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:\lathematical models of phase transitions in solids lead to the variational problem. 
minimize fn W (Du) dx, where H' has a multi-well structure, i.e. IV= 0 on a 
multi-well set K and W > 0 otherwise. We study this problem in two dimensions in 
the case of equal determinant, i.e. for K = S0{2)UJ U · · · U S0(2)Uk or 
K = 0{2)Ul u · · · u 0{2)Uk for U1 , ... , Uk E M2 x2 with det U, = 8, in three 
dimensions when the matrices Ui are essentially two-dimensional and also for 
K = S0(3)Ul u · · · u S0{3)Uk for U1, ... , Uk E M3 x3 with (adj U[U, )33 = 82

, which 
arises in the study of thin films. Here, U, denotes t he (3 X 2) matrix formed with the 
first two columns of Ui · \Ve characterize generalized convex hulls. including the 
quasiconvex hull , of these sets, prove existence of minimizers and identify conditions 
for the uniqueness of the minimizing Young measure. Finally. we use the 
characterization of the quasiconvex hull to propose ·a pproximate relaxed energies', 
quasiconvex functions which vanish on the quasiconvex hull of K and grow 
quadratically away from it. 

I· 1. Introduction 

1Iathematical models for phase transitions in olids lead to the following variational 
problem ( ee [2. 4]) . :.Iirumize 

I (u) = l W(Du) dx, (1.1) 

"'>here u : ft c !Rn -+ !Rn is the deformation of an elastic body whlch occupies in 
an ideal un tres ed configuration the domain [2. v.-e assume that the stored energy 
den ity lV is non-negative and that the level et K = {W = 0} is not empty. The 
principle of material frame indifference and symmetry properties of the underlying 
material imply further structure of K. For many materials of interest, K has a 
multi-well structure. 

k 

K = U SO(n)U;. 
t=l 

A a consequence. W fails to be quasiconvex and therefore the existence of minimiz
ers cannot be obtained from the direct method in the calculus of variations based 
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on sequential lo\\·er semicontinuity of the integral. However. the behaviour of the 
minimization problem is closely related to the quasicom·ex hull J(qc of the set K: 
if we minimize I on all Sobole'' functions which coincide with the affine mapping 
u(a:) = Fx on 80. then the infimum of I is zero if and only if F belongs to the 
quasiconvex hull Kqc of K (see [19]). 

In this paper "'e characterize generalized convex hulls for multi-well problems in 
two and three dimensions in the case of equal determinant. i.e. when det U; = o. 
In this case, J(QC is contained in the et { det F = o}, which in two dimensions has 
the remarkable property that any two points F 1 . F2 are rank-one connected in the 
following sense: there exists a Q E 80(2) such that the rank (QF2- F2 ) is equal to 
one (see [ ] or lemma 2.2 below). 

We prove the following result (see § 2 below for the notation used). 

THEOREJ\1 1.1. Let U = {U1 , ... , Uk} c MI~)~~. where the matrices U, are positive
definite and satisfy det U; = 6 > 0. 

(i) Let K = S0(2)U1 U · · · U S0(2)Uk. Then 1((2) = J(k = K rc = Kqc = J(Pc. 
Further. if 

{Ul . . ... Un} = {U; E u: IU;ej2 >max IUiel2 for some e E S 1 }, 
rl• 

then there exists a set En = { e1 , ... , en} C S 1 such that any of these hulls is 
given by 

{FEM2
x

2 :detF=o. 1Fe;j2 ~ max 1Uied 2
. i=l. ... ,n}. 

J=l. ... ,n 

(ii) Let K = 0 (2)U1 U · · · U 0 (2)Uk· Then 1((3 ) = J(lc = Krc = J(qc =](PC and 
any of these hull.s is given by 

{FE MI2 x
2 

: I det Fl ~ 0, !Fel2 ~ . ma..x jU;ej2 'tie E S 1 
}. 

•=l. ... ,k 

A similar result holds for the three-dimensional case if the wells are e entially 
two dimensional. 

THEOREJ\1 1.2. Let U = {U1 . ... , Uk} C M~/'~' where the matrices U; are positive
definite and satisfy det U; = 6 > 0. Assume that there exists J..L > 0 and v E S2 

such that U;v = J.W fori = 1, .... k. Let K = S0(3)U1 U · · · U S0(3)Uk· Then 
!({2) = J(lc = J(rc = J(qc = J(Pc. Further, if 

then there exists a set En = { e1 .... , en} C S2 such that any of these hulls is given 
by 

{FE M3
x

3
: det F = o, FT Fv = J..L2v . jFe.j2 ~ . max jUje1 j2 . i = 1. ... , n}. 

J =l , ... ,n 

Applications in the recently developed theory of thin films [7, 15] motivate to 
consider the following set K. 
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THEORE~1 1.3. Assume that [;; E M~)~. i = 1. .... k, are po itive-definite with 
adh3 U[ = 82 > 0 and that { e1 . e2. e3} is the standard orthonormal basis in JR3 . 

Let K = S0(3)U1 U · · · U S0(3)Uk. where 

S0(3)U; = {QU; = (QUie1,QUie2): Q E 80(3)} c M 3
x

2. 

Then ]((3) = Klc = Krc = Kqc = J(Pc and any of these hulls is given by 

{FE M 3 x2 : det(FT F):::;; 82. 1Fel2 :::;; . max IUiel2 VeE S1 
}. 

t =l, ... ,k 

We u e this characterization to propose 'approximate rela.xed energies', which 
may be useful for numerical computations. ~Iinimizing sequences and minimizers 
of I develop complex oscillatory patterns and this makes numerical computations 
challenging. Computing v.·ith the relaxed energy I# (which is obtained from I by 
replacing W with its quasiconvex envelope) is attractive. ~Iany of the numerical 
difficulties do not arise. the infima coincide, the minimizing sequences of I converge 
to the minimizers of I #. and recently Ball et al. [5] have shown that under suit
able growth hypotheses even the stresse associated with the minimizing sequences 
of I converge to those associated with the minimizers of I #. Unfortunately, the 
quasiconvex envelope of vl' is unknown. However, the practical interest lies in the 
behaviour of the quasi convex envelope near the set Kqc. vYe use the characteriza
t ion of this set to propose functions W which are quasiconvex, vanish on Kqc and 
grow quadratically away from Kqc. In [6] we adapt the construction to fit measured 
elastic moduli for various materials. 

We illustrate our results with two examples. 

(i) The two-well problem, which corresponds to an orthorhombic to monoclinic 
tran formation and also arises under suitable assumptions in cubic to tetrag
onal or cubic to orthorhombic transformations, is described in examples 3.4 
and 4.4 (example 3.4 recovers the results of Ball and James [4]). 

(ii) The four-well problem, which corresponds to a tetragonal to monoclinic trans
formation and also arises under uitable assumptions in some cubic to mon
oclinic transformations, is described in examples 3.7. 4.5 7.3 and 8.3. 

l\IUller and Svenik [16. 17] recently showed (based on Gromov's idea of con
vex integration) that there exist even Lipschitz continuous minimizers of I if F 
belongs to the interior of the rank-one convex hull of K and if K admits an 
·in-approximation' (see § 6 below for the precise statement); Dacarogna and :Mar
cellini [10. 11] have obtained similar existence results using Baire·s theorem. We 
show that the sets K qc in theorems 1.1 and 1.3. but not in theorem 1.2. admit such 
in-approximations. 

The basic ideas behind the main results are simple. though the details are rather 
laborious. Two identifications play a crucial role. First. K , and consequently the 
quasi convex hull K qc, is invariant under (multiplication from the left by elements 
of) 80(2). 0 (2) and 80(3). So we can look at the image K~c of J(qc in the space of 
2 x 2 positive-semidefinite symmetric matrices under the map F H pT F. In other 
words, we identify the set 

J(qc = {C E M 2 x 2 · det C >- 0 1C E K qc} c sym · r ' V 
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~c,2 

Figure 1. The quasiconvex hull K~c for the four-well problem described in 
example 3.7 with S0(2)-invariant wells. 

with Kqc. Second, we identify the space MI~Y~ of symmetric 2 x 2 matrices with 
IR3 using components {Cll , C22, v'2Ct2}· We use the j2 in the third component 
to preserve inner products. Positive-semidefinite symmetric matrices correspond to 
the (affine) half cone 

(1.2) 

\Ve now give a brief non-technical di cu ion of our results. Under the as umptions 
in theorem 1.1 (i). it follows from the minors relation or the weak continuity of the 
minors that, for any F E Kqc and e E S1. det F = 15 and IF el2 ~ max,=l , .... k 1Uiel2 . 

Therefore, Kic C A. where 

A= {C E MI~y~: detC = 82. (e.Ce) ~ . max IUiel2 VeE S1 }. 
t=l. .... k 

We now show the converse, A C Kic. In order to do so, let us look at this set 
A in some detail. Clearly, the set of all positive-definite symmetric matrices with 
det C = 82 describes a manifold (hyperboloid) , while (e, Ce) = o defines a plane in 
JR3

. Thus A is a subset of this manifold restricted by suitable planes (see figure 1). 
Let us elaborate. Figure 2 shows schematically the surface of the hyperboloid. For 
any direction e E S1 and o E IR. the inter ection of the hyperboloid with the plane 
(e. Ce) = o is a (quadratic) curve r(e. a), which divides the hyperboloid into two 
part (see the lower left of figure 2) . Start with a ~ maJ<i=l, .. .. k IUiel2 and move 
the cun·e (by changing o) until it first touches any of the matrices U,2. The set A 
i the set that is enclosed by similar curve for all e E S 1 . It turns out that if there 
are k matrices. only k curves are needed to define the boundary of A (of course, 
this requires a hypothesis that prevents one of the matrices U'f to lie within the 
et A defined using the others: otherwise there may be less than k curves). These 

k curves have the property that they pass through two points U'f and UJ. Further, 
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Figure 2. The details of the quasicom·ex hull K 2c for the four-well problem described in 
example 3.7 with 80(2)-invariant wells. 

they are rank-one directions in the following sense. We can find a, n E !R2 such that 
any C on this curve can be expressed as 

Therefore. we can obtain any point C on the segment of this curve between U[ 
and UJ by rank-one lamination and thus 8A C K~c . _ ow pick any point D in the 
interior of A. There is a rank-one curve passing through D which always lies on 
the hyperboloid and extends off to infinity in both directions. Therefore. it must 
intersect 8A at two points. and we can obtain D through the lamination of these 

~ points. \Ve thus conclude that A c K~c . 
The re ult and proof of theorem 1.2 are similar; we use the minors relations to 

prove one inclusion and lift the constructions above to three dimensions to prove 
the other. 

Let us now turn to part (ii) of theorem 1.1, where K consists of k copies of 
0 (2). The fundamental difference between this and the former case can be een in 
the special case k = 1. \Vhile Kqc for K = 80(2) is trivial, i.e. Kqc = 80(2) or 
K~c = {I} , Kqc forK= 0 (2) is the set of matrices with singular values in [0, 1]. 

Kqc = {F: 0 ~ .>..1(FTF) ~ .>..2 (FTF) ~ 1} 

where .>..1 . .>..2 are the eigenvalues so that 

The set K~c is shown in figure 3 and is obtained as the intersection of two back-to
hack cones given by the two inequalities above, one with apex C = 0 and another 
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0 = 
{o.o.o} 

Figure 3. The quasiconvex hull K'ic forK= 0 (2). 

F igure 4. The quasiconvex hull K'ic for the four-well problem described in 
example 4.5 with 0(2)- invariant wells. 

with apex C = I . This is due to the fact that 0(2) consists of two copies of S0(2) 
which have remarkably many rank-one connections: any Q E 0(2) \ 80(2) is rank
one connected to the identity matrix I . For k > 1. the set Kic is obtained by 
combining figures 1 and 3. i.e . by composing the matrices in A with short maps. 
This set is shown in figure 4 , and the boundary consists of A , the cone det C = 0 
with apex at C = 0, the planes (e, Ce) = maxi=l, ... ,k IUiel2 and portions of cones 
with apexes at Uf. ... , U'f. The proof is very similar to that of theorem 1.1 (i); we 
use the minors relation to find bounds on Kic and use lamination to show that these 
bounds are indeed optimal. Finally, note that, unlike part (i), where it is sufficient 
to use only a finite number of directions e to define the set K qc, in part (ii) we 
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need all directions e E S1 . A finite subset corresponds to the planar parts of the 
boundary of K~c . while the rest define the coilflS with apexes at Ul. 

The set K~c . when K consists of k copies of S0(3)Ui, is described in theorem 1.3, 
and is identical to the case when K consists of k copies of 0(2). 

The paper is organized as follows. Section 2 collects preliminaries and basic lem
mas, which are used in the subsequent sections. We suggest that a reader omit 
it on first reading, corning back to it as and when necessary. Theorems 1.1- 1.3 
will be proven and illustrated with examples in §§ 3- 5. Section 6 discusses exis
tence of minimizers, while we present in § 7 uniqueness and non-uniqueness results 
for microstructures associated with minimizing sequences for the variational prob
lem (1.1). In§ we finally construct approximate relaxed energies. 

2. Preliminaries 

The generalized convex hulls we are concerned with in this paper are defined as 
sublevel sets of furtctions with the corresponding convexity properties. Recall that 
a furtction f : M 2 x 2 -+ ( -oo, oo] is said to be convex if 

j(>.A + (1- >.)B)~ >.j(A) + (1- >.)j(B) VA. BE M2
x

2
. ).. E (0, 1), (2.1) 

and it is said to be rank-one convex if (2.1) holds for all A, B E M2 x 2 with 
rank(A- B)= 1. Rank-one convexity is a necessary condition for quasiconvexity, 
the fundamental notion of convexity in the calculus of variations. A furtction f is 
quasiconvex if 

{ j(F+DIP)dx?t: { j(F)dx 'lipEW~'00(B(0,1):JR2) 
J 8 (0,1) J 8 (0,1) 

(whenever the integral on the left-hand side exists). A sufficient condition for qua
siconvexity is polyconvexity, i.e. there exists a convex furtction g : JR5 -+ IR such that 
j (F) = g(F. det F). We now define for a given compact set K c M 2 x 2 its rank-one 
convex hull Krc by 

Krc ={FE M2 x 2 : f(F) ~sup/ for all f: M2 x 2 -+ IR rartk-one convex}. 
K 

The quasiconvex hull Kqc, the poly convex hull KPc and the convex hull Kc are 
defined analogously. Finally, we define the lamination convex hull Klc in the fol
lowing way (see [16]). Let K(o) = K and define 

K (i+l ) = {>.A+ (1- >.)B : A, B E K(i) . rartk(A- B) = 1, >. E (0, 1)} U K (i). 

Then 
00 

Klc = u K(i) . 

i =O 

It follows that 
(2.2) 

(see [9, 19]). 
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w·e now introduce some notation that we frequently use. Given distinct matrices 
U1 , . .. , Uk EM;;~, we let 

U = {U1 , . . . , Uk}. 

We note that if det Ui = fJ > 0 for i = 1, .. .. k . then. according to the polar 
decomposition theorem. 

Ui ~ U S0(2)U, 
ih 

for j = 1, .. . , k, so that the S0(2) wells are disjoint. We often use 

mu(e) = max{IUel2 : U E U }. (2.3) 

We denote by e.L the unique unit vector orthogonal to e E S 1 with det( e, e.L) = 1. 
We collect in the next two lemmas well-known facts (see [12]). which will be 

useful throughout the paper. 

LEMMA 2.1. Assume that C1. C2 E M;;~ are positive-semidefinite, C1 = F{ F1 , 

C2 = Fl F2. Let e E S1
. Then the following four statements are equivalent. 

(i) There exist Q E S0(2) and a E JR2 such that QF1 - F2 =a ® e.L. 

(ii) We have IF1 el2 = 1F2el2. 

(iii) There exists v E JR2 such that C1 = C2 + v ® e.L + e.L ® v. 

Moreover, the vector a in statement (i} and the vectorv in statement (iii} are related 
by v = Fl a+~ lal2e.L . Finally, if det F1 = det F2, then a= aF2e with a E JR. 

Proof. (i) => (ii). Assume that QF1 = F2 +a ® e- . Then 

C1 = (F{ + e.L ® a)(F2 +a ® e.L) 

= C2 + F{a ® e.L + e.L ® F{a + lal2e.L ® e.L 

and (ii) follows immediately. 
(ii) =>(iii). Let C = C1 - C2. Assun1e first that rank( C) = 1. Since Cis symmet

ric, there exists a v E IR2 such that C = v ® v . By assumption. (e, Ce) = (v, e)Z = 0 
and thus we obtain (iii) with v parallel to e.L. 

Consider now the case rank( C) = 2. Since the eigenvalues >.i of C satisfy 

>.1 (C) = min(v.Cv) < 0 < max(v,Cv) = >.2(0), 
vES1 vES1 

there exist a 1 , a2 E IR \ {0} and orthonormal vectors v1, v2 E IR2 such that 

- 2 2 
C = Ct2V2 ® V2 - Ct1 V1 @ V1 

= H(a2~- a1vt) ® (a2v2 + a1vt) + (a2v2 + a1v1) ® (a2v2- a1v1)}. 

Clearly, (e, v1) =/:- 0 and (e, v2) =/:- 0 (indeed, if (e. v1) = 0, then v2 = 1e. with 
1 E {±1} and eCe = a~=/:- 0; a contradiction). This implies 

(e, v2)2 = (aVa~)(e, v1)2; 
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since {VI, v2 } i an orthonormal basis of R2. we infer 

and 
(e. VI} 

e- = --(=t=o:Ivi + 0:2V2). 
0:2 

This proves (iii) with v = o:2v2 ± a 1vi. 
(iii) :;.. (ii). This is obvious. 

2 7 

(ii) :;.. (i) . By assumption, IFiel2 = !F2el2 and we may choose Q E 80(2) such 
that QFie = F2e or (QFI - F2)e = 0. Thus QFI - F2 =a ® n is a matrix of rank 
one and from (QF1- F2 )e = (n ,e}a = 0 we deduce that we may choose n = e.L . 

(ii) {:::} (iv). This is also obvious from above (the characterization of C). 
The relation between a in statement (i) and v in statement (iii) follows by direct 

calculation. Finally, if det FI = det F2 , then (i) implies 

det FI = (det F2) (1 + (F2-
1a. e.L}) 

and thus a must be parallel to F2e. 0 

LE~IMA 2.2. If C1. C2 E ~;,~, CI = F'f F1 and C2 = F:f F2 are positive-definite 
with det cl = det C2, then there exist rotations Qi E 80(2) and vectors ai , ni E R2

' 

i = 1, 2, such that n1 and n2 are not parallel and QiFI - F2 = ai ® ni · Moreover, 
j(>.Q1FI + (1- >.)F2 )nil2 < IFinf l2 for>. E (0, 1) . 

Proof. Denote by >.I ~ >.2 and J.L1 ~ J.L2 the eigenvalues of C1 and C2. Since. by 
hypothesi , det CI = det C2. or >.I>.2 = J.Ll/.L2· we may assume that >.I ~ J.LI and 
J.L2 ~ >.2. or 

min (w. C1w} ~ min (w. C2w} and max (w, C1w} ~ max (w, C2w}. 
wE S 1 wE S 1 wES 1 w ES1 

Therefore. we can deduce from the continuity of the mappings w H (w. CI w) 
and w H (w, C2w) that there exists a WI such that (wt, C1w1 ) = (w1 , C2wi)· By 
lemma 2.1) there exists W2 E IR2 such that CI = c2 + wf ® W2 + W2 ® wf. The exi -
tence of the rank-one connections now follows with ni = wf and n2 = w2/ lw2i from 
the equivalence (i) {:::} (iii) in lemma 2.1. The vectors wf and w2, and consequently 
ni and n2 , are not parallel since 

detCI = det (C2 +1wf ® wf) = (detC2)(1 + 'Y(wf.C:;1wf }) f detC2 

in view of (w. C:; 1w) ~ J.L21 > 0. The existence of the rank-one connections follows 
now with ni = wf and n 2 = w2 from the equivalence (i) {:::} (iii) in lemma 2.1. 

To prove the inequality note that 

IFin~l2 = I QIF1n~ l2 = IF2nf l2 + 2 (ni.n~ } (F2n},al ) + lad2 ( (ni,~))2 . 

By lemma 2.1. IF1ni l2 = !F2ni l2, so that 

2 (ni,n~ }(F2n~ , a1 } + lad2 ( (n1,n~})2 = 0. 
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• ote that (n1.n4") =I= 0, since n1 and n2 are not parallel. Therefore, a= -/3 < 0 
where a= 2(ni.nf )(F2ni"-a1) and {3 = la 112(ni.ni-). Finally. a calculation shows 
that 

and we obtain the assertion of the lemma. 0 

Our characterization of the image of the generalized convex hulls in the three
dimensional affine space of symmetric matrices uses the following property of the 
intersection of the surface { C : C positive-definite, det C = 82}, with the two
dimensional hyperplanes ((Cu, C22, J2C12) , (e?, ~- J2e1e2)) = 12. 

LEMMA 2.3. Assume that e E S1 and 'Y· 8 E JR. 8 > 0. Then the set 

T(e;')'2) = {FT F: (detF)2 = 82. 1Fel2 = 12} c JR3 

is either empty or a smooth one-dimensional manifold which can be parametrized 
by t 1-t F? Ft with Ft = F(I + te ® e.L) for any FE F(e; 'Y)· 

Proof. Let E = { pT F : det F =1= 0} c JR3 and define q> : E -+ IR2 by 

qi(X) _ ( XuX22 - Xf2 - 8
2 

) 
- eiXu + e~X22 + 2e1e2X12- '}'2 · 

It is easy to see that rank Dq> = 2 onE and thus q>-1(0) is a smooth one-dimensional 
manifold contained in E. Assume that F( e; 'Y) =/= 0 and let FJ' Fo E F( e; 'Y). Any 
pT FE F(e; 'Y) satisfies 1Fel2 = 1Foel2 and thus there exists by lemma 2.1 an a E lR 
such that F = Fo (I + ae ® e.L). Tills proves the assertion of the lemma. 0 

The next lemmas will be important ingredients for the characterization of the 
boundaries of the generalized convex hulls. Recall that mu has been defined in (2.3). 

LEMMA 2.4. Suppose F E Ml2 x 2 satisfies the following conditions. 

(i) 1Fel2 ~ mu(e) for all e E S 1. 

(ii) There exist e E S1 and i E {1, ... , k} such that 1Fel2 = IUiel2 > mu\ {U;}(e) . 

Then there exists an a E IR such that pT F = Ul - a 2 e.L ® e.L. Moreover, if 
det F = 8, then F = QUi for some Q E 80(2). 

Proof. In view of lemma 2.1, there exists a v E IR2 such that 

pT F = Ul + v ® e.L + e.L ® v. 

Let e8 = (1 + tJ2)-112(e + Be.L ). By assumption, we may choose c: > 0 small enough 
such that 

Thus 
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We conclude that 

/1 + fJ2()(v, e0 ) = O(e, v) + 02(eJ. , v) ::;; 0 

and this implies v = 1eJ. with 1::;; 0. Thus pT F = Ul- a:2eJ. ® e_J._ If detF = 15, 
then 152 = 152(1- a:21Ui-TeJ.I2), and therefore a:= 0. This implies the assertion of 
thelerruna. 0 

LEMMA 2.5. Suppose there exists e E S1 and 2::;; n::;; k such that 

IU1el2 = · · · = 1Unel2 = mu(e) > max{!Uiel2 : i = n + 1, ... , k} . 

Set eo = (1 + 02 ) - 112 (e + ()eJ. ). Then there exist p, q E {1, . .. , n}, p =/= q and Oo > 0 
such that the following three statements hold. 

(i) mu(eo) = !Upeol2 > mu\{Up}(eo) for -Oo < () < 0. 

(ii) mu(eo) = !Uqeol2 > mu\{U. }(eo) for 0 < () < Oo . 

(iii) For all i E {1, ... . n}, we have 

Ui E {S0(2)Up U S0(2)Uq)<1>. 

Proof. It follows from the continuity of the mappings e H IUiel2 that there exists 
a Oo > 0 such that 

mu(eo) = . max !Uieol2 > . max IUieol2 
for 101 < Oo. 

1=l, ... ,n t=n+l, ... ,k 

By lemma 2.3 (with F = U1), there exist ti E IR, i = 1, .. . , n, such that 

Ul = Uf + ti(Ufe ® eJ. + eJ. ® Ufe) + t~IUfe !2 ej_ ® eJ. . 

Relabelling the matrices if necessary. we may assume that t1 = 0 and ti > 0 for 
i = 2, .... n. Thus 

1
2 2 ()ti 2 ()

2 
( J_ 2 2 2 2) 

!Uieo = lUI eo ! + 2 r;--;ti?!Ulel + -()2 2ti(e , ul e)+ ti lUI e! . 
v 1 + ()2 1 + 

The conclusions (i) and (ii) follow with tv= t1 = 0 and tq = maxi=2 ..... n ti (where 
we choose Oo sufficiently small). 

To prove (iii), we assume that p = 1, i = 2 and q = 3 (note that t1 = 0 < t2 < t3 
by construction of p and q). Let C(t) = G(t)TG(t) with G(t) = U1(I + te ® eJ.). 
Then C(O) = U{U11 C(ti) = U:fU2 and C(t2) = UJU3. Let Vi be the square root 
of Ci . By the polar decomposition theorem, there exist Qi, R; E S0(2) , i = 1, 2, 3 
such that QiVi = G(ti) and QiVi = R;Ui· Let>.= h/t3. Then 

(1 - >.)G(t1) + >.G(t3) = t3 - t2 U1 + t2 U1 (I + t2e ® eJ.) = G(t2), 
t3 t3 

and therefore (1- .A)Jq' R 1U1 + >.RJ' R3U3 = U2. 0 

LEM~IA 2.6. Assume that ui E u and that there exists e E S1 such that 

!Uiel2 = mu(e) > mu\ {U;} (e). 

Then there exists Uj E U, i =/= j , and e E S1 such that IUiel2 = !Uiel2 = mu(e) . 
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Proof. Suppose the conclusion was wrong. Since IU;el2 = IU;( -eW. we may assume 
that all vectors e E SI are given bye= e(<P) = (cos:p.sin9) with <p E (O.r.). 
In particular. the map 9 >-+ IU;e(c,oW is a continuous periodic map on (O.r.]. By 
assumption. either IUie(<,?)j2 > mu\{U,}(e(<p)) or IU;e(c,o)l 2 < mu\{U,}(e(:p)) . Since 
the latter case is excluded by assumption, we conclude that the former holds. Choose 
any Uk E U. Uk f:. U;. By lemma 2.2, there exists t E R. e E S 1 and Q E 80(2) 
such that QU; - Uk = tUke ® el. and IU;el2 = 1Ukel2 ~ mu(e). Thi violates our 
hypothesis and we deduce that there exists at least one e E S 1 and U1 E U, U

1 
f:. U; 

such that IUiel2 = IU1el 2 = mu(e) . 0 

LE?>IMA 2.7. Assume that U,. U1 E U, i f:. j. and that there exists c > 0 and 
e1 = (cos<p1 ,sin<p1) with 'PIE [O.r.) such that the following hold. 

(i) IU,ed2 = IUjeif = mu(ei). 

(ii) mu(e(cp)) = IU;e(cp)i2 > mu\{U,}(e(:p)) for 'PI< 9 <'PI+ c:. 

(iii) mu(e(:p)) = IU1e(<p)i2 > mu\ {U
1
}(e(<P)) for :PI-£< <p <.PI· 

Then there exists Um. E U. m f:. i, and e2 E S 1 not parallel to e1 such that 

Proof. Define 

and let <p2 = h mod r.. By (ii), .P2 > 'PI and by (iii). we conclude that 'P2 f:. cp1 . 

It follows that there exists 8 > 0 such that 

mu(e(cp)) > IUi(e(<p))l2 for ..P2 < cp < <p2 + 8. 

The continuity of the mappings <p >-+ 1Uk(e(cp))i2 implies the assertion of the lemma. 
0 

3. The quasiconvex hull of S0(2)U1 U · · · U S0(2)Uk 

In this section we prove theorems 1.1 (i) and 1.2. 
We first prove the following version of theorem 1.1, which uses an infinite number 

of inequalities to define Kqc . 

PROPOSITION 3.1. Assume that {U1 .... , Uk} C M;~ with U; positive-definite and 
det U, = b > 0. Let K = S0(2)UI u · · · u S0(2)Uk. Then 

and any of these hulls is given by 

{F: detF = 8.jFej2 ~.max IU1el2 VeE SI}. 
J=l , .... n 
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\Ve plit the proof of this proposition into a eries of lemmas. Let 

A= {FE MI2 x 2 
: det F = 6, 1Fel2 ~ mu(e) VeE S1 

}. (3.1) 

We will show that KPc c A c K (2) . This proves the theorem. since. by (2.2), 
K lc c KPC. 

LE~Ir.IA 3.2. Suppose that the assumptions of theorem 1.1 hold and that A is defined 
by (3.1). Then K Pc c A. 

Proof. \\'e construct a polyconvex function iP, which vanishes on A and is po itive 
elsewhere. Let t+ = max{ t. 0} and define for v E S 1 the function 9v : MI2

x
2 ~ IR 

by 
9v(X) = (1Xvl2

- mu(v))+· 

Clearly, 9v i convex since it is the compo ition of a convex non-decreasing function 
and a convex function. The supremum of convex functions is convex and therefore 

iP(X) = ( det X - 6)2 + sup 9v(X) 
vES1 

is the desired function. 0 

The reverse inclusion A C K (2) requires some preparation. Let 

l3 = {F: det F = 8. 1F el 2 ~ mu(e) VeE S\ 3 e: 1Fel2 = mu(e)} . (3.2) 

As a fir t step we show in the next lemma that l3 c K (1l. Given Ui, Ui . according 
to lemma 2.2 there exists a Q E 80(2) and a, e E IR2 such that QUi - Ui = a ® e-. 
Let 

r .. j(e: IU·el 2
) = {(Ui +-\a ® e-)T(U, +-\a® e.L): .>. E [0.11} c IR3 

denote the arc connecting U{Ui and UJUi on the curve r(e: IUiel2
) . 

LE~1~1A 3.3. Assume that k ~ 2. Let F E l3 and C = F T F. 

(i) There exist e E S 1 . Up · Uq E U p =f q, such that 1Uvel2 = 1Uqel2 = mu(e) 
and C E Tp,q(e; mu(e)). Moreover, we may choose p and q in such a way 
that there exist ev, eq E S1 such that mu(ev) = 1Uvevl2 > mu\{Up} (ev) and 
mu(eq) = 1Uqeql2 > mu\{Uq }(eq)· 

(ii) We have l3 c K (1) . 

Proof. By definition of !3. there exi ts at least one e E S1 such that 1Fel2 = mu(e) . 
If there exists an e such that mu(e) = 1Fel2 = 1Uiel2 > mu\{U,J(e) for some 
i E 1, . . . , n . then it follows from lemma 2.4 that F = QUi with Q E 80(2) and 
thus (i) follO\vs from lemmas 2.6 and 2.5. Therefore, we may assume (relabelling 
the matrices if nece ary) that there exists 2 ~ n ~ k such that 

Let p,q E {1, . .. ,n}, p =f q, be the indices with the properties tated in 
lemma 2.5. By lemma 2.1, there exist Q E 80(2), a E IR \ {0} such that 
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QUq- Up= aUpe® e.l.. Note that a > 0. Indeed, by expansion and lemma 2.5 with 
e6 = (1 + 02)-112 (e + Oe.l.), we obtain 

2 2 20a 2 ( 2) 
1
2 ( ) JUqeo l = !Uveol + 1 + 02 1Uvel + 0 0 < !Uveo 'r/0 E -Oo. 0 , 

and this proves the asserted inequality. By lemma 2.3, F = Q(UP + saUve ® e.l.) 
for some Q E S0(2) s E JR, so that 

2 2 20as 2 2 
JFeol = !Upeol + 

1 
+ 02 1Uvel + 0 (0 ). 

Since FEB, we have JFeol2 ~ mu(eo) = 1Uveo l2 for -Oo < 0 < 0, and we conclude 
that s ~ 0. Similarly, JF eo l2 ~ 1Uqeol2 for 0 < 0 < Oo and therefore 

2 20as I 2 2 2 20a 2 ( 2) 
!Uveo l + 1 + 02 Uvel + 0 (0 ) ~ !Uveol + 

1 
+ 02 1Uvel + 0 0 , 

and we conclude that s ~ 1. This proves (i) . Finally. part (ii) follows from the 
observation that 

{FE M2
x

2
: det F = 8, pT FE Fp,q(e; mu(e))} c (S0(2)Up U S0(2)Uq)(l), 

using the definition of B. 0 

We are now in a position to prove proposition 3.1. 

Proof of proposition 3. 1. In view of lemma 3.2, it remains to show A c K <2> c K lc. 
By lemma 3.3, we have B c K (l) c K <2>. Assume now that F E A \ B. Fix any 
e E S 1 and let Ft = F(I + te ® e.l.) and 

C(t) = F'[ Ft = FT F + t(FT Fe ® e.l. + e.l. ® pT Fe)+ t2 JFeJ2e.l. ® e.1.. 

Since Fe =I= 0, we conclude JC(t)l2 --+ oo fort--+ ± oo and therefore 

t+ = sup{t > 0: !FseJ2 < mu(e) 'r/e E S 1 'r/s E [0, t]}, 

t- = inf{t < 0: !Fsel2 < mu(e) 'r/e E S 1 'r/s E [0, t]} 

are well defined and - oo < r < 0 < t+ < oo. By construction, pT F is contained in 
the arc connecting c+ and c -on the curve F(e; JF eJ2 ). Let v± be the square root 
of c±. Then FE {S0{2)V+ u S0(2)V- )<1> and, since v± E B c K <1>, we conclude 
A C K <2>. This proves the proposition. 0 

The quasiconvex hull of two martensitic wells in two dimensions with equal deter
minant 8 > 0 was first obtained by Ball and James [4] . We recover their result as a 
special case in proposition 3.1. 

EXAMPLE 3.4 {The two-well problem). Assume that det U1 = det U2 = 8 > 0, 
S0{2)Ut =I= S0(2)U2 and let K = S0(2)U1 US0{2)U2. Then there exist two vectors 
e1, e2 such that 
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It is easy to see that for k = 2 there exist exactly two rank-one connections 
between the wells S0(2)U1 and S0(2)U2, i.e. there exist Q; E S0(2) and a;, e; E JR2 

uch that QiUI - U2 = ai ® ef . Let U = {Ur, U2} and 

A= {FE M2x 2 : det F = 8, IF~I2 ~ mu(ei), i = 1, 2}. 

We have to show that F E A implies 1Fel2 ~ mu(e) for all e E 8 1. Assume 
the contrary. Then there exists an e E 8 1 such that 1Fel2 > mu(e). Assume 
first that jF e1l2 = mu(e1) (the case that this equality holds for e2 is similar). 
There exist to E lR and Q1 E S0(2) such that F- Q1U1 = toQ1U1e1 ® ef. Let 
F(t) = Q1U1 + tQ1U1e1 ® ef. By assumption, there exist t2 E lR and Q2 E S0(2) 
such that F(t2) = Q2U2. Since g(t) = IF (t)e2 i2 > 0 is a quadratic function with 
g(O) = g(t2) ~ g(to), we conclude h ~ to ~ 0 or 0 ~ to ~ t2. This shows that 
F = >..Q1U1 + (1- >..)Q2U2 with Q1 , Q2 E S0(2) and>.. E (0, 1]. Thus 

mu(e) < 1Fel2 ~ >.. IU1el2 + (1- >.. )IU2el2 ~ mu(e), 

and we conclude that IFel2 = mu(e); a contradiction. Thus we may assume that 
IFe;i < mu(ei) for i = 1. 2. Let Ft = F + tFe ® e.L . Then detFt = 8 and 

1Fte;l2 = IFe; +t(e;,e.L}Fej2. 

Since e1 and e2 are linearly independent, (ei, e.l} =/:. 0 for at least one of the two 
indices and we may chooses> 0 such that 1Fse1i2 = mu (ei) and 1Fse2 i2 ~ mu(e2) 
(or vice versa). Clearly, Fs E A and it follows as above that IFsel2 = 1F el2 = mu(e)· 
a contradiction. See figure 5 for a sketch of the set where U1 and U2 are diagonal. 
Conversely, any set k on the hyperboloid {X = pT F : det F = 8} , which is 
bounded by two arcs of the form above, can be described by 

We now turn to the proof theorem 1.1 (i) , which says that the generalized convex 
hulls are always described by a finite number of vectors, as in example 3.4. The 
next rather technical lemmas are the main ingredient in the proof. Let 

U = {Ui E U: IUiel2 > mu\ {U;}(e) for some e E 8 1
} . 

Relabelling the matrices if necessary, we may assume that 

U={Ul , ··· ,Un}· 

LEMMA 3.5. Let U and U be defined as above. Then 

( 

k )qc ( n )qc 
~ S0(2)Ui = }d S0(2)U; . 

Proof. In view of proposition 3.1, we only have to show that IUiel 2 ~ mu(e) for all 
e E 8 1. It suffices to show this for Uk· Assume that there exists an e E 8 1 such that 
1Ukei2 > mu(e) . Relabelling the matrices (if necessary) , we may assume that there 
exists an f. E {n + 1, ... , k} such that jU;ej2 ~ 1Ukei2 > mu(e) fori= f., ... , k and 
IUiel2 < 1Ukei2 fori = n+1 , . .. , f.-1. If k =f., then 1Ukei2 > mu\{Uk }, contradicting 
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-fi cl2 

C11+ C22+ 2C12 

= a2+ 132 

C11 Cn- C~2 = a 1 132 

c,, + C22 - 2c12 = a 2+ 132 

Figure 5. The set (S0(2)U1 U S0(2)U2)~c for the diagonal matrices 
u, = diag(a:, B) and U2 = diag(,B, a:). 

Uk E U \ U. We obtain the same contradiction if there exists an i E {e . ... , k} uch 
that IUiel 2 > max{1Uiel2

. j =e .... ,k, j =/:- i}. Thus we may assume (relabelling 
again the matrices. if necessary) that Ue, .... Uk E U \ U satisfy 

Ueei
2 = · · · = !Ukei

2 > m{u1 , .... u1_t)(e) 

with e < k. In this situation, it follow from lemma 2.5 (i) that there exi ts a 
p E {e . .... k} and an e9 E S 1 such that 

1Uveol2 > mu\ {Up}(eo), 

contradicting the assumption Up E U\U. This proves the assertion of the lemma. 0 

LEMMA 3.6. Assume that n ~ 2. The set U has the following properties. 

(i) If e E S 1 and u., U1 E U, i =/:- j. such that IU;ei 2 = 1Uiei2 = mu(e), then 
IUtel 2 < mu(e) for all e E {1 ..... n} \ {i,j}. 

(ii) For all Ui E U. there exist exactly two matrices U;,. U;
2 

E U. if/. {i1, i2}. and 
exactly two non-parallel vectors e1• e2 E S 1 such that 

Uieil
2 = IU;,eil2 = mu(ei) 

for j = 1. 2 and F •. ;, (ej: mu(e1)) c {FT F: FE B}. 

(iii) Assume that Ft(ee: mu(ee)). = Iidt(ee: mu(ee)). e = 1. 2, are two .of the arcs 
constructed in {ii) and let Fe= Fe\ {U;;U;t, U'];Uit}· Then F1 n F2 = 0. 
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(iv) For each FE B. there exi t U, , UJ E U. i =F j. and e E 5 1 such that 

IUie 2 = IUJel2 = 1Fel2 = mu(e) 

and pTp E r i.;(e:mu(e)) C {GTG: G E B}. 

Proof. We first prove parts (i) . (iii) and (iv). and then (ii) . 
(i) Assume that there are three distinct matrices U,. Uj. Ue E U such that 

IUiel2 = IU1 el2 = IUeel2 = mu(e). 

By lemma 2.5, there exists (3 E {i.j, e,} and Q0 . Q-, E S0(2) , ,.\ E (q_, 1) such that 
U3 = J\Qo:Uo: + (1- J\)Q-,U-, . where {a. (3. -y} = {i.j,e}. Since Uf3 E U. there exists 
e E 5 1 uch that IU.Je l2 = mu(e) > mu\ {U8 J(e) . Then 

mu(e) = IU.Jel2 ~ J\ IUo:el2 + (1- J\)IU-,el2 ~ mu(e). 

and therefore 1Uo:el2 = IU-,el2 = mu(e). This contradicts the assumption and we 
conclude u{j '1- u. 

(iii) Assume that pT FE f 1 n f 2 . By construction. there exist Qi , Q1 E S0(2) 
and ,.\ E (0, 1) uch that ,.\QiUi2 + (1 - J\)QjU12 =F. By assumption, 

mu(ei) = 1Fe1 l2 ~ J\ jUi2 ed2 + (1- J\) IUhe1l2 ~ mu(ei), 

and thus 
JU,1 ed2 = IUil e1l2 = IUi2 e1l2 = IU12ed2 = mu(ei)· 

If { i 1, ji} =F { i2, j2} . this contradicts (i) and we obtain the assertion. 
Otherwise. we conclude by lemma 2.2 that e1 and e2 are not parallel and that 

there exist a1.a2 E IR2. Q1,Q2 E S0(2) such that 

where we write U, and UJ instead of U,t and Uit . Let F>. = U1 + J\a1 ® ef. In 
order to show that the arcs r i,1(e1,mu(e1)) and r .. j(e2.mu(e2)) do not intersect. 
it uffices to show that IF.xe2J2 < mu(e2) for,.\ E (0, 1). For,.\= 1. we obtain 

IQ1Uie2!2 = IU1e2l 2 + 2(ef . e2}(Uje2.al} + (ef ,e2}2la1!2 = 0, 

and thus, by assumption, 

2(ef, e2}(Uje2. a1} + (ef, e2}2lad 2 = 0. 

Therefore. a = 2(ef, e2}(Uje2, a1} < 0 and {3 = (ef. e2}2Ja1!2 > 0 (note that 
(ef . e2} =F 0. since e1 and e2 are not parallel). Since IF.xe2l2 < mu(e2) if and only 
if ,.\a+ ,.\2 (3 = J\(1- J\)a < 0. we obtain the assertion. 

(iv) This follows from lemma 3.3. 
(ii) This is easy for n = 2 since there are exactly two rank-one connections 

between the wells. Thus we may assume that n ~ 3. Fix Ui· By lemma 2.6 combined 
with lemma 2.5, there exists at least one e1 E 5 1 and Uj E U. i =F j, such that 
JU,ed2 = IU1e 1 l2 = mu(el)· In view of step 1. we obtain !Ute1!2 < mu(ei) for 
t f!_ {i,j} and it follows from lemma 2.5 that the assumptions (ii) and (iii) in 
lemma 2.7 are satisfied for some c: > 0. We conclude that there exist at least two 
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linearly independent vectors e1,e2 Est such that IUietl2 = 1Uietl2 = mu(et) and 
IUie2l2 = IUte2l2 = mu(e2) with Ui, Ut E U and f-::/:- i . 

Assume now that IUijeil2 = IUieil2 = mu(ei) for j = 1. 2. 3, where no two of the 
vectors ei are parallel and i ~ {it , i2, i 3}. If i1 = i2 = i3, then it is ~y t o see that 
Ui = QUi1 with Q E 80(2), violating the general assumptions on U. Thus we may 
assume that it -::/:- i2. If it -:f. i2 = i3 . then we define V = {Ui2 , Ui} and 

A= {FE M2x2 : detF = 8 1F eil2 ~ mv(eij), j = 2,3}. 

It follows from (i) that Ui 1 E A, and we conclude with the same arguments as in 
example 3.4 that 

U,
1 

E (S0(2)Ui U S0(2)Ui
2
)qc. 

By definition of U, there exists an e E st such that IUi1 el2 = mu(e) > mu\U;, (e). 
However, by example 3.4, 

mu(e) = IUi1 el2 ~ max{ IUiel2, 1Ui2 el2} ~ mu(e). 

This is a contradiction. Finally, assume ii -:f. it for j -:f. £. The curves T (ei: IUieil2) 

are the boundary of the regions 1Uieil2 > mu(ei ) and IUieil2 < mu(ei) and 
using the ideas in the proof of (iii). we see that they intersect only at Ui . Thus 
each of these regions consists of just one connected component. Consider now 
the curve T (et ;mu(e1)). Then Ui2 and Ui3 must lie in the connected comp~ 
nent { C = pT F : det C = 82, 1F etl2 < mu ( et)}. Assume that the angle between 
the curves T(e1; mu(et)) and T (e2;mu (e2)) is smaller than the angle between 
T(e1; mu(et)) and T(e3: mu (e3)). Since IUietl2 = IUi2 e2l2 = mu(e2), we conclude 
IUi1 e2l2 < mu(e2) and thus IUi3 e2l2 > mu(e2)i a contradiction. This proves asser
tion (ii) of the lemma. 0 

With this information at hand, we can prove theorem 1.1 (i). 

Proof of theorem 1.1 (i). Consider the graph Q = Q(N , £),where N = U is the set 
of nodes and £ is the set of edges which contains an edge connecting Ui and Ui if 
and only if there exists an arc r i,j(eiii m(eii)) with the propert ies in lemma 3.6. 
Thus there is a one-t~one correspondence of arcs in B and edges in £ and it 
follows from lemma 3.6 that Q is a graph of degree two (i.e. each node is contained 
in exactly two edges). It is easy to see that Q must consist of disjoint cycles. By 
lemma 3.6, the arcs r ii corresponding to the edges in the cycles do not intersect and 
therefore each of these cycles can be interpreted as a closed curve on the hyperboloid 
{ det C = 82} C R.3. It is easy to see that the set A is connected and therefore Q 
must consist of a single cycle. It follows that £ contains exactly n edges. Let £n 
be the set of normals eii which define the arcs r ii corresponding to the edges in 
£. By lemma 3.6, B is the union of these arcs and therefore Kqc is defined by k 
inequalities. This proves the assertion of the theorem. D 

EXAYIPLE 3.7 (The four-well problem). Assume that a , b, c > 0 a> b, ab- c2 > 0 
and define 

u2 = (b c) 
c a ' (a -c) ( b -c) u3 = -c b ) u4 = -c a . 
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Let U = {U1 , U2, U3. U4 }. Then 

K qc ={FE M2x 2 : detF = 8. JFel2 ~ mu(e)Ve E £4}, 

where 

297 

See figures 1 and 2 for a sketch of the set K~c = {FT F : F E K qc} and the 
rank-one connections defining the boundaries on the manifold {detC = (detU1)

2}. 
We finally prove theorem 1.2. 

Proof of theorem 1.2. Let 

A= {FE M3x 3 : detF = 8, FTFv = p?v, JFel2 ~ . max IUiel2 VeE S2}. 
•= l, .... k 

We first show that ](Pc c A by constructing a polyconvex function iP which vanishes 
on A and is positive elsewhere. This generalizes a construction by Ball and James 
for the two-well problem. For v E S2, let 9v : M 3x 3 -7 R. be defined by 

9v(X ) = (1Xvl2 - mu(v))+ , 

and let 

iP(X ) = ( det X - 8)2 + sup 9v (X ) + (IX vl2 - p? )+ + (1 cof X vl2 -
8
:) . 

vES2 J.L + 

We have to show that iP(F ) = 0 implies pT Fv = J.L2v. Since cof F = ( det F )F-T , 
it follows from iP(F ) = 0 that 

and 

Then 

-T 2 1 IF vi ~ 2· 
J.L 

1 (~F) (v _ J.L
2 p-1 p -Tv)l = ~~Fv _ J.LF-Tvr 

1 
= 2 IF vl2 + J.L

2!F-Tvl2 - 2 ~ 0, 
J.L 

and since det F = 8 > 0, we conclude v - J.L2 p-l p-T v = 0. This implies the 
assertion. 

We now show that A c K (2). We will reduce the necessary constructions to the 
two-dimensional situation in theorem 1.1. Let FE A. By the polar decomposition 
theorem, we have F = RUo , with R E S0(3) and Uo symmetric and positive
definite. Since pT Fv = ugv = J.L2V, we conclude Uov = J.LV. Thus the matrices ui, 
i = 0, ... k, have J.L as common eigenvalue with corresponding eigenvector v. Choose 
an orthonormal basis { v1 . v2, V3 = v} and let Q be the rotation with columns Vi · 
Then 
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• A 2x2 A. - A - A A - A • 3 2 with Ui E Msym· detU1 - 8/ JL. Let U- {U1 ..... Uk}. ow define 1r. lR --? Ilt by 

ir(u) = (u1.u2 ) and 1r3 : !R3 --? Ilt by 1r3 (u) = u3 for u E R3. ForeE s'l. we have 

1Fel2 = IRUoel2 

= IQTUoQQTel2 

= IUoir(QTe)' 2 + JL2I1r3(QTeW 

~ mu(e) 

= . max IU,ir(QT e) 12 + f.l217rJ(QT e)l2 . 
t=l ..... k 

If we choose e such that f.( QT e) E S1. then we obtain 

1Uoel2 ~ mu(e) Ve E S1. 

It follows from theorem 1.1 that 

Since K is invariant under multiplication with elements in 80(3) from the left. 
and ince rank(A- B ) = 1 if and only if rank(Q(A- B )QT) = 1. it follows that 
FE K<2>. 

Finally, the reduction from an infinite to a finite number of inequalities in the 
definition of the hulls follows as in the proof of theorem 1.1 (i). 0 

4. The quasiconvex hull of 0 (2)U1 U · · · U 0 (2)Uk 

In this section we prove theorem 1.1 (ii ). We split the proof into a series of lemmas. 
As before. let U = {U1 ..... Uk} and 

A= {FE M2 x2
: I detFI ~ 8, 1Fel2 ~ mu(e) VeE S1 }. (4.1) 

We will show that J(Pc c A c ]((3). This proves the theorem. since, by (2.2). 
J(lc c J(Pc . 'vVe prove first the inclusion J(Pc c A by constructing a poly convex 
function which vanishes exactly on A and is positive elsewhere. 

LEMt.!A 4.1. Suppose the assumptions of theorem 1.1 hold and A is defined by (4 .1}. 
Then J(PC c A . 

Proof. The proof is similar to lemma 3.2. Let 

<P(X ) = (I det XI - 8)+ + sup 9v(X). 
vES1 

Since t M (ltl - 8)+ is a convex function, 4> is a polyconvex function that vani hes 
on A and is positive elsewhere. The as ertion follows now from the definition of the 
polyconvex hull . 0 

The inclusion A c ]((3) requires orne more work. We prove fir t two auxiliary 
results. 
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LE~t~IA 4.2. If F. G E M2 x 2 satisfy 

FT F = cT G - nGT e ® G T e 

for some n E [0.1] and some e E 5 1
. then 

FE (0(2)G)(l) . 
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Proof. Since a: E [0, 1]. there exists A E [0, 1] such that n = 4A(1- A). so that 

pT F =eTc- 4A(1- A)GTe ® aTe= (G- 2Ae ® cTe)T(G- 2Ae ® aTe). 

Therefore. IFvl2 = I(G - 2Ae ® GT e)vl2 for all v E 5 1 and we conclude that there 
exists Q E 0 (2) such that 

F = Q(G- 2Ae ® GTe) . 

If we define Q =I- 2e ® e E 0 (2), then 

F = Q(>..QG + (1 - A)G) and QG- G = -2e ® GTe. 

and this proves the lemma. 0 

For the statement of the next lemma, it is useful to introduce some notation. Let 

B = {F: I detFI ~ 8, 1F el2 ~ mu(e) 'tie E 51, 3€ : IF€12 = mu(e)}, (4.2) 

Ba = B n {F: det F = a:} for a: E [-8. 8]. (4.3) 

A .= A n {F: detF = a:} for Q E [-8,8]. (4.4) 

LEMMA 4.3. Assume that F E B. with I det Fl < 8. Then one of the following 
alternatives holds. 

(i) There exists a unique (up to the sign) e E 5 1 such that 

1Fel2 = 1Uiel2 > mu\ {U;}(e) and FTF = U'[U; - ne..L ® e..L . 

where a: E (O. IU;- T e..LI-2]. Equivalently, 

FTF uTu -uT- uT= i i - n ; e ® i e, 

(ii) There exists a unique (up to the sign) e E 5 1 and a G E 8 0 such that {rela
belling the matrices if necessary) 

F el2 = 1Ge l2 = IU1el2 = · · · = 1Unel
2 > mu\ {li1 •...• Un}(e) . 

with n ~ 2. Moreover, p T F = GTG- o:e..L ® e~ with a E (O. IG-Te..L I- 2] or. 
equivalently. 

p T F = GTG- iiGTe ® GTe. withe= c-Te- /IG-Te..LI E 5 1 

and 0: = o:IG-Tel2 E (0.1]. 
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Proof. By definition of B there exists at least one e E S 1 such that JF eJ2 = mu(e). 
Assume first that there exist e E S1 and Ui E U such that 

mu(e) = JFeJ2 
= JUiel2 > mu\{U;}<•> 

for some i E 1, . . . , k. It follows from lemma 2.4 that pT F = Ul- aeJ. ® e.l for 
some a ~ 0. Since 

0:::;; {detF)2 = {detUi)2{1- aJui-TeJ.J2 ) < 82 , 

we conclude that a E {0, JUi-TeJ.J-2]. The uniqueness of e follows now from a> 0 
and JFeJ 2 = JUieJ2 - a(e,eJ. )2 . This proves (i). 

Assume now that there exists (relabelling the matrices if necessary) n E { 2, ... , k} 
such that 

JU1eJ
2 = ... = JUneJ2 = mu(e) > mu\{U1 , ••. ,Un}(e). 

By lemma 2.5, we find p, q E {1, ... , n}, p -::J q, such that 

(a) mu(ee) = JUpeel2 > mu\ {Up}(ee) for -8o < 8 < 0, 

(b) mu(ee) = JUqeeJ 2 > mu\{U.J(ee) for 0 < 8 < 8o, 

where ee = J1 + 82 -l ( e + 8e.l) . According to lemma 2 .1, there exist a, b E JR2 with 

pT F = u; + a ® eJ. + e.l ® a, pT F = u; + b ® eJ. + ej_ ® b. 

It follows from (a) above that 

JFeel 2 = JUpeel 2 + 28( (a, e)+ 8(a, e.l)) :::;; mu(ee) = JUpee l2 

for all 8 E ( - 8o , 0) . We conclude that (a , e) ~ 0. Choosing 8 E (0, 8o) and observ
ing (b) , we deduce that {b, e) :::;; 0. Therefore, there exists ..\ E [0.1], t E IR such 
that 

>.a+ (1 - >.)b = teL 

(we allow t 0 if a and b are linearly dependent: in this case. we have that 
det(FT F) = 82

). We now define, for fL E [0, 1], 

C>. ,JJ. = >.(J.LU; + (1- J.L)FT F)+ (1 ->.)(fLU;+ (1 - J.L)FT F) 

= FT F - 2tJ.LeJ. ® eJ.. 

By construction, 
detC>.,o = detFTF:::;; 82

, 

and a simple calculation shows that 

det C>.,1 = det(>.u; + (1 - ..\)Ug) 

= >. det u; + (1 - ..\) det u; - >.(1 - >.) det(u; - u;) 
~ 82, 

since, according to lemma 2.1, det(u; - UJ) :::;; 0. Therefore, there exists ji. such 
that 
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By construction. (e, C>..;:.e) = m(e) and. moreover. (v C>..;:.v) ~ m(v) for all v E 8 1. 
since C>.,;:. is a convex combination of three matrices which satisfy these inequalities. 
Therefore. we conclude that there exists G E B0 such that GTG = C>.,ji. and 

pT F =eTc+ 2tjiel. ® e-'-. 

In particular, IGel2 = 1Fel2 = mu(e). Let e = a-Tel. . Finally. notice that 
det pT F < c52 implies that 2tji < 0 and this proves the uniqueness of e. 0 

Proof of theorem 1.1 {ii) . In view of lemma 4.1, it remains to show that A C K (3) . 

By lemma 3.3, 
Bo c (80(2)U1 u · · · u 80(2)Uk)<1l c K <1l, 

and since B_0 = QB0 for any Q E 0(2) \ 80(2), we conclude that B±O C K (l). 
Combining this with lemmas 4.3 and 4.2, it follows that B c K <2>. Now, for any 
F E Ba, a E [-c5, c5] \ {0}, we use the arguments in the proof of theorem 1.1 (i) 
to construct two rank-one connected matrices on the manifold { det X = a} such 
that F is contained in the rank-one segment connecting these two matrices. Thus 
A c K (3). Finally. consider any FE .Ao. Clearly, F = Q({3e ®e) for some Q E 0(2), 
.8 E IR and e E 8 1 and, by definition, 

1Fvl2 = {32(e, v)2 ~ mu(v) Vv E 8 1
. 

By continuity, there exists 1 2 ~ {32 such that G = 1e ® e E B c K <2>. Therefore, 
pT F = aT G - aGT e ® GT e with a = (12 - {32)/12 E [0, 1], and consequently 
FE (0(2)G)<1> c K (3) by lemma4.2. This implies the assertion of the theorem. 0 

EXAMPLE 4.4 (The two-well problem). Assume that U = {U1 , U2} , where U1 U2 E 
M2x 2 with det U1 = det U2 = c5 > 0, and that 0(2)Ul #- 0(2)U2. Let K = 0(2)Ul U 

0(2)U2 · Then 

Kqc = {FE Ml2x
2 : ldetFI ~ c5. 1Fel2 ~ mu(e) VeE 81}. 

The set K'Jc = {FT F: FE Kqc} is shown in figure 6 (which is bounded by the 
half cone { det C ~ 0} and one sheet of the hyperboloid { det C = c52}) and the half 
spaces 

{C E .Ml~:~: tr(C(e ®e)) ~ mu(e)}, e E 8 1
. 

The flat parts in the boundary of the set shown in figure 6 correspond to the two 
directions ei, i = 1, 2, with IU1eil2 = IU2eil2 = mu(ei), while the intersection of 
the half spaces for the other normals generate the two half cones centred at U'{U1 

and UJU2 . In particular, t here exists no finite subset of 8 1 which describes Kqc, 
contrary to the case of two 80(2)-invariant wells in example 3.4. 

EXAMPLE 4.5 (The four-well problem) . Assume that a, b, c > 0, a > b, ab - 2 > 0 
and define 

U1 = (~ ~), U2 = G ~), U3 = ( ~c ~c) , ( 
b -c) u4 = . 
-c a 

Let U = {U1, U2, U3, U4} and 

4 

K = U 0(2)Ui . 
i=l 
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Figure 6. The set (0(2)Ul U 0(2)U2)~c for the diagonal matrices U1 = diag(a, b) and 
u2 = diag(b. a). This is also equal to the set (S0(3)Ul u S0(3)U2)~c for the diagonal 
matrices ul = diag(a,b,c) and u2 = diag(b, a , c). 

Then 

Kqc ={FE MI2x
2 : det F = 8, 1Fej2 ::;; mu(e) VeE S1 }. 

The set K~c = {FT F : F E Kqc} is shown in figure 4. The four flat parts in 
the boundary correspond now to the four rank-one connections shown in figure 2, 
which defined the boundary of the quasiconvex hull of the corresponding set with 
80(2)-invariant wells. 

5. The quasiconvex hull of S0(3)U1 U · · · U S0(3 )Uk 

In this section we prove theorem 1.3. We begin with an equivalent description of 
the set 80(3)F. Let L = {FE Ml3x2 : F31 = F32 = 0} and define 1fL : M 2x2 -7 L 
by 

Recall that F = (Fe1, Fe2) E M 3x2 for FE M 3x3. 

LEMI\IA 5.1. Let F E M 3 x 3
. We have S0(3)F = S0(3)7rL(G) . where G is the 

square root of _FT FE M!2 x 2 . 

Proof. Choose a rotation Q0 that maps the two-dimensional affine subspace 
spanned by the first two columns ofF to the subspace {se1 + te2, s. t E R}. Then 
QoF = 1fL(G) for some matrix G E M!2x2. Replacing Q0 by (- I+ 2e1 ® ei)Q0. 
or by (-I+ 2e2 ® e2)Q0 if necessary. we may assume that G is positive-definite. 
Finally, pre-multiplying Qo by a suitable rotation of the two-dimensional space 
{se1 + te2, s, t E IR}, we may assume that QoF = 1rL(G), with G positive-definite 
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and symmetric. By construction. 
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and thus G is the square root of ft'T F. The as ertion of the lemma now follow 
easily. ince S0(3)F = S0(3)(QoF) . D 

Let U = {U1 ..... Uk}· and define 

' 2 . l mu(e) = max{JUieJ : t = 1. .... k} fore E S . 

Proof of theorem 1.3. Let 

A= {FE M3x 2 : det(FTF) ~ 82
, JFeJ2 ~ mu(e) VeE 8 1}. 

We first how that KPc C A. A short calculation shows that, for all F E M3x
2. 

det(FT F) = adji2(F) + adji3(F) + adj~3(F), 

where adj;j(F) denotes the (2 x 2)-subdeterminant formed with the ith and the jth 
rows of F. Thus 

is a polyconvex function on M3x 2. Let 

Then 
ci>(F) = h(F) + sup 9v(F) 

vES1 

is a polyconvex function that is zero on A and positive for all F £t A. This proves 
the inclusion KPc C A . Thus it remain to show that A c Klc. 

By le~ma 5.1. we may choose Q; E 80(3) and G; E M;;~ positive-definite such 
that Q,U, = 7r£(G;) . Since 

adh3(U!U;) = adh3((Q;U;)T(Q;U;)) = (detG;)2 = 82
, 

we conclude that det G; = 8 for i = 1, ... , k . Moreover, if we define for e E 8 1 the 
vector e E JR3 bye= (e1, e2, 0), then 

and therefore 
max{JG;eJ2 : i = 1. .. .. k} = mu(e). (5.1) 

Let 

A= {F = QnL(G) E M3x 2 : Q E 80(3). G E (0(2)Gl U · · · U 0 (2)Gk)qc}. 

We claim that A= A. Indeed. let F = QnL(G) EA. Then 

det(FT F )= det(Gf ~ 82 and JFeJ2 = JGeJ2 ~ mu(e) 
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by (5.1) and theorem 1.1. Thu .A CA. Conversely, let FE A and choose Q E S0(3) 
such that QT F = 7TL(G). Then 

det(GTG) = det(FTF):::;; 82 and IGel2 = 1Fel2 :::;; mu(e) . 

This proves A= .A and it remains to show that .A c K 1c . For Q E S0(2), we define 

By the definition of K , 

and thus 
7TL(0(2)Gi) E K for i = 1, . ... n. 

Since K is invariant under multiplication by S0(3) from the left, we conclude that 
A = .A c Klc, and the assertion of the theorem follows. D 

6. Existence of m inimizer s 

In this section we address the question whether there exist minimizers of the varia
tional problem (1.1). This was an open problem for a long time, but recently fairly 
general positive results have been obtained in [10, 11] based on Baire's theorem and 
in [16. 17] based on Gromov's idea of convex integration. Following Gromov [13) 
and Miiller and Sverak [16, 17), we define an in-approximation of a given set K in 
the following way. 

DEFINITION 6.1. Let K C Mm x n. A sequence of open sets~ C Mm x n is called an 
in-approximation of K if the following three conditions are satisfied. 

(i) ~ C Vi~1· 

(ii) The sets ~ are uniformly bounded. 

(iii) If a sequence Fi E ~converges to FE Mmx n as i-t oo, then FE K. 

In this definition, we replace open sets with relatively open sets, if the set K is 
a relatively open set with respect to the constraint that one of the minors is fixed 
(see [17]). For example, in case (i) of theorem 1.1, the set K and its generalized 
convex hulls are contained in the smooth manifold { det X = 8}. 

We will rely on the following existence result . 

THEOREM 6.2 (see [16, 17]). Suppose that K C Mmxn admits an in-approximation 
by (relatively) open sets ~ in the sense of definition 6.1. Let v E C1 ( .ft; !Rm) and 
assume that Dv(x) E V1 for x E .ft. Then there exists au E W1•00 (.f2;lRm) such 
that u = v on 8 f2 and Du E K almost everywhere. 

In view of this result, it remains to construct in-approximations for the sets 
under consideration in this paper. For the case of two wells (with equal or different 
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determinant), this has been done in [16, 17]. We follow these ideas in our multi-well 
setting. 

An important ingredient in the construction of the in-approximation is the char
acterization of the (relative) interior of the generalized convex hulls. Throughout 
this section we will assume the following hypotheses. 

(Hl) U = {U1 , .... Uk}, k ~ 2, and the matrices U; E M;~ are positive-definite 
with detUi = 8 > 0. 

(H2) For all U; E U , there exists a vector e E S 1 such that IU;el2 > mu\{U,}(e). 

(See lemma 3.5 for a justification of (H2)) . 

LEMMA 6.3. Assume {Hl} and {H2} and let K = S0(2)U1 U · · · U S0(2)Uk. Then 
the relative interior of K 1c is given by 

relint(K1c) ={FE K 1c: IF el < mu(e) VeE S 1
}. (6.1) 

Proof Let A denote the right-hand side in (6.1) and define 

B ={FE K lc : 3e E S 1 
: !Fel2 = mu(e)} . 

Clearly, Klc = A U B. If F E A. then there exists, by compactness of S 1
, a 8 > 0 

such that 1Fel2 ,;; mu(e)- 8 for all e Est. By continuity of the maps F H 1Fel2
, 

it follows that FE relintK1c. Conversely, assume that FE B with 1Fel2 = mu(e), 
e E st. Let Ft = F(I +tel. ® e). Then det Ft = det F = 8 and 

!Ftel2 = !F el2 + 2t(Fe, Fel. } + ejFel.l2
. 

If e is an eigenvector of pT F, then Ft f/. Klc for all t ¥ 0 and thus F does not belong 
to the relative interior of K 1c. Otherwise, we conclude Ft f/. Klc for t = s(Fe, F el.} 
with 0 < s < s0 and s0 small enough. This proves the assertion of the lemma. 0 

LEl\IMA 6.4. Assume {Hl} and {H2}. Then there exist, for all matrices Ui E U , 
matrices U;(i) E relint(Kic) such that Ui(i) -t Ui as j -too fori= 1, .. . , k. More
over, for each compact set E c rei int(K k), there exists a j 0 E N such that 

E c (~ S0(2)U;Cil Jc, j ~ Jo. (6.2) 

Proof. ~Ve first construct for Ui E U a sequence of matrices ufil E rei int(Kic) such 
that U;(J) -t Ui as j -too. By lemma 3.6, there exist exactly two matrices Ui±t and 
vectors ei±t E S 1 . e;-t, not parallel to ei+l such that 

IUie;±tl2 = IUi±t(ei±t)l2 
= mu(ei±t)· 

Thus there exist Q;±t E 80(2). ai±l E IR2 such that 

U;- Qi±lui±t = ai±t ® ef±t· 

Now let 
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By lemma 6.2. there exi ts Qe E 80(2). bE IR2 . mE S 1 such that 

\\'e claim that 

W/··f: = >.QE: v'i~I..,... (1- >.)v;:_l E relintJ<Ic forcE (0.1). ). E (0. 1). 

By construction. w/·f: E J(lc and therefore it suffices by lemma 6.3 to show that 

IW(·f:el2 < mu(e) VeE S 1 . 

Thi is immediate in the case u,_l # ut+I· since 

mu(e) = IW/··f:el 2 ~ (1 - c:)IU,el2 + >.ciU,Hel2 + (1- >.)c: IU,_tel2 ~ mu(e) 

implies IU,el 2 = IUi::::tel2 = mu(e). contradicting lemma 3.6 (i). 
Assume now that U;_ 1 = Ui+l · In this case. we have. by convexity. 

and we conclude that 

(6.3) 

Consequently. e = e;-1 or e = ei+l · vVe may assume that the latter holds. But 
then, by lemma 2.2, lv;~ 1 ei+tl2 < mu(e;.q) for £ E (0. 1), and this contra
dicts (6.3). Thus w/··f: E rei int( J(lc ). ow define. for example, U;(i) = W//J.l/i . 
Then U;(J) E rei int(Kic) and u?) --+ U; as j --+ oo. 

Finally. the inclusion (6.2) follows from lemma 6.3. since. by continuity, there 
exist , for all c > 0. a jo > 0 such that 

lmu(e)-m{l:1~n ..... uk1>}(e)l<£ Vj;:::j0 VeES1
. 

0 

After these preparations we are in a po ition to prove our first exi tence result. 

THEOREI\1 6.5. Suppose that W : M2 x 2 --+ IR, W ;;::: 0. that 

K = {W-1(0)} = S0(2)Ut U · · · U S0(2)Uk 

and that the matrices U; satisfy {Hl) and {H2). Assume that v E 0 1 (5?: !Rm) is 
such that {Dv(x): x E 5?} is contained in a compact subset ofrel int(Klc). Then 
there exists a minimizer u of the variational problem: minimize 

I(w) = ll,qDw) dx 

in the class {wE W 1
•
00(!t;IR2

): w =von 85?}. In particular, I (u) = 0. 

Proof. In view of theorem 6.2. it remains to construct an in-approximation of J( 

with relatively open sets Vi such that {Dv(x) : x E 5?} C V1 . 
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The exi tence of an in-approximation will be a consequence of lemmas 6.3 and 6.-t. 
Choo e V1 CC relintKlc such that {Dr(x): x E !2} CC V1. Let 81 > 0 be given. 
By lemma 6.4. we may choose U;(1

) E rel int J<lc uch that IU?) - U,l < (h and 

(

k lc 

Vic ~ S0(2)U,<
1l) 

Let £ 1 = dist({S0(2)Uii) U · · · U S0(2)Uk1l},8conv(K)) and define 

V2 = {F: det F = o, dist(F. S0(2)U?l u · · · u S0(2)U~kl) < ~ci}. 

Then V1 c (V2 ) 1c and dist(F. I<) < 281 for all F E V2 . Proceeding inductively 
with 81 replaced by 2-io1 , we obtain an in-approximation of I<. This proves the 
theorem. 0 

\Ye do not expect similar existence results in three dimensions when the wells 
are es entially two dimensional. since it is not pos ible to lift the two-dimensional 
construction in such a marmer that they satisfy three-dimensional boundary con
dition. 

RE;-,IARK 6.6. Let I<= S0(3)U1 U · · · US0 (3)Uk. where {U1 , . . . , Uk} C ~;~with 
U, po itive-definite. det Ui = 8 > 0 and assume that there exists J.L > 0 and v E 5 2 

such that U,v = J.LV fori= 1, ... , k. Assume that S2 is a unit cube with sides parallel 
to the orthonormal basis { e1 , e2 . v}. Then, given any F E Kqc \ K, 

I (w) = L W(Dw) dx 

has no minimizer in the class {wE TVL00 (S2: JRm): w = Fx on 8!2}. 

We prove this by contradiction. Let y be a minimizer. Notice that inf I = 0. since 
FE Kqc_ Therefore. I (y) = 0 and consequently. \ly E I< a.e. x E !2. and hence 

(\ly)T(\ly)v = J.L2v and det \ly = 6 a.e. x E !2. 

It follows then. by theorem 3.1 of Ball and James [3), that y is a plane strain 
deformation. i.e. 

y(x) = Q (~:~~::~~~) 
J.lX3 

in an orthonormal basis parallel to { e1 , e2 , v} . Comparing with the boundary con
dition on the urface x 3 = 0, we conclude that y = Fx on st. Thus 

I (y) = if2i lV(F) > 0, 

contradicting the as umption that y is a minimizer. 
ow we turn to the case I< = 0(2)U1 U · · · U 0(2)Uk· " ·e first prove the analogue 

of lemmas 6.3 and 6.4 in this situation. 

LEM"IA 6.7. Suppose that {Hl) and {H2) hold and let I<= 0 (2)U1 U · · · U 0 (2)Uk· 
Then the interior of J<lc is given by 

int K lc = {FE Klc: I det Fl < 0 and lFel2 < mu(e) VeE 5 1
}. (6.4) 
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Proof. Let A denote the right-hand side in {6.4) and define 

B ={FE Klc: ldetFI = 8 or 3e E S 1
: 1Fel2 = mu(e)}. 

By continuity, it is easy to see that A c int Klc. Since J(lc = A U B , it suf
fices to show that no point in B is an interior point of Klc. Assume first that 
I det F l = 8. Let Fe:= F(I + c2e ® e) with e E S 1

. Then IF- Fe: I = c2 1Fel and 
I det Fe: I = {1 + c2)1 det F l. Thus Fe: -+ F as c \, 0, but Fe: ¢ K 1

c for any c > 0. 
Therefore, F cannot be an interior point of K lc. Assume now that I det F l < 8 and 
that there exists an e E S 1 such that 1Fel2 = mu(e). It follows from lemmas 4.2 
and 4.3 that there exists a G E B,s with 1Fel2 = IGel2 and Q E 80(2), e E S 1, 

>. > 0 such that 

= Q ( G- IG_;:.ll2 c-T e.l ® e.l). 

Let Fe: = F + c2 QGe ® e. Then 

IF- Fe: I= c2 IGel2 and 1Fe:el2 = IQGe + c2QGel2 = {1 + c2 )mu{e). 

Thus Fe: ¢ Klc for c -I 0 and hence F is not an interior point of K 1c. This proves 
the lemma. 0 

LEMMA 6 . . Assume {HI) and {H2) hold. Then there exist matrices Ui(j) E int J(lc 

such that Ui(J) -+ Ui as j -+ oo, fori = 1, .... n. Moreover, for each compact set 
E CC intKic, there exists a ko EN with 

E c (~ 0 (2)Ui(i) r j ~ io· {6.5) 

Proof. ~t. u?> be the sequence of matrices constructed in lemma 6.4, and let 
u?> = Ui(J)( I -8i.je ® e) witheE S1. By compactness of S 1 and continuity, we 
may choose 8i,j > 0 such that 1Ui(J)el2 < mu(e) for all e E S1 . Then 

det u?> = det u?> (1 - 8i.j) 

and Ui(i) -+ Ui if we choose, for example, 0 < 8i,j < 1/j. The inclusion (6.5) follows 
as in lemma 6.4. 0 

THEOREM 6.9. Suppose that W : M2x2 -+ R , W ~ 0, 

K = {W-1 (0)} = 0{2)Ul u · · · U 0(2)Uk 

and {HI) and {H2) hold. Assume that v E C1{!t;JR2 ) is such that {Dv(x): x Eft} 
is contained in a compact subset of int J(lc. Then there exists a minimizer u of the 
variational problem: minimize 

I (w) = l W(Dw) dx 

in the class {wE W 1•00{ft;R2 ) : w = v on 8ft}. In particular, I (u) = 0. 

( 

J 
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Proof. The proof is analogous to the proof of theorem 6.5. Choose V1 cc int Klc 
such that {Dv(x) : x E Q} cc V1. By lemma 6. , there exist , for 1h > 0. matrices 
u?> E intKic such that jUi - uP>i < 81 and 

Vi c (~ 0(2)u_u> r 
Let G1 = dist(0(2)Ui1

> u .. . u 0(2)U~1) I 8K1c), and define 

V2 = {F: dist(F, 0(2)Ui1> U · · · u 0(2)U~1> ) < ~e: }. 

Then V1 c (V2)1c and dist(F, K) < 281 for all F E V2 . Proceeding iteratively, we 
obtain the required in-approximation. This proves the theorem. 0 

Finally, we prove an existence result for the 80(3)-invariant wells. This requires 
first a modification of (H1) and (H2). We will assume the following. 

(H1 ') U = {U1 ..... Uk}, k ~ 2, and the matrices Ui E ~;~ are positive-definite 

with adh3 (UlUi) = 82 > 0. 

(H2') Let Qi E 80(3) and Gi E M 2 x 2 be the matrices constructed in lemma 5.1 with 
1rL{Gi) = QJJi and let g = {G1 , ... , Gk}· Then there exists, for all Gi E Q, 
an e E S 1 such that jGiel2 > mg\{G,}(e). 

LEMMA 6.10. Assume that {Hl'} and {H2'} hold. LetK = S0(3)U1U· · ·US0(3)Uk· 
Then 

intKic ={FE M 3 x 2 : det(FTF) < 82
. jFej2 < mu(e) VeE S1

}. (6.6) 

Proof. Let A denote the right-hand side in (6.6) and define 

8 ={FE K 1c: det(FT F)= 82 or 3e E S 1 
: jFej2 = mu(e)}. 

Then K 1c = AUB, and by continuity it is easy to see that A C intKic. Conversely, 
assume that F E B. Since F is not an interior point of Kic if and only if QF is 
not an interior point for some Q E 80(3), we may assume that F = 1rL{G) with 
G E (0(2)G1 U · · · U 0(2)Gn)1c and det(GTG) = 82 or jGe j2 = mu(e) (see the proof 
of lemma 5.1). We conclude, as in the proof of lemma 6.7, that G is not an interior 
point of (0(2)G1 U· · ·U0(2)Gk)lc, and this implies the assertion of the lemma. 0 

LEl\IMA 6.11. Assume that {Hl'} and {H2'} hold. LetK = 80(3)UtU· · ·US0(3)Uk. 
Th~n there exist positive-definite matrices u?> E M3 x 3 such that Uiti ) E int Klc and 
u?) -+ Ui as j -+ oo. Moreover, for each compact set E c c int K 1

c , there exists a 
Jo E N with 

( 

k )lc 
E c h! S0(3)Ui(j) , j ~ Jo· 

Proof. We may assume that Ui = 7r£(Gi), with Gi as in lemma 5.1. Let G~j ) be 
the sequence of matrices constructed in lemma 6.8. Then 1rL{Gi ) E int K 1c , and, by 
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lemma 6.10. the matrices 

( 

(k ) c .. u 
u<1> = c<k> 

t !.21 

0 

(k) ) ci.12 ui.13 

(k) • 
ci.22 ui.23 

ui.33 

have the properties stated in the lemma if we choose j big enough, since the et of 
positive-definite matrices is open. 0 

THEOREl\1 6.12. Suppose that W : MI3 x 2 ---+ IR, W ;;,: 0 . 

K = {Tr-1 (0)} = S0(3)U1 u · · · u S0(3)Un 

and {Hl' ) and {H2') hold. Assume that v E C 1 (Sl; IR3 ) is such that {Dv(x) : x Est} 
is contained in a compact subset of int K lc. Then there exists a minimizer u of the 
variational problem: minimize 

I (w) = k W(Dw) dx 

in the class {wE ~~Tl.OC(ft;JR3 ): w =von aft} . In particular, I (u) = 0. 

Proof. This is analogous to the proof of theorem 6.9. 

7. Uniqueness and non-uniquen ess of microstructures 

0 

As di cus ed in § 1, the direct method in the calculus of variations ba ed on weak 
lower semicontinuity cannot be applied to obtain existence for the variational 
problem (1.1) . ~Iinirnizing sequences typically develop finer and finer oscillations 
(microstructures) and converge only weakly but not strongly. However, under suit
able coercivity and growth as urnption on ~l ·. sub equences of the deformation 
gradients { Duk} of minimizing sequences generate a gradient Young measure which 
captures the essential statistics of the o cillations in { Duk} (see [1. 14. 20]). It is 
a natural question to ask whether the oscillations in the minimizing sequences are 
unique in the sense that the generated gradient Young measures are unique. In this 
section we prove that this is only true for some exceptional cases where the measure 
J-1. is of the form J-L = .-\6A + (1 - .-\)6a for A, B E K with rank(A - B) = 1. For 
F E K qc. we define 

M (F) = {J-L : J-L is gradient Young measure with supp J-L c K , (J.L. id) = F} . 

In order to prove our non-uniqueness results. we will use a special sub et of all 
gradient Young measures. the so-called laminates (see. for example, [1 ]). A ume 
that F =.-\A ..l.. (1 - .-\)B with rank(A- B) = 1 and A E (0. 1). Then J.L = MA + 
(1- .-\)6a E M(F). This process of splitting matrices in convex combination along 
rank-one line can be iterated. If B = J-LC + (1 - J.L)D with rank(C- D) = 1 and 
J-L E (0.1). then J.L = .-\b'A + (1- .-\)(J.Lb'c + (1- J.L)6o) E M (F ). In particular, \\'e will 
use the follo,..·ing result, which follow from [4]. 

PROPO ITION 7.1. Assume that U1 and U2 are symmetric and positive-definite 
with det U1 = det U2 = 6 > 0. IfF E (S0(2)U1 U S0(2)U2)qc satisfies !F ej 2 < 
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nl{£ft .U
2
}(e) for all e E S1 . then M(F) contains at least two laminates supported 

on three matrices. 

\\'e fir t consider the case of 80(2)-im·ariant wells. Let U = {U1 , .... Uk} and 
assume that the hypotheses (H1) and (H2) defined in § 6 hold. Recall the set B 
defined in (3.2). The following proposition shows that the Young measure is unique if 
and only if pT F lies on the boundary of K~c relative to the hyperboloid det C = 62

. 

PROPOSITION 7.2. Let K = S0(2)U1 U · · · U S0(2)Uk and FE K qc . 

(i) IfF E B , i.e. if there exist an e E S 1 and U;, U1 E U , i f j. such that 
IFel2 = 1Viel2 = IV1el2 > mu\ {U;.Ui}(e). then M(F) contains a unique ele
ment. Indeed. there exist unique Q,, Q1 E 80(2) and>. E [0, 1] such that 

(ii) IfF r:f. B. i.e. if IFel < mu(e) for all e E S1 , then M (F) contains more than 
one element. 

Proof. Assume that 11 E M (F ) and let 11 = >.1111 ..a.. • · · + Akf1k· where ll• is a 
probability measure supported on S0(2)U, and >., E [0, 1] with >.1 + · · · + >.k = 1. 
By Jensen's inequality, 

The a sumptions in (i) imply that At = 0 fore r:f. { i, j} and thus supp 11 c S0(2)U; u 
S0(2)U1 . ::\Ioreover. 

1 IAel2 d11(A) - 1Fel2 = 1 i(F - A)ei2 d11(A) = 0. 
suppJJ. suppJJ. 

and therefore 11- = MQ,u, + (1- >.)c5Qiui, where Q, and Q1 are the uniquely defined 
rotations with Q,U,e = Q1U1e =Fe. Since Vi f U1 . it follows that>. is uniquely 
defined and this implies (i). 

To prove (ii), we consider F(t.v) = F(I +tv® v.L). Then detF(t.v) = detF and 
there exist t+ > 0 > t- such that F (t±, v) E B. We may assume that F(t+, v) r:f. K. 
By lemma 3.3. there exist Ui,Uj E U such that F(t-'-,v) E (S0(2)U; US0(2)U1 )qc_ 
It follows from example 3.4 that F (t, v) E (S0(2)UiUS0(2)U1)qc fortE (t+ -c:. t+), 
c small enough, 'vith IF(t-'-. vW < m{u,,u

1
} (e) for all e E S 1

. Let Fo = F(to, v) "'ith 
to E (t+- c:. t+). Then there exists>. E [0.1] uch that F = >.F0 + (1 - >.)F(r. v) 
and F0 -F(r, v) = c:w®v-, a E JR. The a ertion follows now from proposition 7.1, 
since M (Fo) contains at least two laminates. 0 

ExAMPLE 7.3 (The four-well problem). Consider the four-well problem described 
in example 3.7. Let 
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Then M(F) contains a unique element if and only ifF= QU1 (I + ae1 ® ef") or 
F = QU2(I + ae4 ® e,t) or F = QU4 (I + ae2 ® ef) or F = QU3(I + ae3 ® ef) for 
some Q E 80(2) and for some a E JR. These correspond to the boundary arcs shown 
in dark in figure 2. In particular, note that F corresponding to some rank-one lami
nates have more than one element in M (F) , as, for example, F = QU1(I + ae2 ® ef) 
or F = QU2(I + ae3 ® et) or F = QU4(I + ae1 ® ef") or F = QU3(J + ae4 ® e,t), 
which correspond to the dashed arcs shown in figure 2. 

Very similar results hold in three dimensions when the wells are essentially two 
dimensional. Let Ui satisfy the conditions of theorem 1.2. 

PROPOSITION 7.4. Let J( = 80(3)U1 U · · · U 80(3)Uk and FE J(Gc . 

(i) IfF E B, i.e. if there exist an e E 82 satisfying {e, v) = 0 and Ui, Ui E U, 
i =/:- j, such that 1Fel2 = IUiel2 = 1Uiel2 > mu\ {U;,Uj}(e), then M (F ) contains 
a unique element. Indeed, there exist unique Qi, Qi E 80(3) and >. E [0 , 1] 
such that 

M (F ) = {MQ,u, + (1- >.)8Q,u, }. 

(ii) IfF~ B, i.e. if IFe l < mu(e) for all e E 82 satisfying {e, v) = 0, then M (F) 
contains more than one element. 

Proof. The proof follows that of proposition 7.2, aided by the observation that 
FE J(Gc satisfies {Fe, Fv) = 0 for all e E 8 2 such that (e, v) = 0. 0 

We now turn to the 0 (2)-invariant wells. Let U = {U1 , ... , Uk} and assume 
that the hypotheses (H1) and (H2) defined in § 6 hold. Recall the set B defined 
in (4.2). The following proposition shows that the Young measure is unique if and 
only if FT F lies on either the cones with apex Ul or on the intersection of the flat 
boundary parts with the hyperboloid det C = 82 in K';}c. 

PROPOSITION 7.5. Let J( = 0(2)U1 U · · · U 0 (2)Uk and F E J(Gc . 

(i) If there exists an e E 8 1 such that 1Fel2 = IUiel2 > mu\{Ui}; then M (F) 
contains a unique element. Indeed, there exist unique>. E [0, 1] and Q± E 0(2) 
with det Q± = ±1 such that 

(ii) If there exists an e E 8 1 such that j!el2 = IU•el2 = 1Uiel2 > mu\{U;,Uj }(e). 
i =f. j , then there exist unique Qf , Q i E 0(2) satisfying 

QfU•e = QjUie = Fe, det Qf = ±1, det Qj = ±1 

such that 

M(F) = {IL = >.t8Q+u. + Ai-8Q-u· + >.J'!- 8Q+u + >.J-:- 8Q-:u, 
1. " t t 1 ' ' ' 

>.f, >.'f E [0, 1], >.t + >.i + >.j + >.j = 1, 

(>.t + >.j)8- (>.i + >.j)8 = det F, 

(>.t + >.i)(Uie, Uiel.) + (>.j + >.j)(Uj e Uiel. ) = (Fe, F el.) }. 
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Therefore, the set M (F) contains a unique element if det F ±c5 or if 
(Uie,Uie.l.} = (Fe.Fe.l. ) or if (Uje. Uie~} = (Fe,Fe.l.). Otherwise, M(F) 
consists of a one-parameter family of measures. 

(iii) If IFel2 < mu(e) for all e E 8 1
, then M(F) contains more than one element. 

Proof. (i) It follows as in the proof of proposition 7.2 (i) that supp f..£ c 0(2)Ui and 
that 

1 I(F- A)el2 df..L(A) = 0. 
supp 1J 

Since there are exactly two elements Q± E 0(2) that satisfy Q±Uie = Fe (one 
rotation and one reflection) , the assertion follows. 

(ii) We note that there exist exactly four elements Q"f- , Qj= E 0(2) that satisfy 

(7.1) 

Set 

M ={f..£= >.+c5Q+u. + >--=-c5Q-u· + X~c5Q+u + >.-:-c5Q-u ·· 
t •' '•' 3 ji J jJ 

>-t, >.j= E [o, 1]. >-t + >.; + >.j + x; = 1, 

(>.t + >-j)c5- (>-i + .>.j)c5 = detF, 

(>.t + >.;)(Uie, Uie.l.} + (>.j + >.j)(Uje, Uie.l.} = (Fe, Fe.l.) }. 

Now assume that f..£ E M(F). Then it follows as in the proof of proposition 7.2 (i) 
that 

f..£= >."Tc5Q+u. + >.-:-c5Q-u· + X~c5Q+u + >.-:-c5Q-u·• 'i'* t , .. J ji J j1 

>-t-, >.j= E [o, 1] >-t + >.; + >.j + x; = 1. 

Further, the requirement (f..£, id} = F implies that 

(>-tQtui + x;Q;ui + >.jQjUi + XjQjUi)e.L = Fe.1.. (7.2) 

Note that 

Q+ = I - 2 a a e '<Y a a e Q-
( 

Q-u-T .l_ 10. Q-u-T .l_) 
a IU.;Te.l. l2 a> 

a = i,j, 

and hence we conclude that 

(>.t + >-i)QiUie.l. + (>.j + >.j)QjUie.l. 

2.>.+ 2>.T 
- ' Q-=-U·e.l.- 1 Q-:"U·e.l. = Fe.l. 

1Ui-Te.l. l2 t' 1Uj-Te.l.l2 J 1 . 

We take the inner product of this equation with Fe, recall (7.1) and obtain 

(>.t + >.i)(Uie. Uie.l.) + (>.j + Xj){Uje, Uie.l.} = (Fe, Fe.l.). 

We obtain the final condition 

(>.t + >.j)c5 - (>-i + .>.j)c5 = det F, 
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by taking the cross product (a 1\ b = a1~ - a 2 b1 for a. b E R2 ) of (7.2) with Fe. 
recalling (7.1) and noting that for any A E M2 x 2 , det A = (Ae) 1\ (Ae.L ). We have 
proved that f..L EM or M(F) C M. 

To prove the converse inclusion , let f..L E M. We note that (7.1) implies that 
there exist a, b. c E iR2 such that 

This implies that f..L is a gradient Young measure (in fact, as a laminate of rank two). 
It remains to be shown that (f..L. id) =F. In view of (7.1), we only have to show (7.2) . 
However, this readily follows from the last two conditions in the definition of M 
and the calculations above. since, for any u =I 0. v. w E R2 . 

(u, v) = (u. w) and u 1\ v = u 1\ w <=> v = w. 

(iii) The construction in the proof of proposition 7.2 implies non-uniqueness for 
the case detF = 8 and also for detF = -8 (by pre-multiplying every matrix in the 
construction by J = diag( -1 , 1)). Consider next the case det F = 0. We may assume 
that F = o:v ® v with a: > 0. Since, by assumption, jF ej2 < mu(e) for all e E Sl, 
there exists a a> a: such that av ® v E 8. Let A= o:ja. Then F = (1- A)O + AF, 
and since there is more than one laminate with centre of mass equal to zero, the 
as ertion follows. Consider finally the case 0 < I det Fj < 8. We may assume that 
0 < det F = 1 < 8. Choose any G E 86 of the form G = AQU; + (1 - A)Ui with 
A E (0.1), Q E S0(2) and QU,- U1 = a® e.L . Let Gt = G- 2te ® GTe with 
e = c-T e.L /IG-T e.Lj. Since det Gt = det G(1 - 2t), there exists a l E (0. ~) uch 
that G = Gl satisfies det G = 'Y· By lemma 2.2. there exists R E S0(2) . a. b E IR.2 

such that F = RG +a® b. Let Fa = RG + o:a ® b; clearly, there exist a:o > 1 such 
that Fa0 E B.., and Fa0 =I RG. Therefore. we can obtain F by laminating G and 
Fa0 : the result follows since the proof of (ii) shows that M (G) contains more than 
one laminate. 0 

We finally turn to the case of the thin-film wells. Let U = {U1, . .. , Uk} and 
assume that the hypotheses (H1') and (H2') defined in § 6 hold. The result says 
that the Young measure is unique if and only if FT Flies on the intersection of the 
fiat boundary regions with the hyperboloid det C = 82 in Kic· :\Totice that. unlike 
the case of the 0 (2)-invariant wells, there is no uniqueness in the cone . since we 
can make new constructions which use the third dimension. 

PROPOSITIO~ 7.6. Let K = S0(3)U1 U · · · U S0(3)Uk and FE Kqc_ Then M(F) 
contains a unique element if and only if det(FT F) = 82 and there exists an e E S1 

such that 
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Proof. Consider first the case det(FT F ) = £52 and assume that there exi ts an 
c E S 1 such that 1Fel2 = IU1el2 = 1Uiel2 > mu\ {0,.u

1
}(e). i =1- j. We can adopt the 

proof of propo ition 7.2 to establish that the Young measure is unique. 
~ow consider F such that there exists an e E S1 such that 

\\·e show that M (F ) contains more than one element. vVe may assume that Fe = 
(:,e or F =(I- 2-Xv®v)Ui , where v · U,e = v · w = 0 for w = {0,0.1}. In an 
orthonormal basis { u . v, w }, 

Let 

R:~ G 
0 

=F ~no) . 
cosO 

co e 
±sinO 

Note that R'j E 80(3) and that 

RiU, - R(ifJ, ~ (Ri - Rii)fJ, ~ 2sin6 G ~) 
is rank-one. Therefore. we can laminate R~Ui with R(iUi in the proport ion ~ to 
obtain a Young measure with centre of mass 

which is equal to F for an appropriate choice of 0. For this same F. we can fol
low the proof of proposition 7.5 (i) to obtain a laminate of Q+Ui , Q-ui, where 
Q± = diag(1, ±1, 1) in the proportion .X. Thu we have constructed two distinct 
laminates in M (F ). 

Finally, for all other cases, we can lift the constructions in the proof of proposi-
tion 7.5 to prove non-uniqueness. 0 

8. Approximate relaxed energy 

The relaxation of the variational problem (1.1) is obtained by replacing W with its 
lower quasiconvex envelope 

w qc = sup{ 4> : 4> ~ W , 4> quasiconvex} . 

It follows from the invariance of W that 
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Figure 7. The quasiconvex hull and the space V.L. 

for all Q E 80(2) , 0(2) and 80(3), respectively. Thus there exists Wqc : M;;'~ -7 R 
such that 

Wqc(F) = Wqc(FT F): 

the function wqc vanishes on K ;]C and grows away from it. We are interested in 
calculating this function, but this is extremely difficult. However, the practical 
interest in this function lies near the set K;]c. Therefore, we construct a function 
W : MI;;~ -7 lR, which we call the approximate relaxed energy, with the following 
three properties. 

(P1) The function F >-+ W(FT F) is quasiconvex. 

(P2) The function W vanishes on K;]c and hence the function F >-+ W(FT F) 
vanishes on Kqc. 

(P3) The function W grows quadratically away from K;}c. 

We note that W needs to grow quadratically in C = FT F away from K;]c in order 
that the 'linearized elastic moduli' are positive. 

Our approximate relaxed energies are modifications of the functions iP con
structed in lemmas 3.2, 4.1 and in the proof of theorem 1.3. Recall that (H1) 
and (H2) have been defined in § 6. 

REMARK 8.1. Suppose K = S0(2)U1 U · · · U S0(2)Uk for Ui E M~yx.; that sat
isfy (H1) and (H2), and that a, ai > 0. Then the function 

k 

W(C) = h(det C)+ L::>:~:i((ei, CE;)- mu(ei))~ (8.1) 
i=l 

has the properties (P1)-(P3). Here. £ = {ell ... , ek} is the set of special directions 
according to theorem 1.1, t~ = (max{ t, 0} )2 is the square of the positive part oft 
and h : JR+ -7 lR is a convex function that satisfies 

h(82
) = h'(82

) = 0, h"(82
) =a> 0 and h(t) -7 oo as t -7 0 or oo. 

The convexity of hand(-)~ implies that the function F >-+ W(FT F ) is polyconvex 
and hence (P1) holds; (P2) follows from the characterization of Kqc in theorem 1.1. 
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We now turn to (P3). Recall the identification of symmetric matrices with IR.3 . In 
this space, the set K~c is a simply connected region in a two-dimensional manifold 
(detC = 82) whose boundaries are made up of k curves (the intersection of the 
manifold with the planes (ei, Cei) = mu(ei)). First pick any point Co in the interior 
of K~c . It follows from the properties of h that W grows quadratically away from 
Co in the direction perpendicular to the manifold at C0 . Now pick any point Co on 
any of the boundary curves. Let V be the tangent (or velocity vector) to the curve 
at Co (see figure 7) and consider the plane perpendicular to V (figure 7a). Since 

d
d det(Co + tD)I = (cof Co, D), 
t t=O 

the normal to the manifold at Co is in the direction cof C0 . Similarly, the normal to 
the plane is in the direction (ei®ei)· Both lie on the plane y.l, as shown in figure 7b, 
and they are not parallel ( cof Co has rank two, while ( ei ® ei) has rank one). Now, h 
grows quadratically in the directions± cof Co, while ai( (ei, Cei)- mu(ei))~ grows 
quadratically in the direction ( ei ® ei). Consequently, in the plane V .L_ W grows 
quadratically in every direction away from T that is tangent to K~c; in fact , given 
any e: . Bo > 0, there exists a0 such that 

"'(C) ~ aoiC- Col2 VC E y.l such that IC- Col < e:, angle(C- Co, T) > Bo. 

Note that, for given 00 and e:, the constant ao depends smoothly on Co and ei ® ei· 
Further, the estimate is also true even if Co is chosen at the intersection of two 
curves (i.e. if Co = Ul); in fact , such points are obtained as the intersection of two 
planes (ei, Cei,) = mu(ei,) and (e;,, Cei2 ) = mu(ei2 ) with the manifold and we 
may use either ei, or ei2 to establish it. Therefore, given any 00 , e: > 0, we can choose 
a 0 independent of the position Co on boundary of K~c in the above estimate. 

RE}.IARK 8.2. Suppose f! = 0 (2)U1U· · - ~0(2)Uk for Ui E tw;;~ that satisfy (Hl), 
(H2) or that K = S0(3)U1 U · · · U S0(3)Uk for Ui E M3 x 3 that satisfy (Hl'), (H2'). 
Then the function 

W(C) = (detC- 82)~ + max((e, Ce)- mu(e))~ 
eES1 

(8.2) 

has the properties (Pl)-(P3) . This is quite similar to the discussion above. 

Unfortunately, the formula (8.2) above is unsatisfactory, since it is not explicit. 
However, it is possible to make it explicit for specific examples. 

EXAMPLE 8.3 (The four-well problem). Consider the four-well problem described 
in example 4.5. Given any C E M:~~, let 

{

C - U'f, Cu- C22 ~ 0 and C12 ~ 0, 

D = C - Ui, Cu - C22 ~ 0 and C12 ~ 0, 

C - Ul, Cu - C22 ~ 0 and C12 ~ 0, 

C - Uj, Cu - C22 ~ 0 and C12 ~ 0. 
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Then ~V defined in ( .2) can be explicitly written as 

{
(>.(D))~. (Cu - C22)(Du- Dzz);;:: 0 

~V(C) = (det C- <52)~+ and D1zC12 ;;:: 0, 

ma.xeE£1 ((e. De) )3.. otherwise. 

where 
( .3) 

and 

We note that 

ma.x((e,Ce) -mu(e))~ = (ma.x((e,Ce) -mu(e))):_. 
eES1 eES1 

and hence our task is to calculate 

ma.x((e. Ce)- mu(e)). 
eES1 

Let e = {cos B, sin B} and 

f (B) = (e. Ce) - mu(e). 

It is sufficient to look at this function for B E [0. rr). since our original function is 
invariant under e H - e. Our task is now to calculate max f forB E [0, rr). 

But first . we have to calculate mu(e) = maxi=l, ... ,4 (e, U{e). For any A EM;;.; 
(e. Ae) = Au cos2 B + 2A12 cos B sin B + A 22 sin2 B. 

and it is ea y to conclude that 

{ 

(e, U[e). 

mu(e) = . max (e, U'fe) = (e, U~e). 
•=1 .... .4 (e. u3 e) l 

(e. UJe), 

since a > b. c > 0 by assumption. 

BE [0, ~rr), 

B E [~rr. ~rr), 
BE [~rr , ~rr), 
BE [~rr, rr), 

( .4) 

We now claim that (e, Ce) and f(B) achieve their maximum in the arne ·quarter 
interval' [0, ~rr), [~rr, 4rrJ, [ 4rr, ~rr) or [~rr, rr]. This is easily verified by contradic
tion. Let us consider the case Czz ;;:: C11 , C12 ;;:: 0. Then (e, Ce) achieves its maxi
mum in [~rr . 4rrJ. First assume that f (B) achieves its maximum forB E [~rr,rr). Let 
;p = B- ~rr. so that ;p E [~rr , 4rrJ. Then a simple calculation using ( .4) shows that 

/(!{))- f (B) = (C22 - Cu)(cos2 B- sin2 B)- 4C12 cosBsinB;;:: 0. 

which contradicts the assumption that f achieves its maximum at B. Similarly. we 
can show that f (B) cannot achieve its maximum forB E [0, irrJ or forB E [4 rr, ~ rr) 
by checking with 'P = 4rr- B and ;p = 1r- B, respectively. We can treat the other 
cases similarly. 
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Thus the maximum off is equal to the maximum of (e. De) (forD defined above) 
for 0 restricted to the quarter interval in which (e. Ce) achieves its maximum .. ow. 
if the angle corresponding to the eigenvector of the maximal eigenvalue of D lies in 
this interval. then the maximum of (e, De) and that of f is equal to the maximum 
eigenvalue of D. This is the first po ibility in ( .3). If the corresponding angle lies 
outside this interval. then the maximum off is equal to the larger of the values of 
e. De) at the two boundaries of the interval. This is the other possibility of ( .3). 
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