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The static boundary problems of line currents and dipoles immersed in a perfectly conducting
static fluid are considered first. The perturbing effect of moving fluid on the magnetostatic boundary
sbout an isolated line current is then investigated. In this case, the initial circular boundary is dis-
torted into an ellipse with major axis transverse to the direction of flow.

INTRODUCTION

T is of interest in both astronautics and geo-
magnetism to inquire into the mutual interaction
between a magnetic field and a conducting stream.
Previous investigators have considered the problem
of a magnetic dipole introduced as a perturbation
on an already existing uniform magnetic field in a
conducting fluid.' We consider the limiting case of a
perfectly conducting static fluid containing no
initial field, but under an initial hydrostatic pressure.
With these conditions a line current will produce a
cylindrical cavity in the fluid, the radius of which
will be given by

R = ulo/27P., M

where I, is the current (cgs — emu units), x the
magnetic permeability, and P. the fluid hydro-
static pressure. Equation (1) is self-evident from
the symmetry of the situation. The hydrostatic
pressure is balanced by the action of the interior
magnetic field on a boundary current sheet in the
conducting fluid. A magnetic dipole will result in
a cavity whose boundary is less obvious. In the
next section we will derive its shape.

STATIC DIPOLE CAVITY

The dipole cavity can be considered as the limit
produced by two approaching line currents. When
they are far enough apart, each will be surrounded
by its own cylindrical eavity. This type of solution
will cease when the two eylinders become tangent,
producing a figure eight. Thereafter, the two eylin-
ders will merge. The conditions to be satisfied
along the entire exterior boundary are equality of
hydrostatic and magnetic pressure,

(B." + B,)/8x = P., @
and tangency of the magnetic field,

1M, G. S. el Mohandis, Asirophys. J. 129, 172 (1959).

dy/dx = B,/B,. 3)

Of course, within the cavity, B, and B, will each be
harmonic exeept at the sources (& z, 0) which
approaches the origin in the limit.

To solve this problem it is convenient to consider
(x, y) to be functions of (u, v) where

u = B,/(B.” + B,")
and
v = —B,/(B. + B)).

Here z and y will be conjugate harmonic functions
of w and v. From Eq. (2) the exterior cavity boundary
will appear as a circle of radius (8P.)”" in the
u-v plane. Equation (3) may be expressed as

v du v du
w Ty, yd
du " v du @
Combining Eq. (4) with the Cauchy-Riemann con-
ditions, and the fact that dv/du = —u/v on the
boundary, leads to
dz/ov = 0;  dy/ou = 0. (5)

These are the boundary conditions on the circle.
The vertical line of contact (0, £ y,) will transform
into a cut along the real axis of the wv plane.

Along the cut, x = 0 and dy/dv = 0; clearly
there will be a square root singularity at the inner
tip of the cut, where z = y = 0. The line current
singularities will transform into the origin of the
uv plane. The length of the cut will be determined
by the strength of the line currents; for the dipole
it extends into the origin and this case can be treated
analytically.

To proceed, we expand z and y in power series
about the origin as follows:
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where

and 6 = tan™' v/u.

=u2+v2

In this form z and y automatically satisfy the
slit conditions, and it remains only to satisfy con-
ditions (5) on the circle boundary. This can be done
by taking @; = —a,;/3(8xP.)}, and all the other
coefficients equal to zero. The constant a, is, of
course, determined by the dipole strength M. The
coordinates of the cavity boundary may now be
expressed parametrically in terms of 6 as follows:

- [M/(swpm)*]%[smg— - (é) sin ?] ,

= [M/(87P )" [cos /2 — (3) cos (36/2)].

The boundary of the cavity surrounding the dipole
is plotted in Fig. 1. It might be noted that the current
density is constant at the interface.

PERTURBATION DUE TO A MOVING STREAM

We now inquire into the distortion of the
cylindrical cavity about an isolated conductor
due to an incompressible flow field. It is convenient
to introduce a magnetic potential according to

1 0Q
By = —989/or; B, = 733" (6)
where Q is itself harmonic in the cavity. We expand
Q@ and r in power series, Q, and R representing the
unperturbed values of the potential and cavity
radius, respectively.

Q= QM + U, 6),
r = RO + Uzg(o):

where U is the free stream flow-velocity. The
boundary conditions on the perturbed cavity wall
are threefold:

tangeney of the magnetic field,

B./By = (1/r) (dr/db); (8)
tangency of the flow,

@

./ = (1/7) (dr/d8); ©)
equality of hydrodynamic and magnetic pressures,
(Bé* +B.)/8x = P+ (p/2)(U* ~ ¢ — ¢7), (10)

where p represents the fluid density, and ¢, and ¢,
the components of the perturbation flow field.
By combining Eqs. (6), (7), and (10), we get
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Fia. 1. Cavity surrounding a two-dimensional dipole in a
perfectly conducting fluid.

Q(r, 6)
where we have neglected
U? (09:/09)
in comparison with By,
(B, = 2ul0/7).
Equations (6), (7), and (10) lead to

oy _ (_12_) _ __Eia_ Faﬂl 2;1] ]
2 (1 U/  4x LoQ (0)

to order U*. Using Eq. (11), this becomes

2 _
L -9 )= __B_ﬁz 391 2ﬂIo ]
3(1-%) - + vt @

= BBug(a): (11)

(12)

r=Ro

Ry’Bs,
However, Eq. (9) leads to the result
= (qU’/Ry)dg/ds. (14

Equation (14) tells us that to order U?, ¢, = 0.
Therefore, we may take the flow to be that around
the unperturbed cylinder r = R,; i.e.,

2

2R 2 4
(_qﬁ = [1 ~ 3~ 2 cos (26) +§%]
Therefore, Eq. (13) leads to

(15)

P -
3 {2 cos 20 — 1]

_B,, [aQ, 4 2l Q] (16)
41r R02Bo° T-Rn.

Sinee it must also satisfy Laplace’s equation, Q,
may be taken in the form

II

& = C, + Cyir’cos (20).
Substitution in Eq. (16) leads to the results

an
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Co = wpRs*/ul,
C, = 2np/3ul,.

Consequently the perturbed cavity-boundary may
be expressed as

(18)

r=R [1 + TR g o (20)]]- (19)
Q 2#2102 3
Equation (19) tells us that the original cylindrical
cavity expands slightly, and is deformed into an
ellipse with its major axis transverse to the direction
of flow.

CONCLUDING REMARKS

We have not discussed the stability of our solu-
tions. However, it seems intuitively clear that the
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cylindrical cavity about an isolated line current will
be stable, as well as the static dipole boundary.

The rather weak dependence of the dipole-cavity
dimensions on P, indicates that it will not be much
distorted by flow. When regarded as starting points
for examining the interactions between magnetic
fields and moving streams, our solutions need not
be regarded as applying only to an ideal conductor.
For a moving stream, one need only require a high
magnetic Reynolds number. The solution for the
dipole cavity may then be used to estimate the
extent of penetration of the magnetic field into a
highly conducting moving stream. Here P, could
be approximately equal to the stream stagnation
pressure.
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