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Abstract
This article presents a method for solving large-scale linear inverse imaging
problems regularized with a nonlinear, edge-preserving penalty term such as
total variation or the Perona–Malik technique. Our method is aimed at pro-
blems defined on unstructured meshes, where such regularizers naturally arise
in unfactorized form as a stiffness matrix of an anisotropic diffusion operator
and factorization is prohibitively expensive. In the proposed scheme, the
nonlinearity is handled with lagged diffusivity fixed point iteration, which
involves solving a large-scale linear least squares problem in each iteration.
Because the convergence of Krylov methods for problems with discontinuities
is notoriously slow, we propose to accelerate it by means of priorconditioning
(Bayesian preconditioning). Priorconditioning is a technique that, through
transformation to the standard form, embeds the information contained in the
prior (Bayesian interpretation of a regularizer) directly into the forward
operator and thence into the solution space. We derive a factorization-free
preconditioned LSQR algorithm (MLSQR), allowing implicit application of
the preconditioner through efficient schemes such as multigrid. The resulting
method is also matrix-free i.e. the forward map can be defined through its
action on a vector. We illustrate the performance of the method on two
numerical examples. Simple 1D-deblurring problem serves to visualize the
discussion throughout the paper. The effectiveness of the proposed numerical
scheme is demonstrated on a three-dimensional problem in fluorescence dif-
fuse optical tomography with total variation regularization derived algebraic
multigrid preconditioner, which is the type of large scale, unstructured mesh
problem, requiring matrix-free and factorization-free approaches that moti-
vated the work here.
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1. Introduction

Inverse problems arise in almost all fields of science when details of a model have to be
determined from a set of observed data. Formally, we consider a mapping →A X Y: as the
forward problem and the inversion of this mapping as the inverse problem. A defining
characteristic of such problems is that they are ill-posed whenever the forward mapping is a
compact operator which, for infinite-dimensional linear operators, is equivalent to a gradual
decay to zero for the singular values of the mapping A. As a consequence of the ill-posedness
of A, its inversion is unstable and requires regularization, see e.g. [1–3].

In this work, we are interested in linear problems after appropriate discretization, where
=X nX , ∈nX is the space of images (large-scale for two or three spatial dimensions) and
=Y nY , ∈nY is the data space. Broad class of such problems includes image deblurring,

denoising and inpainting, tomography based on the radon transform (x-ray CT) or attenuated
radon transform (PET, SPECT), or fluorescence diffuse optical tomography (fDOT).

For many of those problems, the matrix representation of A becomes too large to form
explicitly, even for moderately sized images. Therefore in this paper we focus on methods
using an implicit representation of A, which is sometimes referred to as the matrix-free
approach. Examples are projection operators in x-ray CT, PET and SPECT, and the solution
of direct and adjoint partial differential equations in fDOT.

1.1. Linear problem with nonlinear edge-preserving regularizer

The problem we aim to solve is of the form

Φ τ= − +
∈

⎡
⎣⎢

⎤
⎦⎥( ) ( )f g Af R fmin :

1

2
, (1)

f X

2

where A is a discrete forward operator (possibly defined only as its action on a vector), g
denotes the data, f the unknown solution and R(f) is an appropriate discretization of a
nonlinear regularizer of the type

∫=
Ω

 ( )( )f r f x x: ( ) d , (2)

with ∈ ∞( )[ )r C 0,1 and τ > 0 controls the relative weight of the data fidelity and the

regularization term in (1). The function r acting on | |f x( ) makes such regularizers of
immediate interest to imaging problems, where preservation of the edges is desirable. Two
prominent examples are

• total variation [4] (sparsity prior for edges) and its smoothed approximation

= = + ( )r t t r t T t T( ) , or ( ) 1 , (3)
2
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• Perona–Malik [5] (edge-preserving prior)

= + = − −( ) ( )( )( )r t T t T r t T t T( )
1

2
log 1 , or ( )

1

2
1 exp . (4)2 2 2 2 2

In (4), T is a threshold parameter indicating a level of image structure below which edges are
considered as noise; we apply the same interpretation to this parameter in (3) to illustrate the
generic approach, even though in the total variation literature this factor is usually stated as a
purely numerical correction.

1.2. Lagged diffusivity fixed point iteration

In this paper we solve (1) by searching for a critical point, =Φ 0
f

d

d
, which amounts to solution

of the nonlinear normal equation

Φ τ= − + ′ =( ) ( )
f

A Af g R f
d

d
0. (5)T

In the continuous setting, the Fréchet derivative of  at f in the direction h is defined as




 ∫′ =

′
·

Ω
 ( )

( )f h
r f x

f x
f x h x x:

( )

( )
( ) ( ) d , (6)

which is the weak form of the inhomogeneous diffusion operator

 =− · c x: ( ) (7)f f

acting on f with


= ′
c x( ) ( )

f

r f x

f x

( )

( )
. With Mf representing a discretization off we define the

discrete derivative as ′ =R f M f( ): f .

As the nonlinearity is restricted to the regularizer, we solve (5) using the lagged diffu-
sivity fixed point iteration

τ− + =
−( )A Af g M f 0, (8)

k f k

T

k 1

introduced in [6] originally for total variation image denoising. This approach amounts to
using successive linearizations where at kth nonlinear iteration step, we use the currently
available approximation −f

k 1
to form the diffusion operator

−
Mfk 1

. An alternative derivation of

(8) can be found in [7].
Using symmetric factorization =

−
M L Lf

T

k 1
, we can formally write the corresponding

linear regularizer as ‖ ‖Lf1

2
2 and hence the corresponding linear least squares problem reads

Φ τ= ∥ − ∥ + ∥ ∥
∈

⎡
⎣⎢

⎤
⎦⎥( )f g Af Lfmin :

1

2

1

2
. (9)

f X
k

2 2

1.3. Bayesian interpretation

It is well known that the minimizer of the Tikhonov regularized least squares problem (1) can
be interpreted as the maximizer of the posterior distribution [8]

π π π∝( ) ( ) ( )f g g f f , (10)Y X

where π g f( )Y denotes the likelihood of observing data g for a known value of the parameter f
and π f( )X is the measurement independent prior.
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Under the assumption of zero-mean white Gaussian noise (i.e. noise covariance has
already been incorporated into A and g), the unnormalized likelihood becomes

π ∝ − −{ }( )g f g Afexp
1

2
.Y

2

For image reconstruction problems, choosing a prior πX modelling the distribution of images
with weak or vanishing correlation across edges

π τ∝ −{ }( ) ( )f R fexp ,X

we arrive at (1). The linearized problem (9) can be interpreted as choosing a zero-mean
Gaussian prior with a (possibly improper) covariance CX defined via τ τ= =−

−
C M L LX f

1 T

k 1
.

The linear problem with nonlinear edge-preserving regularizer admits a Bayesian inter-
pretation in terms of hyperpriors [9]. Hyperprior models the amplitude of the edges as a
random variable, which estimation becomes a part of the inverse problem. A method alter-
natingly updating the parameters of primary interest and hyperparameters results in a lagged
diffusivity-type method. In particular, choosing Gamma or inverse Gamma distribution as the
hyperprior results in a lagged diffusivity iteration with TV or Perona–Malik regularizer,
respectively.

1.4. Overview of the contribution

We present a matrix and factorization-free algorithm for large-scale linear inverse problems
with nonlinear regularizers. The nonlinearity is limited to the regularization term, and is
handled with lagged diffusivity fixed point iteration [6], which amounts to repeated solution
of the problem linearized at the previous iterate.

We derive a new accelerated LSQR algorithm, MLSQR, for solution of linearized least
squares problems. MLSQR is analytically equivalent to LSQR applied to the preconditioned

least square problem with the preconditioner −L 1, =
−

M L Lf
T

k 1
, but in MLSQR the pre-

conditioner is applied implicitly avoiding the costly factorization of
−

Mfk 1
and at the same time

allowing for using efficient algorithms such as multigrid methods for applying the
preconditioner.

Preconditioning with −L 1 is equivalent to transformation to the standard form and
recently has also been termed priorconditioning [8–12] due to its interpretation as whitening
of the prior in Bayesian framework. Using GSVD decomposition, we show that the Krylov
subspace corresponding to the priorconditioned problem (problem in standard form) indeed
amplifies the directions spanning the covariance of the prior, in contrast to the Krylov sub-
space for the original regularized problem. This explains the observed accelerated con-
vergence for problems with discontinuities when priorconditioning with regularizers of the
form (2).

The remainder of this paper is organized as follows. The following two sections deal with
the solution of the linear least square problems arising from the linearization of the normal
equations in each step of the lagged diffusivity iteration. In section 2, we compare the Krylov
space solvers applied to the linearized problem in the original form (unpriorconditioned
problem) and standard form (priorconditioned problem). We discuss various benefits of
priorconditioning and we demonstrate the superiority of the Krylov space spanned by the
solver for the priorconditioned problem. Section 3 derives the MLSQR algorithm, for matrix
and factorization-free solution of the preconditioned least squares problem (14). Section 4
discusses the nonlinear solver based on successive linearizations and subspace

Inverse Problems 30 (2014) 075009 S R Arridge et al

4



priorconditioning for solution of the nonlinear regularized problem (1). The performance of
the method is demonstrated on a three-dimensional fDOT problem in section 5. We conclude
with a summary of the results and a discussion of prospective research directions.

2. Priorconditioning of Krylov spaces

In this section we discuss solution of the linearized regularized least squares problem (9)
using Krylov solvers. In particular we compare the effect of Krylov solvers applied to the
original (unpriorconditioned) problem (9) and the problem in standard form (priorconditioned
problem) (14).

2.1. Krylov methods for linear inverse problems

The regularized least squares problem (9) can be rewritten as

τ −
∈

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

A
L

f
g

min
0

, (11)
f X

which can be solved with the LSQR algorithm [13, 14]. LSQR is analytically equivalent to
CG method applied to the corresponding regularized (but unpriorconditioned) normal
equation

τ+ =( )A A M f A g, (12)T T

and solves (11) (and equivalently (9)) over the Krylov space

τ τ= + … +τ+ − { }( ) ( )A g A A M A g A A M A gspan , , , . (13)A A M iT T T T 1 TT max

For readability in this and the next section which deal with the linearized problem we drop the
subscript indicating the connection to the nonlinear problem i.e =

−
M M: fk 1

.

We note the following difficulties with methods based on the space τ+ A A MT

:

• If the regularization functional is designed to promote edges, solutions exhibit slow
convergence due to the slow build up of high frequencies. As an example the operator
considered in section 2.4 is a convolution which eigenvectors are Fourier-type modes
with the oscillation frequency growing as the corresponding eigenvalue decreases. Such a
modal basis provides only a poor approximation for discontinuities, which is the reason
why Krylov methods converge slowly for the deconvolution of functions with jumps.

• Regularization can be controlled either through the parameter τ or the limit on the
dimension imax of the solution subspace in (13). While the truncation index imax is usually
determined implicitly within an iterative algorithm by the choice of a stopping rule,
change of τ requires a recomputation of the subspace (13) from scratch.

2.2. Solution space priorconditioning

Assuming L is invertible, the change of basis

ˆ = ˆ = −f Lf A AL, ,1
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transforms (9) into the standard form [15–17]

Φ τˆ ˆ = ∥ − ˆ ˆ ∥ + ∥ ˆ ∥
ˆ ∈

⎡
⎣⎢

⎤
⎦⎥( )f g Af fmin :

1

2

1

2
. (14)

f LX

2 2

Since the transformed variable f̂ has now standard multivariate normal distribution, it is
sometimes referred to as whitened in the signal processing literature. In Bayesian context,
transformation to standard form is also referred to as priorconditioning [8–12].

The normal equation corresponding to the priorconditioned problem (14) is exactly the
normal equation (12) with symmetrically (split) preconditioning

τ+ ˆ = = ˆ− − − −( )L A AL I f L A g f L f, . (15)T T 1 T T 1

Hence, the solution space spanned by LSQR applied to (14) is

= …− − − − − −− { }( )M A g M A AM A g M A A M A gspan , , , .M A A i1 T 1 T 1 T 1 T 1 1 T1 T max

Note that for the priorconditioned formulation, the solution f is contained in
− M A A1 T

while the

actual subspace built by the Krylov solver for the transformed solution f̂ is
−L M A A1 T

. Due to

the shift invariance of the Krylov spaces, = τ+− − M A A M A A I1 T 1 T

for any choice of τ. Hence, in
the preconditioned normal equation (15), τ acts solely as a damping parameter.

Application of LSQR to (14) instead of (9) has a number of benefits:

• Local structure of the prior is embedded directly in the transformed operator Â allowing
quick convergence, see discussion in section 2.3.

• The corresponding Krylov space is the same for all values of τ due to translation
invariance.

• As the prior is embedded into the transformed operator, it is possible to exploit the prior
even without an explicit regularization term, i.e. setting τ = 0.

• The transformed variables are dimensionless, which removes issues with physical units if
further transformations, e.g. exponentiation, are used.

2.3. Accelerating convergence of LSQR

For well-conditioned problems preconditioning is an established technique to accelerate the
convergence of Krylov subspace methods through clustering the eigenvalues of the trans-
formed problem. For ill-posed inverse problems, the mapping A is a discretization of a
compact operator which singular values accumulate at zero, rendering such clustering
impossible. Therefore, some different form of preconditioning is necessary, cf [18–23] for
some earlier work.

In this article we advocate acceleration by priorconditioning [8, 10–12] which embeds the
prior information like discontinuities directly into the forward operator, which would
otherwise require a large number of iterations to be built up in the Krylov subspace. This
information is embedded in all the eigenvectors even those corresponding to the large
eigenvalues and hence into the Krylov subspace from early on. As a result the priorcondi-
tioned solver requires only a few iterations to converge. Technically, priorconditioning can be
achieved through preconditioning with =−M C ,X

1 a preconditioner based on the properties of
the expected solution rather than those of the forward mapping. In contrast to preconditioning,
no clustering of eigenvalues takes place. On the contrary, the condition number of the
priorconditioned matrix is usually larger than that of the original matrix.
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In an attempt to shed light on the phenomena we express the corresponding Krylov

spaces, τ+ A A MT

and
− M A A1 T

in terms of the general singular value decomposition (GSVD) of
the pair (A,L). The GSVD of (A, L) for L square and of the same column dimension as A can
be written in the following simplified form

Γ= =− −A U X L VX, (16)1 1

with orthogonal matrices = =V V I U U I,T T . Here we use the following, nonstandard
scaling of the GSVD vectors X:

Γ= =X A AX X L LX I, ,T T 2 T T

with Γ a matrix with the generalized singular values on the diagonal, which up to the ordering

are the singular values of the matrix −AL 1. Note, that by construction X simultaneously
diagonalize A AT and L LT .

With the above defined GSVD matrices we have

τ Γ τ Γ+ = + =− − − −( )A A L L X I X L A AL V V, ,T T T 2 1 T T 1 2 T

and the corresponding Krylov spaces can now be written as

Γ τ Γ τ= + … +τ+ − − − − − { }( ) ( )( ) ( )A g X I X A g X I X A gspan , , , (17)A A M
i

T T 2 1 T T 2 1
1

TT max

and

Γ Γ

Γ Γ

= …

= …

− − − − −

−

− { }
{ }

( )
( )

( )
( )

L L A g V V L A g V V L A g

XX A g X X A g X X A g

span , , ,

span , , , . (18)

( )

( )

M A A i

i

1 T T 2 T T T 2 1 T T T

T T 2 T T 2 1 T T

1 T
max

max

Here we made use of = = =− − −M L L XV VX XX1 1 T T T T.
Recall that the covariance of the prior τ τ= =− − −C M XXX

1 1 1 T. Hence the generalized
singular vectors X span the covariance matrix CX of the prior (even though X are not

orthogonal). Inspecting Krylov vectors in (18) reveals that the subspace
− M A A1 T

is dominated
by the features of the prior spanned by those xi corresponding to the large generalized singular
values while those spanned by xi corresponding to the small generalized singular values
get damped.

On the other hand, we observe that −X T spans the range of the anisotropic diffusion
matrix τ= =− − − −M C X XX

1 1 T 1. The GSVD form of (17) reveals that each Krylov iteration

boosts the directions in the range of the regularizer M spanned by −X T corresponding to the
large singular values while damping those corresponding to the small ones with respect to the
last Krylov vector; however there is no direct relation to the initial vector as in case of (18).

The GSVD has been previously used to describe the Krylov spaces above in [24] but no
connection was made to the covariance of the prior. In [24], a projection method is derived for
solving the linear problem (9) in case L is not invertible, where the projection subspace comes
from joint bidiagonalization of A and L. Interestingly, this method yields a solution which

also lies in the subspace
− M A A1 T

.
The preconditioning interpretation allows for an important departure from the prior-

conditioning and the standard form framework, namely for approximate inversion of M. In
our fDOT example we use such a symmetric approximate inverse obtained with algebraic
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multi-grid without observing deterioration of the quality of the solution. Formal analysis of
the effect of the approximate inversion is out of scope of the present paper.

While each priorconditioned iteration is more expensive than its unpriorconditioned

counterpart due to the application of −M 1, for many large-scale problems the additional cost is
insignificant and outweighted by the benefit of faster convergence; see the discussion
in section 6.

2.4. Example problem: deconvolution in 1D

Throughout the paper we use the following 1D deconvolution problem to illustrate properties
of the method. Assume that the matrix A in the observation model

= +g Af n (19)

is a discretization of the stationary convolution operator

∫

πσ σ

= − ′ ′ ′

= −

σ

σ

−∞

∞

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

 



( ) ( )f x x x f x x

x
x

( ) : d ,

( )
2

exp
2

,
f f
2

2

2

f

f

and σ∼ n I(0, )n
2 represents isotropic Gaussian white noise with zero mean. Figure 1(a)

shows the target function f along with its convoluted, noisy version g with σ = 0.03f ,

σ = 0.01n . The functions were evaluated on a regular grid with 512 samples over the
interval [0, 1].

To examine the effect of priorconditioning we solve (19) regularized with M an ideal
Perona–Malik regularizer (4) (left equation) based on the true solution =f f

true
and threshold

T=0.005, discretized with finite difference method. The first four basis vectors of the

respective Krylov spaces  A AT

, τ+ A A MT

(with τ = 1) and
− M A A1 T

are shown in

figures 1(b)–(d). The vectors in  A AT

do not contain any prior information on the dis-

continuities, and so they are completely smooth. The third and fourth basis vectors in τ+ A A MT

start to show local oscillations around the jumps of the true solution superposed with smooth
components, which is consistent with the local nature of the anisotropic differential operator
underlying M in τ+A A MT . The amplitude of the local oscillations is governed by the

parameter τ. On the other hand the vectors in the Krylov subspace
− M A A1 T

, strongly resemble
the structure of the prior covariance τ= − −C MX

1 1, and with high probability contain the edges
of f

true
used for construction of M.

3. Implicitly preconditioned LSQR

On structured grids, it is natural to define the prior by constructing the matrix L directly using
for instance finite difference discretization. As such L are typically nonsquare and hence
noninvertible, numerical methods based on the transformation to standard form revert to A-
weighted pseudoinverse cf [15, 24]. On unstructured meshes, in contrast, the prior is usually
given through a scaled inverse of the prior covariance, τ= =−M C L L: ( )X

1 T , rather than its
factor L. M is typically a second order differential operator cf (7) which can be cheaply stored
due to its sparse representation. Taking a naïve approach, the construction of the
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priorconditioned problem (14) requires an explicit symmetric factorization =L L MT with an
invertible L, e.g. Cholesky decomposition. For large-scale problems such a factorization may
be too expensive to compute, store and apply: although M is sparse, L will have considerable
fill-in. Furthermore, for nonlinear problems the factorization would have to be recomputed at
each linearization step of a nonlinear iteration. In this section we propose a factorization-free
preconditioned LSQR algorithm (MLSQR), which solves the priorconditioned formulation
(14) without actually factorizing M.

The split preconditioned symmetric system, (15) with τ = 0,

ˆ = = ˆ− − − −L A AL f L A g f L f,T T 1 T T 1

can be solved by preconditioned conjugate gradient without the need to provide a
factorization L LT for M (MCG) [25]. The key is to use suitable scalar products. For the left
preconditioned normal equation

=− −M A Af M A g, (20)1 T 1 T

Figure 1. (a) True solution f and data g. First four basis vectors of (b)  A AT
(τ = 0), (c)

τ+ A A MT
(τ = 1, applied to (11)), (d)

− M A A1 T
(applied to (14)).
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MCG utilizes the M-weighted scalar product in which −M A A1 T is self-adjoint:

= =

= = =

− −

− −

( ) ( ) ( )
( ) ( ) ( )

M A Af g M A Af Mg A Af g

f A Ag f MM A Ag f M A Ag

, , ,

, , , .
M

M

1 T 1 T T

T 1 T 1 T

Alternatively, the right preconditioned normal equation

¯ = ¯ =− −A AM f A g M f f, , (21)T 1 T 1

can be solved by preserving symmetry with the −M 1-weighted scalar product, in which
−A AMT 1 is self-adjoint. It is easy to see that both the left and right preconditioned variants

produce the same sequence of computations and hence they are equivalent up to the round-off
errors. In the following in this context equivalent means equivalent up to the round-off errors.

3.1. Preconditioned LSQR

The LSQR algorithm [13, 14] is equivalent to the conjugate gradient method applied to the
normal equation, but it avoids explicit formation of the normal equation at any stage. Instead,
LSQR makes use of the Golub–Kahan bidiagonalization [26]. Applied to the least squares
problem

∥ − ∥g Afmin (22)
f

with a starting vector g, the bidiagonalization procedure can be written in matrix form as

β α= = = ++ + + + + +( )U e g AV U B A U V B v e ,i i i i i i i i i i1 1 1 1
T

1
T

1 1 1
T

where ei denotes the ith canonical basis vector, α ⩾ 0i and β ⩾ 0
i

are chosen such that

∥ ∥ = ∥ ∥ =u v 1i i and

α
β α

β
α
β

= ⋱
⋱

= =

+

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

B U u u u V v v v, [ , ,..., ], [ , ,..., ]. (23)i

i

i

i i i i

1

2 2

3

1

1 2 1 2

As all the quantities Bi, Ui and Vi are independent of τ, the projected least squares problem

τ
β−

⎡
⎣⎢

⎤
⎦⎥

B
I

y emin , (24)
y

i
i 1 1

i

is a proper generalization of β∥ − ∥B y eminy i i 1 1i
for τ ≠ 0. The projected problem (24) is then

solved using QR decomposition yielding the approximation for the solution of the original
problem, =f V y

i i i
.

Recall that the preconditioned LSQR solves the problem where the preconditioner is
applied to the least squares problem

ˆ = ∥ − ˆ ∥−f g AL fargmin ,1

which corresponds to the split preconditioned normal equation (15) without damping. Hence,
the preconditioned LSQR written out in algorithm 1 is equivalent to CG applied to the split
preconditioned normal equation.
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3.2. Factorization-free preconditioning

In the following, we derive an MLSQR algorithm, corresponding to the variant of MCG
algorithm with the M-weighted inner products applied to the left preconditioned normal
equation (20). The same algorithm (same sequence of computations) can be derived based on
MCG with −M 1-weighted inner products applied to right preconditioned normal
equation (21). We chose to present the M-weighted variant (left preconditioning) because it
works with the original solution, unlike the −M 1-weighted one (right preconditioning) which
involves a change of basis.

To this end we introduce new variables = ˜v Lvi i and = ˜w Lwi i, cf algorithm 1. We then
reformulate algorithm 1 in terms of these new variables. The only parts affected are steps 3–4
of the initialization, the bidiagonalization and the update stage. Observing that step 3 of the
initialization is of the same form (with =v 00 ) as step 8 of the bidiagonalization, it is
sufficient to consider only the latter. As f̂

i
is a linear combination of vj, ⩽j i, the transformed

solution has to be a linear combination of ˜ = −v L vj j
1 , ⩽j i. Thus, the resulting algorithm will

directly produce a sequence of approximate solutions = ˆ−f L f
i i

1 and the change of variables at
step 22 of algorithm 1 cancels out.

Algorithm 1. Preconditioned LSQR, equivalent to CG applied to split preconditioned normal equation.

1: Initialization:
2: β =u g

1 1

3: α = −v L A u1 1
T T

1

4: ϕ β ρ α= ˆ = ¯ = ¯ =w v f, 0, ,1 1 0 1 1 1 1

5: for = …i 1, 2, do
6: Bidiagonalization:
7: β α= −+ +

−u AL v u
i i i i i1 1

1

8: α β= −+ +
−

+ +v L A u vi i i i i1 1
T T

1 1

9: Orthogonal transformation:

10: ρ ρ β= ¯ + +( )i i i
2

1
2 1 2

11: ρ ρ= ¯ci i i

12: β ρ= +si i i1

13: θ α=+ +si i i1 1

14: ρ α¯ = −+ +c
i i i1 1

15: ϕ ϕ= ¯c
i i i

16: ϕ ϕ¯ = ¯
+ s

i i i1

17: Update:

18: ϕ ρˆ = ˆ +− ( )f f w
i i i i i1

19: θ ρ= −+ + +( )w v wi i i i i1 1 1

20: Break if stopping criterion satisfied
21: end for

22: Transform back to original solution: = ˆ−f L f1
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The bidiagonalization in terms of ṽi, w̃i and the M-weighted inner product reads

β α β

α α

= ˜ − ˜ = − ˜

= ˜ ˜ ˜ = ˜

+ + +
−

+ +

+ + + + + +( )( )

u Av u v M A u v

v v v v, .

i i i i i i i i i

i i i M i i i

1 1 1
1 T

1 1

1 1 1

1 2

1 1 1

Keeping just one additional vector ˜ = ˜+p Mvi 1, the factorization-free algorithm needs no
multiplications by the priorconditioner M, just one solve withM per iteration. This amounts to
rephrasing the bidiagonalization in the following way

β α β

α
α α

= ˜ − ˜ = − ˜

˜ = ˜ = ˜ ˜
˜ = ˜ ˜ = ˜

+ + + +

+
−

+ +

+ + + +

( )
u Av u p A u p

v M p v p

p p v v

,

.

i i i i i i i

i i i

i i i i

1 1
T

1 1

1
1

1 1

1 2

1 1 1 1

To conclude, the update in terms of the new variables and the original solution reads

ϕ ρ

θ ρ

= + ˜

˜ = ˜ − ˜
−

+ + +

( )
( )

f f w

w v w .

i i i i i

i i i i i

1

1 1 1

The resulting MLSQR method is summarized in algorithm 2.
We remark, that a factorization-free preconditioned LSMR method (MLSMR) can be

derived in the same way, as the implicit preconditioning only affects the bidiagonalization
procedure which is the same for both methods. In [27] it is suggested that LSMR could be
preferable to LSQR if early stopping is used. A comparison of the two algorithms on the
priorconditioned problem i.e. comparison of MLSQR and MLSMR is of independent interest
but it is out of scope of this paper. Here we focus on MLSQR because it minimizes the
residual of the original least squares problem (possibly with damping) over the priorcondi-

tioned subspace
− M A A1 T

. In contrast MLSMR minimizes over the same subspace the residual
of the split preconditioned normal equation (15), which does not immediately relate to the
original problem.

Algorithm 2. MLSQR: factorization-free preconditioned LSQR.

1: Initialization:
2: β =u g

1 1

3: ˜ =p A uT
1

4: ˜ = ˜−v M p1
1

5: α = ˜ ˜( )v p,1 1

1 2

6: α˜ = ˜p p 1, α˜ = ˜v v1 1 1

7: ϕ β ρ α˜ = ˜ = ¯ = ¯ =w v f, 0, ,1 1 0 1 1 1 1

8: for = …i 1, 2, do
9: Bidiagonalization:
10: β α= ˜ −+ +u Av u

i i i i i1 1

11: β˜ = − ˜+ +p A u pi i
T

1 1

12: ˜ = ˜+
−v M pi 1

1

13: α = ˜ ˜+ +( )v p,i i1 1

1 2

14: α˜ = ˜ +p p i 1

15: α˜ = ˜+ + +v vi i i1 1 1
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(Continued).

16: Orthogonal transformation:
17: Steps 10–16 as in algorithm 1
18: Update:

19: ϕ ρ= + ˜− ( )f f w
i i i i i1

20: θ ρ˜ = ˜ − ˜+ + +( )w v wi i i i i1 1 1

21: Break if stopping criterion satisfied
22: end for

3.3. LSQR with regularization

Two types of regularization are relevant in our framework: Tikhonov regularization, where
the parameter τ controls the amount of regularization, and early truncation of Krylov methods,
in which regularization arises from the problem being projected onto a small dimen-
sional subspace.

When priorconditioning is used, Tikhonov regularization results in a simple damped least
squares problem (14). Damping for a fixed value of τ can be easily incorporated in LSQR as
described in [14] at the cost of doubling the number of Givens rotations. Due to the shift
invariance of Krylov spaces, different choices of the damping parameter τ result in the same
Krylov subspace and Lanczos vectors Vi . If Vi are stored, the projected least squares problem
(24) can be efficiently solved for multiple values of τ, which is of benefit when the value of τ
is not known in advance. However, the additional storage requirements may limit the fea-
sibility of such an approach. Some techniques for solving (24) with a variable τ are discussed
in [28] using singular values and the first and last rows of the matrix of the right singular

vectors of the bidiagonal matrix Bi. Those quantities can be obtained at the cost  ( )i2 at the

ith iteration. These strategies are however only viable for a limited number of iterations i as
the singular value decomposition of the bidiagonal matrix Bi can not be efficiently updated
even though Bi simply expands by a row and a column in each iteration. For larger i, the

algorithm described in [29] for the least squares solution of (24) at the cost of  ( )i for each

value of τ is the preferable option.

3.4. Stopping criteria

In this paper we make use of two Krylov methods: the MLSQR method for solution of the
priorconditioned problem (14) and the reference LSQR method for solution of the unprior-
conditioned problem (11).

As the system in (11) is a well posed inconsistent system, we choose the criterion S2
from the original paper [13] for stopping LSQR.

S2: ⩽∥ ¯ ¯ ∥
∥ ¯ ∥∥ ¯ ∥ ATOLA r

A r

T
i

i
(inconsistent systems),

where ¯ = ¯ − ¯r g Af:i i
denotes the residual of (11) with

τ
¯ = ¯ =

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥A A

L
g

g
,

0
,

and ATOL is a user-defined threshold, see [13].
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On the other hand it is well known that (preconditioned) LSQR and hence MLSQR
applied to the least squares problem (14) monotonically decrease the residual norm ‖¯ ‖ri . For
τ = 0, (14) is an undamped problem and hence it is ill-posed. Moreover, it holds that ¯ =r ri i

with = −r g Af:i i
being the residual of the original least squared problem. Consequently, the

sequence ‖ ‖ri is also monotonically decreasing and the Morozov discrepancy principle is a
natural choice for terminating MLSQR at least when τ = 0.

S4: ηδ∥ ∥ ⩽ri (ill-posed problems),

where δ is the (estimated) noise level [30], and the factor η > 1 has been included to prevent
underregularization [8].

3.5. MLSQR: example 1D deconvolution problem

To demonstrate the effect of priorconditioning we revisit the linear deconvolution problem in
section 2.4 with the ideal linear regularizer resulting in preconditioner = =M M L L: f

T

true
, and

compare its solutions obtained with MLSQR applied to (14) and LSQR applied to (11). The
regularization parameter value τ = 1 was hand-tuned for the unpriorconditioned problem. In
addition, the value τ = 0 was tested. For the priorconditioned problem selecting τ = 0 results
in a priorconditioned solution without damping, while for the unpriorconditioned problem
setting τ = 0 eliminates (Tikhonov) regularization.

Figures 2(a), (b) show the solution of the priorconditioned and the unpriorconditioned
problem with (τ = 1) and without (τ = 0) regularization. The solutions in figure 2(a) corre-
spond to the LSQR and MLSQR algorithms terminated with criterion S4 with δ = ∥ ∥− g10 2

and η = 1.1, which resulted in stopping after 9 iterations for the priorconditioned problem and
after 16 iterations for the unpriorconditioned problem for both tested values of τ. Figure 2(c)
shows the corresponding residual norms i.e. the discrepancy principle S4. Evaluating the
solutions in figure 2(a) we conclude that S4 provides a good stopping criterion for the
priorconditioned problem, but it terminates the LSQR algorithm for the regularized
unpriorconditioned problem too early (considerable oscillations even for τ = 1). Figure 2(b)
shows the solutions obtained with the stopping criterion S2 with = −ATOL 10 2. The criterion
S2 over the iterations is plotted in figure 2(d). This criterion is essentially useful before the
onset of oscillations which corresponds to the last good stopping point. While, with the
chosen ATOL, S2 stops the unpriorconditioned regularized problem timely (for which S2
behaves rather smoothly even beyond the value of ATOL, in particular for τ = 1), it termi-
nates the priorconditioned problem prematurely (wrong levels of the piecewise constant
approximation for both values of τ). Comparing the best respective solutions for both for-
mulations, the priorconditioned formulation after 9 iterations yields a better solution than the
unpriorconditioned regularized formulation after 32 iterations.

4. Iterated MLSQR for least squares problem with nonlinear regularizer

4.1. Nonlinear solver

We recall that the lagged diffusivity fixed point iteration applied to the necessary condition
(5) for the minimizer of (1) requires a solution of the linearized normal equation (8) at each
iteration. Here, we propose to speed up the solution of the corresponding linear least squares
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problem (9) using priorconditioning, i.e. solving the priorconditioned linearized problem (14)
with MLSQR instead of solving the original linearized problem (11) with LSQR.

Under certain assumptions and for a parameter value τ chosen such that the Morozov
discrepancy principle S4 is satisfied, the minimization problem (1) can be reformulated as the
residual method [31],

ηδ∥ − ∥ ⩽
∈

( )R f g Afmin subject to . (25)
f X

Motivated by this form, we chose to monitor the value of the penalty R and stop the lagged
diffusivity fixed point iteration when R does not decrease fast enough. Because each iterate f k

has approximately the same residual norm ηδ≈r k , the value of Φ f( )
k

will in practice

decrease until a feasible solution to (1) is found. The resulting iterated MLSQR method for
solving the nonlinear least squares problem (1) is summarized in algorithm 3.

Figure 2. Upper row: solution of the linear deconvolution problem computed with
LSQR (without preconditioning) and MLSQR (with preconditioning) (a) using
stopping criterion S4, (b) using stopping criterion S2. Lower row: behaviour of the
quantities used for stopping criteria. (c) S4: ∥ − ∥ ⩽ × −g Af 1.1 10 2. (d)

S2: ∥ ¯ ¯ ∥ ∥ ¯ ∥∥ ¯ ∥ ⩽ −( )A r A r/ 10T 2.
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Algorithm 3. Iterated MLSQR method.

1: Initialize with =f 00

2: for = …k 1, 2, do
3: Form the preconditioner −Mf k 1 using the current approximation −f k 1

4: Solve the linearized least squares problem (14) corresponding to the symmetrically preconditioned

linearized normal equation (15), =−M L Lf
T

k 1

τ+ ˆ = = ˆ− − − −( )L A AL I f L A g f L f, ,
k k kT T 1 T T 1

with MLSQR initialized with =f 0k and terminated by stopping criterion S4.

5: Break if R f( )k does not decrease fast enough
6: end for

We emphasize that it is important to stop the Krylov method in step 4 of algorithm 3
consistently: we want to avoid the situation where the trend in values of R f( )k becomes
distorted by the Krylov solver (e.g. taking few Krylov iterations in one step while taking
many iterations in the next will likely lead to increase in R f( )k ). Both discrepancy principle
as well as a global upper limit on the number of the Krylov iterations provide a consistent
stopping rule. In practice, it may take numerous Krylov iterations before the first few lagged
diffusivity iterates reach the noise level. To circumvent this problem we combine the Mor-
ozov discrepancy principle with the global limit on the number of Krylov iterations, which
does not seem to adversely affect the convergence of the iterated MLSQR algorithm,
see section 5.3.

A few more comments are in order regarding algorithm 3:

• We deliberately chose to solve for +f k 1 rather than the update Δ = −+ +f f f:k k k1 1 . This is

because the employed regularizers encode the information on the solutions f k and not on

the updates Δ +f k 1.
• Our simulations suggest that solutions of high quality can be obtained by setting τ = 0 in
(14) and regularizing solely by early stopping of the MLSQR algorithm. A clear

advantage of this approach is that the data discrepancy r k is being minimized instead of

∥ ¯ ∥r k . However, setting τ = 0 invalidates the interpretation of the solution computed
with algorithm 3 as the MAP estimate of the posterior distribution (10).

• If −Mf
1

k
is computed exactly, τ ≠ 0 is used and MLSQR is iterated until convergence, our

scheme is equivalent to lagged diffusivity iteration. In practice, one or more of these
conditions may not hold.

4.2. Inverting the preconditioner

While our preconditioner is nonstandard in the sense that it does not approximate the inverse
of the forward operator it nonetheless amounts to a solution of an elliptic partial differential
equation, a topic extensively handled in the literature see e.g. [32–34] for preconditioning of
partial differential equations and [25, 35] of linear problems in general.

Here we use algebraic multi-grid method [32]. In particular, the use of Jacobi, SSOR or
incomplete LU decomposition (ILU) smoothers results in a symmetric preconditioner if the
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same number of iterations is taken in the pre- and post-smoothing stages. By using a fixed
number of smoother steps and grid-to-grid operations, one obtains a fixed approximation of a
matrix inverse that can be used to priorcondition Krylov methods such as MLSQR derived in
section 3. The resulting preconditioner is an approximate inverse of the regularizer matrix M.
Remarkably, in our experiments in section 5 even a low-cost single V-cycle multigrid

approximation to −M 1 was enough to achieve effective priorconditioning and consequently
fixing the number of cycles seems unproblematic. Further analysis is necessary to establish
how to construct an approximation resulting in the most effective priorconditioner and how
the accuracy of such approximation affects the convergence of the nonlinear iteration.

4.3. Iterated MLSQR: example 1D deconvolution problem

We are now in a position to consider the nonlinear 1D deconvolution problem with nonlinear
Perona–Malik regularization (4) (left equation). We solve the associated minimization pro-
blem (1) with algorithm 3.

In this particular example, we chose to use the undamped solution, i.e. τ = 0. MLSQR

was terminated with the discrepancy principle (S4) with the noise level δ = ∥ ∥− g10 2 and
η = 1.1. We stopped the lagged diffusivity fixed point iteration when the relative change in
the functional R dropped below 15%. As the considered problem is small, we used Cholesky
factorization for inverting the preconditioner.

Figure 3 shows the evolution of the first six basis vectors of
− M A A1 T

for =M Mf k,

∈ { }k 1, 4, 7, 10 . For k = 1, the priorconditioner is discretization of a homogeneous

Laplacian operator and consequently the basis vectors are smooth, poorly replicating the
discontinuities of the target function. However, the priorconditioner quickly adapts to the

jumps emerging in the intermediate solutions f k as can be seen from the basis vectors
for ⩾k 4.

The evolution of the solution at every third lagged diffusivity step is illustrated in
figure 4(a) and the solution error over outer iteration is plotted in figure 4(b). The residual
norm over the inner and outer iterations is shown in figure 5(a). Notice that every lagged
diffusivity iteration resets the residual norm to the value g . This is due to the initialization of

MLSQR with =f 0k at the beginning of every outer iteration to allow the solution to develop
features compatible with the new priorconditioner. The gap developing in the residual norm
plot in figure 5(a) between the 5th and 6th MLSQR iterations is characteristic for the method.
It means that the first five basis vectors are becoming increasingly better adapted to represent
the solution, while the remaining basis vectors contribute less and less. Consequently, the
updated priorconditioner allows reduction of the residual norm in fewer MLSQR iterations as
shown in figure 5(c).

Figure 5(b) displays the behaviour of the functional R over the inner and outer iterations.
We observe that in each lagged diffusivity iteration, while solving the linearized problem R in
general increases in each MLSQR iteration until a saturation level is reached. On the other
hand, the saturation level decreases as the outer iteration progresses. At a certain point, the
saturation level stops decreasing (or is not decreasing fast enough), see figure 5(d), and the
algorithm 3 is terminated. The plot of the error norm in figure 4(b) demonstrates that the last
step taken before the stopping criterion was triggered did not perceivably improve the
solution, which corroborates our choice of the stopping criterion.
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5. A 3D image reconstruction problem

In this section we apply our method to a large-scale 3D image reconstruction problem on an
unstructured grid.

Figure 3. Evolution of the first six basis vectors of
− M A A1 T

through the outer iterations.
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5.1. fDOT

We consider fDOT, which indirectly measures the conversion of strongly scattered (i.e.
diffusively propagating) light from an excitation wavelength to a (longer) emission wave-
length in the presence of fluorescent markers accumulating in regions of interest. The goal is
to monitor cellular and subcellular functional activity. Although fDOT is a method mostly
used for small animal research [36–39], it is a promising technique with several medical
applications such as detection, diagnosis and monitoring of human neoplasms, in particular
breast tumours [40–42]. Due to the diffusive nature of light propagation in biological tissue,
the image reconstruction is an ill-posed inverse problem [43–45].

In the linear approximation to fDOT, the forward model is described with coupled
diffusion equations at the excitation and emission wavelengths, λe and λf , respectively:

 κ λ μ λ λ Ω− · + = ∈⎡⎣ ⎤⎦( ) ( ) ( )x x U x x, , , 0, , (26)
ae e e

 κ λ μ λ λ λ λ Ω− · + = ∈⎡⎣ ⎤⎦( ) ( ) ( ) ( ) ( )x x U x U x h x x, , , , , , , (27)
af f f e f

with μ
a

and μ′
s

the absorption and the reduced scattering coefficients, respectively,

κ μ μ= ′ + −[3 ( ) ]
s a

1 the diffusion coefficient and h the fluorescence yield coefficient.

The diffusion equations are complemented by the respective Robin boundary conditions

λ ζκ λ
λ

ν
Θ Ω+

∂
∂

= ∈ ∂( ) ( )
( )

U x x
U x

x
x q x, 2 ,

,

( )
( ) , , (28)e e

e
s

λ ζκ λ
λ

ν
Ω+

∂
∂

= ∈ ∂( ) ( )
( )

U x x
U x

x
x, 2 ,

,

( )
0, , (29)f f

f

where ν is the outward unit normal and ζ accounts for the refractive index mismatch at the
boundary. The right-hand side in (28) models the effect of the excitation light source as an
inward (diffuse) photon current, a product of the source emitted photon current q and a source
coupling coefficient function Θs (notice no source term in (26)). On the other hand, the
emission photon density arises solely from the fluorescence in Ω (right-hand side of (27)),
resulting in homogeneous Robin boundary condition (29).

Figure 4. (a) Evolution of the solution computed with MLSQR through the outer
iterations. (b) Error norm reduction over outer iterations.
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The measured photon density for a detector with wavelength independent detector
coupling coefficient Θd is given as

∫λ Θ
λ

ζ
λ λ λ= ∈

Ω∂
( )

( )
{ }y x

U x
x( )

,

2
d , , . (30)d e f

In practice several sources and detectors are deployed, resulting in a vector of measurements
λ ∈y ( ) N Ns d, where Ns and Nd is the number of sources and detectors, respectively. We

furthermore use the following normalization, demonstrated to reduce the effects of unknown
Θs and Θd [46, 47]

λ

λ
=

( )
( )

g
y

y
. (31)

j

j

j

f

e

Figure 5. (a) Residual norm (S4) over lagged diffusivity/MLSQR iterations. (b) R f( )
i
k

over lagged diffusivity (k)/MLSQR (i) iterations. (c) Number of MLSQR iterations
over lagged diffusion iterations. (d) Stopping criterion for the nonlinear iteration:

− − −R f R f R f( ( ) ( ) ) ( )k k k1 1 over lagged diffusivity iterations. The threshold level was
chosen to be −0.15.
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We now define the mapping ↦ h g: through solution of the system (26)–(31).  is
clearly nonlinear in the parameters μ λ μ λ μ λ μ λ′ ′x x x x{ ( , ), ( , ), ( , ), ( , ) }

a a s se f e f , but it is linear in

the sought-for parameter λh x( , )f (assuming that the other optical parameters are independent
of h, which is reasonable for typical concentrations of fluorophores found in biomedical
applications).

The adjoint mapping * ↦ b z: for a single source-detector pair, is defined through
solution of (26) with the boundary condition (28) and

 κ λ μ λ λ Ω− · + = ∈*⎡⎣ ⎤⎦( ) ( ) ( )x x U x x, , , 0, , (32)
af f f

with the inhomogeneous Robin boundary condition

λ ζκ λ
λ

ν
Θ

λ
Ω+

∂
∂

= ∈ ∂*
*

( ) ( )
( )

( )
U x x

U x

x

x b

y
x, 2 ,

,

( )

( )
, , (33)f f

f d

e

followed by the multiplication of the two solutions, yielding

λ λ= * ( ) ( )z U x U x, , . (34)f e

If multiple detectors are used, the right-hand side of (33) will involve summation over the
detectors. Analogously, a multiple source configuration will involve Ns solves for (26), (28)

and (32), (33), with (34) summing the pairwise products of U and *U over the sources.

5.2. Simulation setup

Our test phantom is a cylinder of radius 25 mm and height 50 mm. The fluorophore dis-
tribution is represented through three spherical inclusions, one with h = 0.06 and the other two
with h = 0.1, and the background value h = 0, see figures 6, 7(e). The remaining optical
parameters are assumed homogeneous, and their values are summarized in table 1. The
fluorophore was excited with each of 80 sources uniformly distributed along five rings on the
boundary of the cylinder, see figure 6. The measurements were sampled by 80 detectors

Figure 6. The cylindrical phantom with three inclusions. Source and detector locations
are marked with grey points and black squares, respectively.
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placed along the same rings on the boundary, half way in between the sources, resulting in a
total of 6400 measurements. All the involved coupling coefficient functions were modelled as
Gaussian distributions on the boundary Ω∂ . Measurement errors were simulated using
additive Gaussian noise with standard deviation equal to 1% of the corresponding ideal
measurement.

The fDOT problem was modelled and discretized using the finite element method (FEM)
with software package TOAST [48]. The discretization with first order Lagrangian elements
on a tetrahedral mesh yielded 27084 degrees of freedom which corresponds to approximately
1.5 mm resolution. The associated inverse problem was regularized with the differentiable
approximation to the total variation functional in (2). The resulting matrix Mf is thus a finite

element discretization of the operator   · + −f T( )2 2 1 2 . We chose = −T 10 6 as it yields a
well-conditioned matrix M for fluorescence yield coefficients with edges of height approxi-
mately equal or smaller than the expected maximum of 0.1. The preconditioner was applied

Figure 7. Transaxial planes through the centres of the spherical inclusions at z = 15,
z = 0 and = −z 15 of the solution to (a) unpriorconditioned problem, (b)
priorconditioned problem with damping τ = 104, (c) priorconditioned problem without
damping τ = 0, and (d) problem with no other regularization but early stopping of
LSQR; (e) the phantom. (x-axis horizontal, y-axis vertical).

Table 1. Optical parameters used in the simulations.

Absorption coefficient μ λ μ λ· = ·( , ) ( , )
a ae f 0.05 mm−1

Reduced scattering coefficient μ λ μ λ′ · = ′ ·( , ) ( , )
s se f 1 mm−1

Refractive index 1.4
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using a computationally low-cost algebraic multigrid solver with single V-cycle and two steps
of ILU(0) smoothing, implemented in IFISS [49, 50].

5.3. Solution of the fDOT problem

We solve the fDOT problem described in section 5.1 using the iterated MLSQR method in
algorithm 3. The proposed method is particularly well suited for problems of this kind: fDOT
is large-scale and the explicit construction of the matrix A representing the discretized forward
mapping can be impractical. Instead, the action of A on a vector is obtained through solution

of (26)–(31) for each source. Similarly, multiplication by AT involves solving (26), (28) and
(32)–(34). In our example, both of these mappings amount to 160 solves of elliptic partial
differential equations. Moreover, because the FEM mesh is unstructured, the preconditioner
M naturally arises in the unfactorized form.

We demonstrate the benefits of priorconditioning by comparing the performance of the
iterated MLSQR method to an unpriorconditioned reference method or iterated LSQR
(algorithm 3 but where in the 4th step instead the unpriorconditioned linearized problem (11)
is solved with LSQR terminated with rule S2 as explained in section 3.4). The tolerance in S2

was chosen = −ATOL 10 3, and in S4, η = 1.1 and δ = ∥ ∥− g10 2 . The same regularization

parameter value τ = 104 was used for both methods, which was tuned to yield the best-case
results for the unpriorconditioned reference method. Again, we also test τ = 0 demonstrating
that the proposed algorithm is very robust with respect to the choice of τ. Note that for τ = 0
the reference method amounts to solution of the unregularized linear least squares problem
with LSQR. As the least squares problem is ill-posed, LSQR is stopped with criterion S4.

We monitor the value of the penalty R f( )k of the intermediate solutions f k and terminate

the lagged diffusivity (outer) iteration in algorithm 3 when R f( )k ceases to decrease. For the

reference iterated LSQR method, the functional R f( )k stagnates or even starts increasing after
initial five outer iterations while the error norm keeps decreasing, which could be due to
increasing condition number of Mf k. Instead, 25 lagged diffusivity steps were taken to ensure

convergence for the reference method for τ = 104. The resulting reconstructions are depicted
in figures 7 and 8. The two unpriorconditioned solutions suffer from overshooting and
spurious oscillations, while their priorconditioned counterparts have the correct shape and
estimate the value of the fluorescence yield coefficient h more accurately. The error norms in
each lagged diffusivity iteration are plotted in figure 9(a). The iterated MLSQR attains error

Figure 8. Cross sections along the x-axis through the centres of the inclusions of the
solutions in figure 7: (a) = − =z y15, 10, (b) = =z y0, 12.5 and (c) = = −z y15, 10.
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norm of 0.5428 and 0.5407 for τ = 104 and τ = 0, respectively, while the reference method
0.7158 and 1.5025.

Figure 9(b) shows the number of MLSQR iterations taken within each lagged diffusivity
step. We chose to limit the number of the inner iterations for the priorconditioned algorithm to
a maximum of 20 in accordance with the discussion in section 4.1. This limit was hit in the
first 6 (τ = 104) and 5 (τ = 0) lagged diffusivity iterations, while MLSQR was stopped by the
Morozov criterion in fewer than 20 iterations in the following lagged diffusivity steps. In fact,
the motivation for limiting the maximum number of MLSQR iterations is that the first one or
two lagged diffusivity steps would need an disproportionate number of MLSQR iterations to
reach the residual level suggested by the Morozov discrepancy principle. The limit on Krylov
iterations alleviates this issue without a noticeable effect on the final reconstruction. While
after the initial phase the number of MLSQR iterations decreases to 9 for the priorconditioned
algorithm, the unpriorconditioned variant requires an increasing number of Krylov steps,
which we attribute to the growing condition number of the regularizer Mf k over the lagged

diffusivity iterations.
Figure 9(c) shows the evolution of the penalty term R(f) over lagged diffusivity iterations.

In the first outer iteration, the two priorconditioned solutions show a pronounced difference.
The initial preconditioner is a discretization of the Laplacian and contains no information
about the edges of the solution. For this reason, the damping flattens the first outer iterate

particularly strongly, and consequently the associated penalty ∫= | |
Ω

R f f x x( ) ( ) d is of

smaller magnitude than it is for the undamped variant. Notice that similar flattening takes
place for the unpriorconditioned method, as well. Once the preconditioner contains some
information about the edges, the behaviour of both priorconditioned cases is qualitatively the
same. Apart from the first lagged diffusivity iteration, the penalty decreases over the lagged
diffusivity iterations, providing further evidence to support the penalty-based stopping cri-
terion of algorithm 3.

6. Conclusions

In this paper, we considered efficient solution of large-scale linear ill-posed inverse problems
with nonlinear regularization. We devised a highly efficient matrix-free algorithm for solution
of such problems combining a lagged diffusivity fixed point iteration with priorconditioning

Figure 9. (a) Error norm plotted over outer iterations. (b) Number of MLSQR iterations
plotted over outer iterations. (c) Penalty R plotted over outer iterations. (The
unpriorconditioned method with τ = 0 does not involve outer iterations. Therefore, the
associated results are omitted from this figure.)
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of Krylov methods. Priorconditioning affords a way of embedding the information contained
in the prior directly into the forward operator resulting in highly accelerated convergence of
Krylov methods. A novel factorization-free preconditioned LSQR algorithm was presented
for solving the linear priorconditioned problem which allows an implicit application of the
preconditioner through efficient schemes such as multigrid. This is of particular interest for
problems formulated on unstructured grids, where the preconditioner naturally occurs in an
unfactorized form and the factorization is computationally infeasible. Furthermore, the rele-
vant regularizers arise as discretizations of elliptic partial differential equations for which
approaches like multigrid have been extensively studied and applied.

The presented algorithm is matrix-free, i.e. capable of solving problems where the for-
ward mapping cannot be computed and/or stored explicitly as a matrix. In particular, in such
cases the cost of the application of the forward and adjoint mappings in each step of the
Krylov method overbears the additional cost of preconditioning, while the use of priorcon-
ditioning reduces the number of Krylov iterations to a fraction of those needed without
priorconditioning.

We demonstrated the effectiveness of our algorithm on the 3D fDOT image recon-
struction problem. For truly large-scale problems, for which the diffusion equations involved
in the forward and adjoint mapping have to be solved iteratively, the cost of applying the
forward and adjoint mappings is typically running hundreds of times higher than the cost of
applying the preconditioner, making the reduction in the number of Krylov itera-
tions paramount.

The proposed method opens an interesting question of using approximate inverses of
regularizers as priorconditioners. Which approximations are the most effective priorcondi-
tioners and how does the accuracy affect the convergence? What is the interpretation of such
priorconditioners in terms of prior distributions? Finally, the present paper deals with ill-
posed problems, where the forward mapping is linear and the nonlinearity is limited to the
regularization term. We intend to investigate the extension of the ideas to fully nonlinear
inverse problems such as electrical impedance tomography and diffuse optical tomography.
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