
th d nd Pr p t f r H n p t r P rf r n
f P p l r

R r B. D nn nb r , N l . ld, D n L n , n X

Computer Music Journal, Volume 38, Number 2, Summer 2014, pp.
36-50 (Article)

P bl h d b Th T Pr

For additional information about this article

 Access provided by University College London (UCL) (1 Dec 2014 08:22 GMT)

http://muse.jhu.edu/journals/cmj/summary/v038/38.2.dannenberg01.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/21617879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://muse.jhu.edu/journals/cmj/summary/v038/38.2.dannenberg01.html

Methods and Prospects
for Human–Computer
Performance of Popular
Music

Roger B. Dannenberg,∗ Nicolas E. Gold,†

Dawen Liang,∗∗ and Guangyu Xia∗
∗School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, Pennsylvania, 15213 USA
†University College London
Department of Computer Science
Gower Street, London WC1E 6BT, UK
∗∗Department of Electrical Engineering
Columbia University
500 W. 120th Street, Mudd 1310
New York, New York 10027, USA
rbd@cs.cmu.edu, n.gold@ucl.ac.uk,
dliang@ee.columbia.edu, gxia@cs.cmu.edu

Abstract: Computers are often used in performance of popular music, but most often in very restricted ways, such as
keyboard synthesizers where musicians are in complete control, or pre-recorded or sequenced music where musicians
follow the computer’s drums or click track. An interesting and yet little-explored possibility is the computer as highly
autonomous performer of popular music, capable of joining a mixed ensemble of computers and humans. Considering
the skills and functional requirements of musicians leads to a number of predictions about future human–computer
music performance (HCMP) systems for popular music. We describe a general architecture for such systems and
describe some early implementations and our experience with them.

Sound and music computing research has made
a tremendous impact on music through sound
synthesis, audio processing, and interactive systems.
In “high art” experimental music, we have also
seen important advances in interactive music
performance, including computer accompaniment,
improvisation, and reactive systems of all sorts. In
contrast, few if any systems can claim to support
“popular” music performance in genres such as
rock, jazz, and folk. Here, we see digital instruments,
sequencers, and audio playback, but not autonomous
interactive machine performers. Although the
practice of popular music may not be a very active
topic for research in music technology, it is arguably
the dominant form of live music. For example, in
a recent weekly listing of concerts in Pittsburgh,
there are 24 “classical” concerts, 1 experimental
or electro-acoustic performance, and 98 listings for
rock, jazz, open stage, and acoustic music.

In this article, we explore the approaches to
interactive popular music performance with com-
puters. We present a vision for such systems in
the form of predictions about future performance

Computer Music Journal, 38:2, pp. 36–50, Summer 2014
doi:10.1162/COMJ a 00238
c© 2014 Massachusetts Institute of Technology.

practice. These are concretized in a reference ar-
chitecture and illustrated with an example of a
real system that is concerned mainly with the
problem of synchronizing pre-recorded audio to live
musicians.

Popular Music

Categories and labels for music are risky, and
the term “popular music” is particularly difficult
to define precisely. Philip Tagg’s tabular summary
(Tagg 1982) characterizes popular music, inter alia, as
produced and transmitted primarily by professionals,
mass-distributed, and mainly recorded. Anahid
Kassabian’s (1999) discussion of popular music
indicates that typically the term “popular” in this
context means something opposed to an elite, but
that it is not clear who or what the elite is. Derek
Scott (2009) suggests that within popular music,
genre is best conceived of as a category (such as
blues, rock, or country), and style as a way of
characterizing particular features within a genre,
but acknowledges that separating these can be
difficult.

Our goal is to create “virtual musicians” that
can perform popular music—but what does this

36 Computer Music Journal

mean? We find many commonalities across a
diverse array of music under the broad heading of
popular music, including rock, jazz, folk, music
theater, contemporary church, and some choral
music. These commonalities dictate many aspects
of our systems. In the context of this article, the
term “popular music” is adopted to refer to music
with these common features: organization around
a steady beat and metrical structure, at least some
notated parts, incorporation of improvisation, live
performance, and the possibility of re-arranging
sections during the performance. These features
have important implications for computer music
systems. There is a certain amount of circularity
here: We use the expression “popular music” to
determine a set of interesting system requirements,
yet once we determine these, we redefine popular
music to be music whose features can be addressed
by our systems. Ultimately, we will achieve our goal
if we can support a wide range of interactive music
performance within the realm of popular music,
even if that term is not well defined.

We note that our approach will not support all of
what would conventionally be called popular music.
For example, music with pauses or significant rubato
does not fit our framework. On the other hand, our
approach says nothing about harmony or tonal
centers, so an atonal piece with steady tempo might
be playable by our systems, even if it would not be
called popular.

Turning to features and requirements of popular
music performance, the main feature is a structure
based on steady beats. To play popular music, an
absolute requirement is accurate detection of and
synchronization to beats. Because of live perfor-
mance and improvisation, one cannot simply follow
note sequences in a score or use triggers for synchro-
nization. The beat is fundamental. Above the beat
level, measures are important for organizational
synchronization. Clapping, drumming, chord pro-
gressions, and sections are all commonly aligned
on measure boundaries (or even higher levels of
structure). Thus, an awareness of measures is impor-
tant. Popular music also tends to be sectional, with
well-defined introductions, verses, choruses, and
repeats. Musicians must be aware of the structure
in order to know what to play and when. This

awareness comes from a combination of listening,
counting measures, and visual cues. The structure
may change unexpectedly in a live performance,
so an important requirement is the ability to com-
municate improvised structural decisions during a
performance.

Beyond these basic requirements lies a host of
musical possibilities. We expect musicians to ad-
just intonation, dynamics, and style according to a
variety of factors. There is a need for machine mu-
sicianship (Rowe 2001) to assist in the construction
of musically interesting and stylistically appropriate
performances. To cite just a few representative stud-
ies, drumming (Sioros et al. 2013), chord voicings
(Hirata 1996), bass lines (Dias and Guedes 2013), and
vocal technique (Nakano and Goto 2009) have all
been explored and automated to some extent. Even
more difficult is the problem of adjusting styles
according to other musicians. For example, a piano
player and rhythm guitar player should play quite
differently depending on whether they play together
or individually. Interactivity and responsiveness
to human players is a hallmark of contemporary
computer music systems, but little is known about
building interactive players for popular music. For
now, we will regard these possibilities as interest-
ing for future work. Here, we focus on more basic
requirements of synchronization, giving cues, and
system architecture.

Computers in Popular Music Performance

Live popular music offers a wealth of opportunities
for research in computing and music processing.
We use the term “human–computer music per-
formance” (HCMP) to mean the integration of
computers as independent, autonomous performers
into live music performance practice. In HCMP,
computers become more than instruments and
are seen as performers in their own right. Because
HCMP is a very broad term, we add subscripts to
narrow the scope; thus, HCMPPM is “HCMP for
popular music,” and we will describe other classes
of HCMP subsequently. Because it is understood
that our focus here is on popular music, we will
generally omit the subscript for simplicity.

Dannenberg et al. 37

HCMP will be most interesting when computers
exhibit human-level musical performance, but this
is such a giant advance over current capabilities
and understanding that it offers little guidance for
HCMP research in the short term. An alternative
is to envision a future of HCMP based on realistic
assumptions of machine intelligence. Thus, an
important initial step in HCMP research is to
imagine how HCMP systems will operate. A clear
vision of HCMP will motivate further research
toward this vision.

This article begins by presenting the challenges of
HCMP for computer music research, posing specific
problems and research directions. A reference ar-
chitecture to organize the key sub-components
of HCMP systems is then presented and dis-
cussed, followed by the presentation of an example
HCMP-related system as a partial instance of this
architecture.

A Vision for Human–Computer Music Performance

Computers have been used in music performance for
many years, so before going further, we should dis-
cuss HCMP and explain how this relates to current
practice in computer music (see Table 1). In general,
there is great interest in autonomous performers,
which have substantial potential for interesting mu-
sical applications. Popular music performance addi-
tionally requires special capabilities for synchroniza-
tion to steady-beat music, so our comparison tends
to emphasize synchronization characteristics. Table
1 also rates different approaches with respect to
their ability to synchronize to human players, their
autonomy, and their suitability to steady-beat music.

The most common use of computing in music
performance is through computer instruments,
typically keyboards. These, and other electronic
instruments, are essentially substitutes for tradi-
tional instruments and rely upon human musicians
for their control and coordination with other musi-
cians. Because computer instruments rely on direct
human control, they are not examples of HCMP. In
our remaining examples, computers take on the role
of performer and are therefore considered examples
of HCMP.

Many composers of interactive contemporary
art music use computers to generate music algo-
rithmically in real time, often in response to live
performers (Rowe 1993). These works typically take
advantage of contemporary trends toward atonality
and absence of a metrical pulse, which simplifies the
problems of machine listening and synchronization.
The problems of “playing in the right key” or “play-
ing on the beat” are often absent. We designate this
broad range of practice as HCMPIM (for interactive
music).

Alternatively, the practice of “computer accom-
paniment” (Dannenberg 1989; Raphael 2001; Cont
2008; MakeMusic 2013) offers a specific solution to
the synchronization problem by assuming a prede-
termined score (i.e., music notation) to be played
expressively by the performer while the computer
follows the performer in the score and synchronizes
an accompaniment. We label this work as HCMPSF
(“HCMP with score following”).

Related work exists in the area of music-
conducting systems. The work by Lee, Karrer,
and Borchers (2006) is especially relevant to our
work in its discussion of synchronization of beats
and smooth time-map adjustment. Other work
(Katayose and Okudaira 2004; Baba, Hashida, and
Katayose 2010) discusses both tempo adjustment
and synchronized score display using an architec-
ture similar to some of our partial implementa-
tions. The particular problems of popular music
seem to be largely ignored, however. We consider
conducting-based systems to be in a separate class,
HCMPC.

Of course, one simple way to incorporate com-
puters in live performance of popular music is to
change the problem. The commercial sector has
had a significant impact on popular music through
drum machines, sequencers, and loop-based inter-
faces, but one can argue that popular music has
adapted to new technology rather than the other
way around. The precision of drum machines seems
stiff, mechanical, and monotonous to many musi-
cians, but that became the trance-like foundation
of club dance music and other forms. Similarly,
the inability of sequencers and other beat-based
software to “listen” to human musicians has led to
performances with click tracks in fixed media, or

38 Computer Music Journal

Table 1. Interactive Music: Major Threads and Some Attributes

Class Description Synchronization Autonomy Steady Beat

Computer Instruments Direct physical interaction with
virtual instruments: digital
keyboards, drums, etc.

not applicable Low not applicable

Interactive Contemporary
Art Music (HCMPIM)

Composed interactions; often
unconstrained by traditional
harmony or rhythm.
Generation of algorithmic
music and transformations of
live performance.

Low High Low

Computer Accompaniment
(HCMPSF)

Assumes traditional score. Score
following synchronizes
computer to live performer.

High High Medium

Fixed Media (HCMPFM) Many musical styles and
formats. Live performers
synchronize to fixed recording.

Low High High

Conducting Systems(HCMPC) Synchronize live computer
performance by tapping or
gesturing beats. Best with
“expressive” traditional or
classical music.

Medium Medium Medium

HCMP for Popular Music
(HCMPPM)

Assumes mostly steady tempo
and synchronization to beats,
measures, and sections.
Compatible with
improvisation at all levels.

High High High

simply a fixed drum track, that live musicians must
follow. We can call this practice HCMPFM (HCMP
with fixed media). HCMPFM fits our definition of
“independent, autonomous performer,” although
the level of interactivity is negligible. Ableton Live
(Ableton 2009) is an example of software that uses
a beat, measure, and section framework to synchro-
nize music in live performance, but the program
is not well suited to adapting to the tempo of live
musicians. Robertson and Plumbley (2007, 2013)
used a real-time beat tracker in conjunction with
Ableton Live software to synchronize pre-recorded
music to a live drummer. This extension could
be considered a form of HCMP, although it does
not account for the multiplicity of cue types and
sectional rearrangement.

Our goal is to create an intelligent “artificial
performer” that does not require a human operator

sitting at a computer console, but rather uses more
natural interfaces for direct control, as well as more
sophisticated listening and sensing for indirect
control. To develop a broader practice of HCMP, we
need to imagine how humans and computers will
interact, what sorts of communication will take
place, and what sorts of processing and machine
intelligence will be needed: a research agenda. To
guide this process, we look at the practice of music
performance without computers. Considering this,
we construct a set of predictions that anticipate
characteristics and functions of future HCMP
systems (in a sense, developing requirements for
such systems). These predictions will serve to
guide future investigations and pose challenges for
research and development. We can divide HCMP
into two main activities: music preparation and
music performance.

Dannenberg et al. 39

Music Preparation

“Scores” in popular music performance can range
from complete and detailed common music nota-
tion (as in “classical” works) to highly abstract or
incomplete descriptions such as lyrics or lists of
sections. Other music representations are also com-
mon: drummers often need just the music structure
(how many measures in each section) without actual
instructions on what to play; keyboard, bass, and
guitar players often read from “chord charts” that
give chord symbols rather than specific pitches. Pre-
diction 1: HCMP systems will work with multiple
representations of music.

Computer-generated music in HCMP can be
based on audio playback (with time stretching for
synchronization), sound synthesis from MIDI event
sequences, or computer composition and improvisa-
tion from specified chord progressions (for example).
For many musical genres, automatic generation of
parts is feasible, as illustrated by programs such as
Band-in-a-Box (PG Music 2004). There are seem-
ingly infinite varieties of styles and techniques,
however, so there is plenty of room for research in
this area. Many users will not have the skill, time,
or inclination to play the parts themselves or to
compose the parts note-by-note, so the ability to
generate parts automatically is an essential feature.
Users may be able to find examples of instrumental
performances they like and wish to mimic, such as
drum beats, bass lines, or piano accompaniments.
An interesting research problem is to generate parts
using musical analogies (Hofstadter 1996) to adapt
examples to new harmonic or rhythmic contexts.
Prediction 2: HCMP systems will rely on stylistic
generation of music according to lead sheets, in ad-
dition to pre-recorded audio and sequenced MIDI
data.

Music notation offers a direct visual and spatial
reference to the otherwise ephemeral music perfor-
mance. We envision capturing music notation by
camera or scanner (Lobb, Bell, and Bainbridge 2005)
as well as using computer-readable notation. For
unstructured images, one would like to convert the
notation into a machine-readable form, but like opti-
cal character recognition, optical music recognition

is far from perfect, especially for handwritten (or
scrawled) lead sheets. It seems essential to develop
methods to annotate music images with structural
information such as bar lines, repeats, and rehearsal
letters (Liang, Xia, and Dannenberg 2011; Jin and
Dannenberg 2013). In most cases, this annotation
of music notation will be the mechanism by which
the static score structure is described and communi-
cated to the computer. Prediction 3: HCMP systems
will extend music notation to specify performance
structure.

An assumption in HCMP is that music is well
structured: There are agreed-upon melodies, chord
progressions, bass lines, and temporal sections
such as verses, choruses, and bridges that must
be communicated to all performers. If the music
performance is always the same, this is trivial, but
our assumption is that the structure may change,
even during the performance. What happens when
the vocalist decides to sing the verse again or the
bandleader directs the band to skip the drum solo?
Designing interfaces that are both intuitive and
expressive for “programming” performances is an
important problem. Prediction 4: HCMP systems
will make the relationships between scores and
their performances more explicit. Terminology for
specifying the location in a performance in terms of
the static score will be formalized.

One characteristic of popular music performance
addressed by HCMP is the preparation of “scores”
before the performance. Unlike most classical
music, where the score is carefully prepared by
the composer and publisher, popular music is
more likely to be arranged and structured by the
performing musicians. Prediction 5: HCMP systems
will provide interfaces for specifying arrangements
and performance plans.

Having discussed audio, MIDI, and various forms
of music notation, it should be obvious that an
important function of HCMP systems will be to
provide abstractions of music structure and to allow
users to integrate and coordinate multiple music
media. These (and other HCMP systems) will benefit
from being delivered on platforms readily available
to users (Gold 2012). Prediction 6: A primary
function of HCMP systems will be to coordinate

40 Computer Music Journal

multiple media, both in preparation for and during
live performance.

Music Performance

HCMP must also deal with a range of issues aris-
ing from the performing ensembles themselves.
The primary performance context for HCMP is
a heterogeneous ensemble that, although it may
be led by one member, is usually not as strongly
hierarchical, for example, as in the manner of soloist
and accompanist in the Western classical tradi-
tion. Individual musicians are not subservient to
a leader in the generation of their own part and
may at times lead themselves, leadership mov-
ing in fluid fashion among the members during a
performance. Rehearsal typically establishes agree-
ment and expectation about what is to happen
during a performance with much freedom left to
performance time. Rehearsal also provides oppor-
tunities to experiment with improvisations, both
individually and collectively, and to select those
deemed best (by an individual or the ensemble as a
whole). Continued reflection on musical decisions
may happen between rehearsal and performance.
Prediction 7: HCMP systems will analyze decisions
made by humans in rehearsal and regenerate mu-
sical parts and strategies accordingly, following
rehearsals.

The composition and size of the ensemble may
also vary between performances, and musicians
may be present in performance who were not at
rehearsals, causing the re-voicing or re-arrangement
(in instrumental terms) of a piece prior to (or even
during) performance. This may affect the content of
improvisation and interaction between members of
the ensemble.

Finally, the competence (in amateur ensembles
especially) of individual musicians may vary widely
from beginner to professional. This means that com-
puter systems participating in a performance must
be more tolerant of mistakes, planned substitutions
of musical elements (e.g., different chord voicings
or substitutions), and ensemble members’ absence
from rehearsals.

One obvious application of HCMP will be to
have a computer step in to replace a missing band
member. Consequently any computer “musician”
taking part in such an ensemble must be capable of
playing music that is appropriate (in terms of style
and musical content) to the instrument for which it
is stepping in, and it must do so in such a way that
it blends with the ensemble. Prediction 8: HCMP
systems will need to react to the structure, style,
and constitution of the ensemble in which they
are performing and adapt their generative music
accordingly and on the fly.

Norms of performance practice need to be
understood and respected, particularly in terms
of the signals used to guide the band to different
parts of the score being performed. These are often
physical gestures that are either explicit (e.g., a
number of fingers raised to indicate a numbered
score section), or highly dependent on the local
performance and temporal contexts (e.g., nodding
to indicate “keep going and do that section again”).
Prediction 9: HCMP systems will be capable of
responding to the physical and musical gestures
used by musicians and coordinate and control their
performances accordingly.

When musicians perform together, they synchro-
nize at several levels of a time hierarchy. At the
lowest level is the beat or pulse of the music. Un-
fortunately, fast and accurate automatic detection
of beats is not a solved problem (see Robertson and
Plumbley [2013] for measurements and a discus-
sion of the performance of some state-of-the-art
live beat-tracking systems). Prediction 10: HCMP
systems will use a variety of beat-detection systems
and integrate information from multiple sources
in order to achieve the necessary accuracy and
reliability to support computer-based “performers.”

Another level of time synchronization is
the measure. Typically a group of two or four
beats, measures organize music into chunks. In
rock, measures are indicated by the familiar snare
drum accents on beats “two” and “four” and chord
changes on or slightly before beat “one.” Measures
are important in music synchronization because
sections are aligned with respect to measures. A
musician would never say “let’s go to section B

Dannenberg et al. 41

on the third beat of measure eight.” (One might
say, however, “let’s go to section B and take the
pickup,” so we must be aware that the logical
content of a measure might actually precede the
notated bar line.) Prediction 11: HCMP systems will
track measure boundaries. As with beats, multiple
sensors and modalities will be used to overcome
this difficult problem in machine listening.

Finally, music is organized into sections con-
sisting of groups of measures. These sections are
typical units of arrangement, such as introductions,
choruses, and verses. When a performance plan
is changed during the performance, it is usually
accomplished by communicating, in effect, “Let’s
play section B now (or next).” In the case of “now,”
the section begins at a measure boundary. In the
case of “next,” the new section begins at the end
of the current section. Without these higher-level
temporal structures and conventions, synchroniza-
tion and cues would need to be accurate to the
nearest beat, perhaps just a few hundred millisec-
onds rather than the one to ten seconds afforded
by higher-level structures. Prediction 12: HCMP
systems will be “aware” of measures and higher-
level sectional boundaries in order to synchronize
to human players. As with measures, multiple sen-
sors and modalities will be used to overcome the
machine-listening problem of identifying musical
sections.

In this section, we have analyzed performance
practice and conventions in popular music. We
have identified a set of issues and made predictions
about how HCMP systems will function. We call
these “predictions” rather than “requirements”
because not every prediction is necessary for HCMP
and realizing every prediction will require much
innovation.

Reference Architecture

From the previous discussion, we can distill a set
of general functions to be performed by HCMP
systems, leading to a reference architecture. A
reference architecture helps to understand and
reason about components, representations, and
information flows in complex systems.

Requirements

In broad terms, HCMP systems must address a
range of problems including beat-tracking, tempo
prediction, score-following, ensemble listening,
machine musicianship, music generation and
improvisation, score management, media syn-
chronization, sound synthesis, and diffusion. Fo-
cusing on the synchronization and coordination
aspects that are most characteristic of HCMPPM,
we require:

1. A way of representing the structure of
the written score (or lead sheet or other
source material) in a manner appropriate
to the goal of performance (for example,
elaborated measures, repeats, and other no-
tational constructs); in other words, a static
score.

2. A simple way of representing the ordering
of sections of the score without needing
to recreate the static score representation
in full. A simple representation is required
because there is typically insufficient time to
fully rewrite scores in performance scenarios,
the ensembles concerned may not have the
expertise to rearrange music at a fine-grained
level, or indeed, some of the music may exist
only as memorized blocks. This is termed
the arrangement.

3. A way in which to transform, combine, and
represent the static score and arrangement
together to provide look-ahead and anticipa-
tion for human and computer performers:
a dynamic score. Although the internal
structure of the static score sections may
remain unchanged during a performance, the
arrangement and, thus, the dynamic score
can be rewritten to account for impromptu
performance decisions (e.g., repeating the
chorus an additional time). Thus, the dy-
namic score begins as a representation of
the future unfolding of the static score and
gradually becomes a history of how that
score was played. The dynamic score is anal-
ogous to the execution trace of a sequential
computer program.

42 Computer Music Journal

Figure 1. A reference
architecture for HCMP
showing principal
subsystems: Beat
Acquisition derives beat
times from real-time
sensor data; Timing

Systems estimate tempo
and provide event
scheduling in terms of
beats; Score Management
Systems combine scores,
arrangements, and cues to
determine what to play on

each beat; Cue Systems
collect map sensor data to
cues; and Rendering
Systems generate musical
output (sounds and
displays) consistent with
the current beat and

dynamic score. Cues
convey current position
(type 1), decisions about
future choices (type 2),
and control over voicing
(type 3). See the text for
further details.

4. A way in which to communicate the need
for changes to the dynamic score to the
performers: cues.

5. A way in which these representations and
cues can be communicated to a range of
systems involved in supporting HCMP: a
reference architecture.

Figure 1 shows a reference architecture for HCMP
systems, identifying some key subsystems required.
There are several advantages to defining a baseline
reference architecture. It encourages the standardiza-
tion of interfaces between subsystems and compo-
nents, thereby allowing many different approaches
to be integrated and compared. It also promotes
reasoned discussion around the appropriateness of
particular components or subsystems (which may
ultimately necessitate changes to the reference ar-
chitecture itself). Finally, the process of defining the

architecture brings to the surface issues relevant to
the management of notations and representations.
The architecture presented here has several compo-
nents, and a companion article examines some of
them in greater detail (Dannenberg et al. 2014).

Beat Acquisition and Timing Components

Real-time components are needed to keep an HCMP
system coordinated with the human musicians in
an ensemble. Real-time synchronization aspects are
handled by components such as beat- and tempo-
tracking systems (the modules for Beat Acquisition,
Beat Data Reconciliation/Resolution, and Tempo
Prediction in Figure 1). The Beat Acquisition
modules export (at least) time-stamped messages
for detected pulses and corresponding measures of
confidence. Additional information, such as meter,

Dannenberg et al. 43

metrical position, and tempo estimates, may also
be included. Because there may be many of these
systems, a reconciliation system may be needed to
filter noisy beats and decide which beat-tracking
source to follow on the basis of confidence and other
information. This could adopt a similar approach to
that outlined by Grubb and Dannenberg (1994) but
accounting for the improvised nature of the music.
The output of the reconciled beat data is passed to a
tempo-prediction system.

Abstract-Time Components

Abstract-time components are needed to manage
and schedule score events in the context of the
performance. The virtual scheduler and its associ-
ated systems are concerned with aspects of abstract
time in the system. The virtual scheduler should
retime events that have been scheduled on a nom-
inal time trajectory, by warping the event times
according to the incoming tempo data from the
tempo-prediction system. Events are then passed to
an actual scheduler for real-time scheduling. This
allows the unification of all media and handles
the variation of latency between the various media
sources in the components of the rendering system.

In Figure 1, dbeat (part of the Score and Position
Information coming from the Score Execution
Engine) denotes a monotonically increasing beat
counter that serves as the “global” position within
the dynamic score during a performance. The dbeat
is the common, shared position used to synchronize
all media. In general, the dbeat must be mapped
to audio-file time, MIDI-sequence time, and other
media-specific units, based on the static score,
arrangement, and dynamic score.

Score Management Systems

Score management is handled by the functional
components in the center box of the diagram. These
systems will allow a human musician to encode,
manage, and arrange scores for performance.

Cueing Systems

Cueing systems are required to allow the com-
puter system to react to high-level structural and

synchronization changes during performance (e.g.,
additional repetitions of a chorus). At least three
types of cues are necessary.

1. Static Score Position Cues. These cues
are necessary when synchronization with
the static score is lost. Issuing a static score
cue will cause the dynamic score to be
recalculated accordingly.

2. Intention Cues. These cues are needed to
inform the computer of the intended direc-
tion of the current performance (e.g., exiting
a vamp section or adding an additional cho-
rus). Issuing an intention cue (e.g., using a
MIDI trigger, gesture recognition, or other
method) will cause the dynamic score to be
recalculated, starting at some score position
as yet in the future.

3. Voicing/Arrangement Cues. These cues are
needed to allow control over the voicing of a
section. For instance, it may be desirable to
prevent a particular instrumental group from
playing on the first time through a repeat,
but to allow them to play on the second.
These cues may also control style, loudness,
articulation, etc. This type of cue affects only
the rendering system to which it is issued.

Rendering Systems

Rendering systems are responsible for providing
multimedia output at the appropriate time. To keep
the detail of the specific types of media and their
output separate from the abstract architecture, each
rendering system is responsible for the management
of its own data (e.g., MIDI, audio, score images).
Metadata is required to link these data elements to
their appropriate position in the static score (and
thus to the appropriate scheduling as the dynamic
score is played). For example, the metadata can be a
list of (dbeat, position) pairs that specify positions
(sample numbers, pixels, MIDI clock number, etc.)
within the data as a function of dbeats. This leaves
rendering systems free to determine whether they
need beat-level information or simply use the
measure-level data. A score display system might
map a measure to image information, or an audio

44 Computer Music Journal

rendering system might represent audio at the beat
level.

Abstract beat-time information can thus be
linked to real-time source material for the cor-
rect scheduling of real-time data while allowing
the overall system to remain oblivious to the
specific source formats being used. Rendering
systems should use a callback interface whereby
they schedule events with the scheduling systems.
These events call the appropriate renderer at the
scheduled time, causing synchronized real-time
output of media in accordance with the dynamic
score and beat tracking information.

Rendering systems can be as simple as a MIDI
player, or an audio player with time-stretching
capabilities to adjust playback tempo. Alternatively,
the renderer can write or improvise parts, respond
to other musicians (real or virtual), and present
controls for adjusting style, timbre, and other
qualities. These musically responsive renderers
may require extensions to the architecture to
include machine listening modules and more
communication between renderers.

An HCMP Example: The Virtual Orchestra

This section describes an exemplar instance of
HCMP.

Requirements

Our goal was to create a high quality, virtual string
orchestra that could play along with a live jazz
band in a musically convincing way. We decided to
emphasize practical considerations and reliability
over exotic or cutting-edge research.

One exception to this set of priorities is that
we feel that HCMP must be autonomous enough
to operate without a dedicated human operator. In
contrast, a human could easily play string parts on
a keyboard connected to a string synthesizer. This
would be simple and robust, and with work might
even sound good, but our objection is that it takes
the entire attention of an expert musician who
might otherwise play piano or guitar or some other

instrument. Another problem would exist with a
conducting interface (Dannenberg and Bookstein
1991; Baba, Hashida, and Katayose 2010), which
would require either the addition of a conductor, or
for an existing conductor to use simplified gestures
to be reliably interpreted by a computer. We prefer
systems that need no extra personnel to operate, yet
bring new capabilities to the human ensemble.

Components

Our approach consists of several components. First,
we have music representation issues: how will string
parts be created, represented, and translated all the
way from score to sound? Second, synchronization
is critical: how will we keep the string parts
synchronized to the band? Third is the quality of
sound generation: how will we make convincing
acoustic string sounds electronically? Finally, there
is the diffusion problem: how will we organize and
project string sounds into the hall?

Music Organization and Representation

The jazz standard Alone Together, by Arthur
Schwartz, was chosen for performance, in part for
its title’s implicit commentary on human–computer
performance. John Wilson was commissioned to
arrange this piece for jazz ensemble and strings to
show off the system’s capabilities. The arrange-
ment includes lush countermelodies, alternations
between strings and live horns, chordal backups
behind live soloists, and a pizzicato interlude with a
live bass soloist.

From a computational perspective, the string
parts are organized as a set of sound files. Each file
has a list of time offsets corresponding to beat times,
and the task of the computer system is to start
playing the file at the proper time (on the proper
beat), as well as to vary the playback speed so that
the designated file time offsets synchronize with
beats in the live performance.

We decided to implement the sound generation
by recording an actual string orchestra ahead of
time, to obtain a convincing sound. The sound files

Dannenberg et al. 45

were recorded two or three tracks at a time in a
studio, using close microphones to capture a dry
sound. To create a realistic performance situation
for the players, we first recorded a click track, and
then recorded the actual live rhythm section (using
headphones to stay with the click track). Finally,
the string players played along while listening to the
rhythm section over headphones. We feel that this
approach gives the strings a useful rhythmic and
pitch reference, avoiding any tendency to play the
parts “straight” or mechanically, as might happen
when playing along with a simple click track. On the
other hand, the original click track reference makes
it easy to identify beat times in the recordings, which
is necessary for their ultimate synchronization to
the live band.

The recordings were mixed to 20-track sound
files with one instrument per track, comprising
twelve violins, four violas, and four cellos. Each file
represents a set of contiguous measures beginning
at an entrance of the string ensemble and ending
at a point where the entire ensemble has a rest of
significant duration (at least 16 measures).

Synchronization

Synchronization requires us to begin the playback
of each sound file at the proper moment and at the
proper tempo, and to track the tempo and beat times
of the band until the end of each file.

For simplicity, we decided to use a simple
foot-tapping interface (Dannenberg 2007) to com-
municate beat times. Taps are in cut time (one tap
every two beats) at about 85 taps per minute. We use
an additional keyboard as set of triggers to cue some
of the entrances.

The beat and tempo detection software interprets
input according to different states. In the “initial”
state, input is ignored until there are three successive
taps at approximately equal time intervals. This sets
an initial tempo and causes a transition to the “run”
state. In the run state, the software uses linear
regression over up to six previous taps to predict the
next tap time. A tap that arrives within one-third of
a beat period of the expected time is added to the list
of beats, and a new regression is performed to update

the estimated tempo and predict the next beat time.
If no tap arrives during the expected time window,
the system waits for a tap near the following beat.
If there is no tap near this second estimated beat
time, the system goes back to the initial state.

The main output of the tapping system is the
linear regression of recent beats. This provides a
mapping from time to beat number that can be
used to schedule events in the future. As each new
tap arrives, we compute a new linear regression to
update the time-to-beat mapping, which is sent
to a high-priority audio process. When it comes
time to compute audio, the future output time
of the audio (estimated by the PortAudio library)
can be mapped easily to an estimated beat time and
tempo as described above. This approach simplifies
reasoning about timing and synchronization.

Sound Generation

Sound generation is coupled to the tapping com-
ponent through the time-to-beat mapping, which
is typically updated in response to each new tap.
The goal of sound generation is to have the current
audio output correspond to the currently estimated
beat position (we treat beats as continuous, so it
makes sense to say that the current beat position is
23.17, or 17 percent of the way from beat 23 to beat
24). To accomplish this, we cannot simply jump to
the corresponding location in the audio file, which
would create obvious and unnatural audio artifacts.
Instead, we must continue a smooth playback of the
audio but modulate the stretch factor to speed up
or slow down in order to synchronize. We will next
describe the time-stretching process and then return
to the problem of synchronization.

Time stretching uses the pitch-synchronous
overlap-add approach (Schnell et al. 2000). Our
time stretching is mostly provided by the Elastique
library from zplane.development (zplane 2007),
which provides for the time stretching of a single
channel of audio by a given stretch factor. The
system works as follows (see Figure 2): First, audio
to be processed is analyzed (offline, in our case) to
detect and label pitch periods in the original audio.
The labels provide not only locations and periods,

46 Computer Music Journal

Figure 2. Pitch-
synchronous overlap add
(PSOLA) can be used to
synchronize pre-recorded
audio to live performances.
Here, audio is stretched by
duplicating selected pitch

periods. Periods are
windowed and overlapped
to smooth transitions.
Audio can be shortened by
dropping rather than
duplicating periods.

but also some spectral properties used by the stretch
algorithm. At runtime, the complete analysis data
are provided to the Time Stretch module, but audio
is processed incrementally. To process audio, the
audio stream is segmented into pitch periods, and
each period is isolated through multiplication by a
smoothing window, centered on the pitch period, but
overlapping with adjacent periods. The windowing
is organized so that if the windows are summed
at their original spacing, the original waveform is
recovered. To stretch the sound, windowed periods
are occasionally repeated in the output (using the
pitch period to determine spacing, as shown in
Figure 2), thus extending the sound. To contract the
sound, windowed periods are occasionally dropped.
Of course, the rate of duplicating or dropping
periods determines the overall stretch factor, but
the algorithm has some leeway in deciding which
periods to duplicate or drop. Presumably, duplicating
or dropping highly periodic portions of the signal
will minimize the artifacts. In practice, there are
no noticeable artifacts using small stretch factors,
and the most obvious giveaway is that as the stretch
factor increases, vibrato begins to sound unnatural.
(There is no attempt to remove and restore vibrato,
but in a dense collection of 20 strings, even these
artifacts will be masked.)

Our system must modulate the stretch factor
continuously to track a continuously varying tempo,
but tracks are stretched independently. Because

stretching is not really continuous but consists of
inserting and deleting whole pitch periods, we must
be careful. Over time, the actual sound file position
can drift away from the ideal position. A software
feedback mechanism is used to measure drift and
compensate through slight changes to the stretch
factor (Dannenberg 2011a).

Loosely coupled to all this activity is a process
that reads 20-channel sound files, de-interleaves
the samples, and inserts them into first-in-first-out
queues, one for each time stretcher. This allows
each time stretcher to manage a slightly different
stretch factor and file read position. We read data
from disk in large blocks for efficiency, but use
a low-priority task that can be pre-empted by a
high-priority audio computation. By keeping ahead
of the audio processing, we avoid blocking the audio
computation to wait for a disk read to complete.

Sound Diffusion

Sound diffusion is based on multiple (eight-) speaker
systems arranged across the stage. Each of the 20
input channels represents one close-miked string
instrument (violin, viola, or cello). Each instrument
channel is directed to only one speaker. Rather than
a homogenized orchestra sound spread across many
speakers, we have individual instrument sounds,
each radiating from a single location and mixing in
the room as with an acoustic ensemble.

Evaluation and Results

We gave one performance with our experimental
system. By chance, there was an “extra” percus-
sionist with nothing else to do in this piece, so she
provided the taps. (We have used similar systems
where the tapper actively performs at the same time,
and a future goal is to automate the tapping.) One
interesting problem occurred in rehearsal, where
the tapper was naturally listening to the strings but
started to tap along with them rather than the band,
causing the system to drift out of synchronization.
As soon as this became apparent, she began tapping
with the band to correct the problem, but now the

Dannenberg et al. 47

taps were falling outside of the 1/3 beat window,
causing them to be ignored. This failure illustrates
the subtleties of even a problem as simple as tapping
beats in live performance. The public performance,
however, went very well.

Musical evaluation is always difficult. Sub-
jectively, the system maintains excellent syn-
chronization. Laboratory simulations suggest we
can predict the next beat time with an average
error of less than 20 msec, although our expe-
rience tells us that average error is only part of
the story and synchronization quality requires an
accurate initial tempo and nearly steady tempo.
Video with short descriptions can be seen online
at www.youtube.com/watch?v=J Z1GSltMPw and
www.youtube.com/watch?v=R11u0S6uENA.

Although a jazz piece was performed, we did
not perform it freely, and all solo sections were
planned in advance. Nevertheless, the scheme for
bringing in the strings on cue worked well and was
demonstrated repeatedly in rehearsals. In principle,
the conductor could have inserted new solos on the
fly without creating synchronization problems.

Summary

None of the techniques described here (tapping, time
stretching, multi-channel audio) are entirely new,
but even after decades of interactive computer music
it is not common to have high-quality multi-channel
synchronized audio used in live performance. We
are unaware of any precedent. There is even a
demonstrated need for this, as seen, for example, in
Quadrophenia performed by The Who with exten-
sive but troublesome backing tapes in the 1970s, and
the common use of click tracks on backing tapes in
venues such as theme parks and cruise ships.

Conclusions

Human–computer music performance presents
many opportunities for computer music research,
products, and performance. We have described what
we believe are the important properties of HCMP,

and we have made predictions about what these
systems will look like in the future. As a guide
to HCMP development, we presented a reference
architecture that describes HCMP systems in terms
of functions, subsystems, information organization,
and processing. We believe that HCMP progress
is best accomplished by tackling subproblems
illustrated by this architecture. Along these lines,
we have begun implementing HCMP systems. In
one example system, we created a live performance
with cued entrances, beat-level synchronization, a
high-quality virtual string orchestra (recordings of a
real string orchestra, with real-time time-stretching),
and multi-channel sound diffusion.

In the future, we will continue to develop and ex-
plore HCMP. We believe that there are at least three
important benefits of this work. First, HCMP focuses
attention on some interesting and difficult techni-
cal problems, including beat-tracking, human–
computer interaction in live performance, music rep-
resentation, and music generation. Second, HCMP
has the potential to benefit millions of people, espe-
cially amateur musicians who might enjoy playing
with virtual musicians (i.e., computer programs).
Finally, HCMP capabilities offer a new creative
potential to composers and performers. Even though
HCMP directly addresses the needs of popular mu-
sic performance, we believe that HCMP can enable
creative users to develop new styles of music and
performance practice that we have not yet imagined.

Acknowledgments

The support for this work by the UK Engineering
and Physical Sciences Research Council (grant no.
EP/F059442/2) and the National Science Foundation
(grant no. 0855958) is gratefully acknowledged. Our
first performance system and the music display
work were supported by Microsoft Research and the
Carnegie Mellon School of Music. Zplane kindly
contributed their high-quality audio time-stretching
library for our use. Portions of this article are
based on earlier publications (Gold and Dannenberg
2011; Dannenberg 2011a, 2011b; Liang, Xia, and
Dannenberg 2011).

48 Computer Music Journal

References

Ableton. 2009. Ableton Reference Manual: Version 8.
Berlin: Ableton. Available at downloads.ableton.com/
manuals/80/ableton live 8 manual en.pdf. Accessed
December 2013.

Baba, T., M. Hashida, and H. Katayose. 2010.
“‘VirtualPhilharmony’: A Conducting System with
Heuristics of Conducting an Orchestra.” In Proceed-
ings of the Conference on New Interfaces for Musical
Expression, pp. 263–270.

Cont, A. 2008. “ANTESCOFO: Anticipatory Synchroniza-
tion and Control of Interactive Parameters in Computer
Music.” In Proceedings of the International Computer
Music Conference, pp. 33–40.

Dannenberg, R. 1989. “Real-Time Scheduling and Com-
puter Accompaniment.” In M. V. Mathews and J. R.
Pierce, eds. Current Directions in Computer Music
Research. Cambridge, Massachussetts: MIT Press,
pp. 225–261.

Dannenberg, R. 2007. “New Interfaces for Popular Music
Performance.” In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pp. 130–135.

Dannenberg, R. 2011a. “A Virtual Orchestra for Human-
Computer Music Performance.” In Proceedings of the
International Computer Music Conference, pp. 185–
188.

Dannenberg, R. 2011b. “A Vision of Creative Computation
in Music Performance.” In Proceedings of the Inter-
national Conference on Computational Creativity,
pp. 84–89.

Dannenberg, R., N. Gold, D. Liang, and G. Xia. 2014.
“Active Scores: Representation and Synchronization
in Human–Computer Performance of Popular Music.”
Computer Music Journal 38(2):51–62.

Dannenberg, R., and K. Bookstein. 1991. “Practical
Aspects of a Midi Conducting Program.” In Proceedings
of the International Computer Music Conference, pp.
537–540.

Dias, R., and C. Guedes. 2013. “A Contour-Based Jazz
Walking Bass Generator.” In Proceedings of the Sound
and Music Computing Conference, pp. 305–308.

Gold, N. 2012. “A Framework to Evaluate the Adoption
Potential of Interactive Performance Systems for
Popular Music.” In Proceedings of Sound and Music
Computing Conference, pp. 284–289.

Gold, N., and R. Dannenberg. 2011. “A Reference Archi-
tecture and Score Representation for Popular Music
Human–Computer Music Performance Systems.” In

Proceedings of the International Conference on New
Interfaces for Musical Expression, pp. 36–39.

Grubb, L., and R. Dannenberg. 1994. “Automating Ensem-
ble Performance.” In Proceedings of the International
Computer Music Conference, pp. 63–69.

Hirata, K. 1996. “Representation of Jazz Piano Knowledge
Using a Deductive Object-Oriented Approach.” In
Proceedings of the International Computer Music
Conference, pp. 244–247.

Hofstadter, D. 1996. Fluid Concepts and Creative Analo-
gies: Computer Models of the Fundamental Mecha-
nisms of Thought. New York: Basic Books.

Jin, Z., and R. Dannenberg. 2013. “Formal Semantics
for Music Notation Control Flow.” In Proceedings
of the International Computer Music Conference,
pp. 85–92.

Kassabian, A. 1999. “Popular.” In B. Horner and T. Swiss,
eds. Key Terms in Popular Music and Culture. Hoboken,
New Jersey: Wiley, pp. 113–123.

Katayose, H., and K. Okudaira. 2004. “Using an Ex-
pressive Performance Template in a Music Con-
ducting Interface.” In Proceedings of the Confer-
ence on New Interfaces for Musical Expression,
pp. 124–129.

Lee, E., T. Karrer, and J. Borchers. 2006. “Toward a
Framework for Interactive Systems to Conduct Digital
Audio and Video Streams.” Computer Music Journal
30(1):21–36.

Liang D., G. Xia, and R. Dannenberg. 2011. “A Frame-
work for Coordination and Synchronization of Me-
dia.” In Proceedings of the International Confer-
ence on New Interfaces for Musical Expression,
pp. 167–172.

Lobb, R., T. Bell, and D. Bainbridge. 2005. “Fast Capture
of Sheet Music for an Agile Digital Music Library.” In
Proceedings of the International Conference on Music
Information Retrieval, pp. 145–152.

MakeMusic, Inc. 2013. “SmartMusic: Music Educa-
tion Software.” Available at www.smartmusic.com.
Accessed 22 October 2013.

Nakano, T., and M. Goto. 2009. “VocaListener: A Singing-
to-Singing Synthesis System Based on Iterative Parame-
ter Estimation.” In Proceedings of the Sound and Music
Computing Conference, pp. 343–348.

PG Music. 2004. “Band-in-a-Box.” Victoria, British
Columbia: PG Music.

Raphael, C. 2001. “Music Plus One: A System for
Flexible and Expressive Musical Accompaniment.”
In Proceedings of the International Computer Music
Conference, pp. 159–162.

Dannenberg et al. 49

Robertson, A., and M. Plumbley. 2007. “B-Keeper: A Beat
Tracker for Live Performance.” In Proceedings of New
Interfaces for Musical Expression, pp. 234–237.

Robertson, A., and M. Plumbley. 2013. “Synchronizing
Sequencing Software to a Live Drummer.” Computer
Music Journal 37(2):46–60.

Rowe, R. 1993. Interactive Music Systems. Cambridge,
Massachusetts: MIT Press.

Rowe, R. 2001. Machine Musicianship. Cambridge,
Massachusetts: MIT Press.

Schnell, N., et al. 2000. “Synthesizing a Choir in Real-
Time Using Pitch Synchronous Overlap Add (PSOLA).”
In Proceedings of the International Computer Music
Conference, pp. 102–108.

Scott, D. B. 2009. “Introduction.” In D. B. Scott, ed. The
Ashgate Research Companion to Popular Musicology.
Farnham, UK: Ashgate, pp. 1–21.

Sioros, G., et al. 2013. “Syncopalooza: Manipulating
the Syncopation in Rhythmic Performances.” In
Proceedings of the International Symposium on
Computer Music Multidisciplinary Research, pp.
454–469.

Tagg, P. 1982. “Analysing Popular Music: Theory, Method
and Practice.” Popular Music 2:37–65.

zplane. 2007. “Élastique Time-Stretching and Pitch-
Shifting SDKs.” Berlin: zplane.development.
Available at www.zplane.de/index.php?page=
description-elastique. Accessed December 2013.

50 Computer Music Journal

