: the total
mass, the angular momentum, and the quadrupole mo-
ment of a neutron star. Observationally, the appearance
also depends on the geometry of its surface, i.e., on its
equatorial radius and ellipticity.

Out of these parameters, we choose the mass M and
the equatorial radius Req to characterize each neutron
star. The other three parameters depend on the equa-
tion of state but are of higher order in spin frequency
and introduce small corrections to most observables (e.g.,
Poisson 1998; Morsink et al. 2007; Racine 2008; Bauböck
et al. 2013; Psaltis & Özel 2013). Therefore, we aim to
find relations that allow for these parameters to be ap-
proximated given a neutron-star mass and radius, inde-
pendent of the equation of state.

The angular momentum J of a neutron star is often

represented by the dimensionless spin parameter

a ≡ cJ

GM2
, (1)

which is zero for a non spinning object. Neutron stars
typically have a spin a ≤ 0.7 for uniform rotation and
physically motivated equations of state (Cook, Shapiro
& Teukolsky 1994; Berti & Stergioulas 2004; Lo & Lin
2011), but the spin magnitudes of neutron stars in bi-

naries observable by Advanced LIGO are likely to be
much smaller than this theoretical upper bound (Man-
del & O’Shaughnessy 2010; Brown et al. 2012). The spin
periods of isolated neutron stars at birth should be in
the range 10-140 ms (Lorimer 2001), or a . 0.04. Ac-
cretion from a binary companion can spin up neutron
stars but is unlikely to produce periods less than 1 ms,
i.e., a . 0.4 (Ferdman et al. 2008). The fastest-spinning
observed pulsar has a period of 1.4 ms, (a ∼ 0.3) (Hes-
sels et al. 2006); the fastest known pulsar in a neutron
star-neutron star system, J0737-3039A, has a period of
22.70 ms (a ∼ 0.02; Burgay et al. 2003). The spin pa-
rameter depends both on the rotational period and on
the moment of inertia of the neutron star, which is de-
termined by the equation of state.

A spinning neutron star also acquires a nonzero
quadrupole moment Q. We characterize the quadrupole
moment by the dimensionless quantity

q ≡ − c4Q

G2M3
. (2)

Laarakkers & Poisson (1999), Berti & Stergioulas
(2004), and Pappas & Apostolatos (2012) computed the
quadrupole moment of rapidly spinning neutron stars for
a range of equations of state. They found values of q
ranging between 1 and 11 (see also Bauböck et al. 2012).

Lastly, a spinning neutron star also becomes oblate in
shape. In the Hartle-Thorne approximation, this oblate-
ness is described by

R(θ) = R0 + ξ2P2(cos θ), (3)

where P2 is the second-order Legendre polynomial and
ξ2 is a coefficient depending on the equation of state and
spin frequency of the neutron star. In the non-spinning
limit, ξ2 = 0 and R(θ) = R0. For moderately spinning
neutron stars, there are two frequently used parameters
to characterize the oblate shape: the eccentricity of the
surface,

es ≡

√(
Req

Rp

)2

− 1, (4)

and its ellipticity,

εs ≡ 1 − Rp

Req
, (5)

where Req is the equatorial radius and Rp is the radius
at the pole.

As in Berti et al. (2005), we expand the parameters a,
q, es, and εs to second order in the spin frequency of the
neutron star. Specifically, we define the parameter

ε0 ≡ f

f0
(6)
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in terms of the characteristic frequency

f0 ≡

√
GM0

R3
0

. (7)

In this equation, M0 and R0 are the non-spinning mass
and radius of the neutron star. The characteristic fre-
quency f0 corresponds to the Keplerian orbital period of
a test particle at a radius R0 around a mass M0 and thus
corresponds roughly to the maximum frequency a neu-
tron star can be spun up to before breakup. For spin fre-
quencies much smaller than this characteristic frequency
(f < f0), ε0 serves as a suitable small parameter about
which we can expand the metric. When f approaches
f0, the parameter ε0 approaches unity, and the Hartle-
Thorne approximation is no longer valid. The spin fre-
quency at which this occurs depends on M0 and R0 and,
therefore, on the equation of state. However, for most
proposed equations of state, this approximation is valid
for even the most rapidly spinning neutron stars observed
to date (Berti et al. 2005).

For a non-spinning neutron star, the parameter ε0 is
equal to zero, and thus the spin a, the quadrupole mo-
ment q, and the eccentricity of the surface es are all zero,
as well. As the spin frequency increases, corrections to
the metric enter at different orders in ε0. To first order in
the spin frequency, the star acquires a non-zero angular
momentum, characterized by the spin parameter a. To
the lowest order, we can approximate the spin parameter
as a linear function of spin frequency, i.e.,

a = ε0a
∗, (8)

where a∗ is a constant that depends on the equation of
state. To second order in the spin frequency, the star
acquires a quadrupole moment and an elliptical shape,
i.e.,

q = ε20q
∗ (9)

and
Req

Rp
= 1 + ε20R

∗, (10)

where q∗ and R∗ are again constants depending on the
equation of state. Substituting Equation (10) into Equa-
tions (4) and (5) shows that the eccentricity of the surface
of the neutron star has a first order dependence on the
spin frequency

es = ε0e
∗
s, (11)

while the ellipticity has a second-order dependence on
the spin frequency, i.e.,

εs = ε20ε
∗
s. (12)

The above relations all depend on ε0, which in turn
depends on the non-spinning values M0 and R0. For
a spinning neutron star, however, these quantities are
not readily measurable. Instead, observations can only
constrain the spinning mass and equatorial radius, M
and Req, respectively. These parameters differ from their
non-spinning values at second order in ε0:

M = M0 + ε20δM
∗, (13)

Req = R0 + ε20δR
∗, (14)

where δM∗ and δR∗ are again constants depending on
the equation of state. Since M and Req differ from M0

and R0 at second order in ε0, the corrections introduced
to Equations (8)–(11) by the altered mass and radius will
necessarily enter at third or fourth order in ε0. There-
fore, the lowest-order effects will be unchanged. For the
remainder of this work, we will use the spinning mass
and radius interchangeably with the nonspinning values.

We use the procedure described in Berti et al. (2005)
to calculate the values of the parameters described above
for several neutron-star equations of state. For a given
equation of state, a central density and spin frequency
uniquely determine the properties of a neutron star in
the Hartle-Thorne approximation. First, we solve the
Tolman-Oppenheimer-Volkoff equations to find the pa-
rameters of a non-spinning star with the same equation
of state and central density. In this non-spinning case, a,
q, and e∗s are equal to 0. Next, we solve the full Hartle-
Thorne equations for the perturbative quantities, i.e. q∗,
a∗, R∗, e∗s, and ε∗s. Once we have found the values of
these starred parameters, we can then use Equations (8)–
(12) to determine the parameters of a neutron star spin-
ning at any intermediate rate characterized by ε < ε0.

3. RELATIONS BETWEEN SPIN, QUADRUPOLE, AND
COMPACTNESS

As in Lattimer & Prakash (2001) and Yagi & Yunes
(2013a), we find that tight empirical relations ex-
ist between the spin parameter a∗, the dimension-
less quadrupole moment q∗, and the compactness ζ =
GM0/R0c

2 of neutron stars that depend very weakly on
the assumed equation of state. In addition, we derive an
analytic formula relating these four quantities to the ec-
centricity parameter e∗s and the ellipticity parameter ε∗s
of the neutron star surface.

In order to generate our fits, we selected several mod-
ern equations of state. Observations by Demorest et al.
(2010) of a 1.97 M� neutron star and by Antoniadis
et al. (2013) of a 2.01 M� neutron star place signifi-
cant constraints on the properties of dense matter and
strongly disfavor several equations of state. We selected
only equations of state that allow a maximum mass of at
least 2.0 M�. Following the naming convention of Lat-
timer & Prakash (2001), we chose for our fits the equa-
tions of state AP4, ENG, MPA1, and MS0, which cover
a wide range of microphysics assumptions and calcula-
tional procedures.

For each equation of state, we use a large number of
numerical models covering the astrophysically relevant
range of masses M > 1.0 M� (Özel et al 2012). A least-
squares polynomial fit of the spin parameter a∗ as a func-
tion the compactness yields

a∗ = 1.1035 − 2.146ζ + 4.5756ζ2 . (15)

Figure 1 shows this fit as a solid line, along with the
results of numerical calculations for four different equa-
tions of state. The lower panel shows the residuals: for all
equations of state, the residuals over the range of masses
considered here are less than 4%.

Both Lattimer & Prakash (2001) and Yagi & Yunes
(2013b) found similar empirical relations between the
moment of inertia and the compactness. These authors
consider a wider range of equations of state and neutron
star parameters than those included in Figure 1. For less
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Fig. 1.— Empirical fit to the correlation between spin and com-
pactness of a neutron star for four equations of state, corresponding
to equation (15). The lower panel shows the residual in percent.

compact neutron stars than those shown in Figure 1, i.e.,
typically those with masses <1 M�, different equations
of state predict more divergent values for the moment of
inertia (or equivalently the spin parameter a∗). For the
purpose of modeling observations of astrophysical neu-
tron stars, however, the relation given in Equation (15)
is adequate.

In order to determine the quadrupole moment, we
adopt the relation proposed by Yagi & Yunes (2013b).
These authors present a relation between the quadrupole
moment and moment of inertia of spinning neutron stars
with a variety of equations of state. They define a dimen-
sionless quadrupole moment Q̄ and moment of inertia Ī
that relate to our q∗ and a∗ via

Q ≡ q∗

a∗2
, (16)

and
I ≡ a∗ζ−3/2. (17)

They then find an empirical expression for Ī as a function
of Q̄. Since the inverse of this relation is required for use
with our fit for the spin parameter a∗ in Equation (15),
we find instead an analogous fit for Q̄ as a function of Ī,

lnQ=−2.014 + 0.601 ln I + 1.10(ln I)2 (18)

−0.412(ln I)3 + 0.0459(ln I)4.

Alternatively, the fit of Yagi & Yunes (2013b) can be in-
verted numerically to obtain an equivalent relation. The
above fit is shown as the solid line in Figure 2 along with
numerical calculations for our chosen equations of state.
Again, the residuals shown in the lower panel are less
than 2% for each considered equation of state.

4. RELATIONS FOR THE ELLIPTICAL SHAPE OF THE
NEUTRON STAR SURFACE
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Fig. 2.— Empirical fit to the correlation between the dimen-
sionless quadrupole moment Q̄ and angular momentum Ī. The fit
corresponds to Equation (18) and is equivalent to that proposed in
Yagi & Yunes (2013b). The lower panel shows the residual to the
fit in percent.

Given these two empirical fits for the spin parameter
and quadrupole moment, we now find an analytic ex-
pression for the eccentricity of the neutron star surface.
Hartle & Thorne (1968) solved the equations of stellar
structure at second order in spin frequency and showed
that the eccentricity of the neutron star surface measured
in flat space is given by

es =
√

−3(v2 − h2 + ξ2/R0), (19)

where v2 and h2 are functions of R0 that are second order
in spin, and ξ2 is the parameter defined in Equation (3).
Hartle & Thorne (1968) provide the exact forms of the
quantities v2 and h2 as functions of the mass, radius, an-
gular momentum, and quadrupole moment. Using Equa-
tions (1) and (2), we can reduce Equation (19) to de-
pend only on the dimensionless parameters ζ, a, q, and
ε0 defined above. Substituting a∗ and q∗ for a and q via
Equations (8) and (9) and using the definition of e∗s in
Equation (11), we can eliminate the dependence on spin
and find an analytic expression for the eccentricity e∗s,

e∗s(ζ, a∗, q∗) =

[
1 − 4a∗ζ3/2

+
15(a∗2 − q∗)(3 − 6ζ + 7ζ2)

8ζ2
+ ζ2a∗2(3 + 4ζ)

+
45

16ζ2
(q∗ − a∗2)(ζ − 1)(1 − 2ζ + 2ζ2) ln (1 − 2ζ)

]1/2
.

(20)

Figure 3 shows this expression for the eccentricity as a
function of the compactness, along with numerical calcu-
lations from several equations of state. We have substi-
tuted Equations (15), (17) and (18) into Equation (20)
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Fig. 3.— Analytic expression for the eccentricity of the neutron
star surface, corresponding to Equation (20). In order to express
this relation as a function of a single parameter, we have combined
Equation (20) with our empirical fits for the quadrupole moment
and spin parameter from Equations (15) and (18). The lower panel
shows the residual to the relation in percent. Although the ana-
lytic relation is exact, the empirical fits between a∗, q∗, R, and M
introduce some scatter about this relation.

in order to present the relation as a function of the single
parameter ζ. The residuals to this relation are shown in
the lower panel. The residuals are nonzero due to the
empirical nature of the fits between a∗, q∗, and ζ.

Alternatively, Hartle (1967) gives an expression for the
ellipticity of the neutron star surface in Hartle-Thorne
coordinates as

εs = − 3

2R
ξ2. (21)

Again, we can reduce this equation to depend only on
our dimensionless parameters and eliminate the spin de-
pendency to find an expression for ε∗s,

ε∗s(ζ, a∗, q∗) =
1

32ζ3

{
2ζ
[
8ζ2 − 32a∗ζ7/2

+ (a∗2− q∗)(45−135ζ+ 60ζ2 + 30ζ3) + 24a∗2ζ4 + 8a∗2ζ5

− 48a∗2ζ6
]

+ 45(a∗2 − q∗)(1 − 2ζ)2 ln (1 − 2ζ)

}
. (22)

5. APPLICATIONS

In order to reduce the number of parameters necessary
when fitting a neutron star observation, the following
procedure can be used. For a given value of M , Req, and
f , one can calculate the parameter ε0 via Equations (6)
and (7) as

ε0 = f

(
GM

R3
eq

)−1/2

. (23)

1.00

0.98

0.96

0.94

0.92

0.90

R p
/R

eq

800600400200
f (Hz)

 Morsink et al.
 Equation (22)

Fig. 4.— Comparison of the ratio of polar radius to equatorial
radius found in this paper and the ratio found by Morsink et al.
(2007)

The spin parameter a can then be found from Equa-
tion (15),

a = ε0
[
1.1035 − 2.146ζ + 4.5756ζ2

]
. (24)

The fit between moment of inertia and the quadrupole
moment can then be used to write

q = a2 exp

[
− 2.014 + 0.601 ln

(
a

ε0
ζ−3/2

)

+ 1.10 ln

(
a

ε0
ζ−3/2

)2

− 0.412 ln

(
a

ε0
ζ−3/2

)3

+ 0.0459 ln

(
a

ε0
ζ−3/2

)4
]
. (25)

The parameters a∗ ≡ a/ε0 and q∗ ≡ q/ε20 can then be
used in Equations (20) or (22) to find the eccentricity or
ellipticity parameter of the neutron star surface in the
appropriate spacetime. As defined in Equation (22), the
ellipticity of the neutron star is given in Hartle-Thorne
coordinates. In order to convert to the commonly used
Boyer-Lindquist coordinate system, the following trans-
formation can be applied:

RBL(RHT, θ) =

RHT −
a2
(
GM
c2

)2
2R3

HT

[(
RHT + 2

GM

c2

)(
RHT − GM

c2

)

− cos2(θ)

(
RHT − 2

GM

c2

)(
RHT + 3

GM

c2

)]
(26)

where RHT is the radial coordinate in the Hartle-Thorne
coordinate system and RBL is the radial coordinate in
the Boyer-Lindquist coordinate system (Hartle & Thorne
1968).

In the context of modeling pulse profiles, Morsink et
al. (2007) similarly reduce the parameter space by finding
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Fig. 5.— Simulated line profiles of an emission line from a
neutron-star surface. The solid line shows a profile calculated using
parameters from a numerical simulation of an AP4 star with a mass
of 1.40 M� and a spin frequency of 700 Hz. The dashed line shows
a star with the same mass, spin frequency, and radius (10.18 km),
but with the quadrupole moment, spin parameter, and eccentricity
determined by our fits. For reference, the dash-dotted line shows a
profile with identical parameters but with the quadrupole moment
set to zero. The photon energy at infinity and in the local Lorentz
frame are denoted by E and E0, respectively.

an empirical description of the oblate shape of spinning
neutron stars that is accurate for multiple equations of
state. They find that compact objects can be divided
into two broad classes with different oblateness at high
spin frequencies. Normal neutron stars and hybrid quark
stars follow one relation, while color-flavor–locked stars
exhibit a different behavior. In both cases, Morsink et al.
(2007) find that the deviation of the stellar surface from
the spherical shape is proportional to the square of the
spin frequency, with some additional correction at fourth
order in the spin.

The empirical model of Morsink et al. (2007) for cal-
culating the shape of normal neutron stars should agree
with the analytic formula we find above when compared
in the same coordinate system. Morsink et al. (2007) de-
fine the shape of the stellar surface in the Schwarzschild
coordinate system. Since the Boyer-Lindquist coordinate
system reduces to the Schwarzschild coordinate system in
the limit of zero spin, we use Equation (22) to calculate
the ellipticity in Hartle-Thorne coordinates and apply
the change of coordinates described in Equation (26).
Figure 4 shows the predicted ratio of the polar to the
equatorial radius in the model of Morsink et al. (2007) as

well as the analytic relation described above for a range
of spin frequencies. In both models a neutron star with
a mass of 1.4 M� and a radius of 10 km was used. The
deviation derived here of the empirical model of Morsink
et al. (2007) and the analytic formula is of order 1% in
the range of observed spins.

The neutron-star shape and quadrupole moment play
an important role in the profiles of lines that originate
on neutron-star surfaces. Bauböck et al. (2013) showed
that, at low inclinations, the quadrupole moment can
cause anomalously narrow features to appear even for
neutron stars spinning at moderate rates. In order to test
whether the fits proposed in this work are precise enough
to accurately model line profiles, we compared the profile
calculated with the parameters predicted by a numerical
simulation to one using the parameters from our fits. We
show the result in Figure 5. For this example, we chose
a model where the fits have large residuals, especially for
the quadrupole moment, which provides the dominant
contribution to the profile shape (Bauböck et al 2013).
Even in this case, the narrow profile is recovered, and the
difference in the resulting profiles is negligible.

6. CONCLUSIONS

We have demonstrated that several macroscopic pa-
rameters of spinning neutron stars can be approximated
with high accuracy using relations that depend only
on their masses, radii, and spin frequencies, but that
are practically independent of the equation of state.
These fits enable measurements of neutron-star masses
and radii using X-ray spectroscopy, timing observations
of pulse profiles, and gravitational-wave observations of
neutron stars spinning at moderate frequencies.

Future detectors such as NICER, LOFT, and Ad-
vanced LIGO will soon allow for more precise measure-
ments of neutron-star parameters than have been possi-
ble to date. Using these observations to constrain the
equation of state of the dense matter found in neutron
star cores requires that the parameter space be reduced
in order to determine the mass and radius with the high-
est precision. The relations demonstrated above allow
this reduction of the parameter space independent of the
equation of state, making possible more precise measure-
ment of the equation of state of neutron-star cores.
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