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Abstract

Assuming a convergent projection within a hierarchy of processing stages stimuli from dif-
ferent areas of the receptive ,eld project onto the same population of cells. Pooling over space
a-ects the representation of individual stimuli, and thus its understanding is crucial for attention
and ultimately for object recognition. Since attention, in turn, is likely to modify such spatial
pooling by changing the competitive weight of individual stimuli, we compare the predictions of
sum- and max-pooling methods using a model of attention. Both pooling functions can account
for data investigating the competition between a pair of stimuli within a V4 receptive ,eld; how-
ever, our model using sum-pooling predicts a di-erent tuning curve. If we present an additional
probe stimulus with the pair, sum-pooling predicts a bottom-up bias of attention, whereas the
competition for attention using max-pooling is robust against the additional stimulus.
c© 2003 Published by Elsevier B.V.
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1. Introduction

Increases in receptive ,eld size along the ventral pathway of the visual system
are assumed to facilitate location-invariant object recognition [17,10,28,40,32]. Many
feature detectors with smaller receptive ,eld sizes at di-erent spatial positions must
converge onto cells with large receptive ,elds. Typically a sum over all a-erents is
assumed. Hubel and Wiesel [17] suggested that the response of a “complex cell” can
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be generated by a pooled response from several “simple cells”. This idea of location
invariance was ,rst exploited by the Neocognitron from Fukushima [10]. Recently,
a max-like pooling has been proposed to establish more robust shift invariant feature
detectors [32]. The idea is that a max-function results in a sharp tuning curve around the
encoded stimulus, whereas a summation smears the information from di-erent locations.
Regarding the competition for attention, we have also used a max-pooling function

[14,15]. It has previously been suggested within the framework of biased competition
that competitive interactions in the receptive ,eld are responsible for attentional phe-
nomena [7]. Given a target stimulus among several identical distractors, a sum-pooling
would enhance cells encoding the distractors, which would result in a preference of
distractors. As an emergent consequence of using sum-pooling, Humphreys and MHuller
suggested a SEarch via Recursive Rejection model that tends to repeatedly reject
strongly represented distractors until the target is detected [18]. Such a strategy has
not been con,rmed by ,ndings, yet. A max-pooling would prevent multiple distractors
placed within the receptive ,eld from adding up their feature weight and dominating
the competition.
It seems that di-erent constraints, one for robust object recognition and the other

for an eIcient attentional processing, lead to a max-like pooling mechanism. To shed
light on this convergence, we discuss the predictions of a model of attention, which
is consistent with the above-mentioned biased competition framework of attention [7],
using a max-pooling and a

∑
-pooling function.

2. Competition and attention

Findings in attention experiments indicate that attention and spatial pooling are re-
lated to each other. For example, V4 neurons that encode a target stimulus show a
strong increase in activity compared to neurons that encode a distractor stimulus, but
only when the target and the distractor are both within the cells receptive ,eld [5]. Why
is the receptive ,eld (RF) a central-processing resource? When more than one object
is located within the classical receptive ,eld, ambiguities emerge. A neural population
receiving input from two spatial positions can give priority to one, the other or to
neither. Spatial attention is known to suppress the inKuence of the unattended stimuli
[26] and thus assigning processing priority for the computation in the following stages.
The general idea is that stimuli compete within the classical receptive ,eld, which is
biased by some form of spatial attention [7]. Recent single cell and fMRI recordings
shed light on the neural process of this competition [21,23,25,30,31,33,36–38].
Our model was designed to replicate the experimental data of McAdams and Maun-

sell [24] and of Reynolds et al. [31]. McAdams and Maunsell found that if only one
stimulus is presented, the e-ect of spatial attention on the population response is a mul-
tiplicative gain increase over the entire population. Reynolds, Chelazzi and Desimone
observed competitive interactions by placing two stimuli (reference and probe) within
the receptive ,eld of a V4 neuron (Fig. 1a). They found that when spatial attention
was directed away from the receptive ,eld the response to both stimuli was a weighted
average of the responses to the stimuli presented in isolation. In brief, if the reference
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Fig. 1. Competition among stimuli within a receptive ,eld on the basis of a population code. (A) Conver-
gent projection of several source populations yV2i; x at the locations x onto a target population yV4k . Spatial
attention implements an input gain control prior to spatial pooling. Each population is implemented as a
laterally interconnected circuit. The presentation of stimuli and the deployment of spatial attention follows
the conditions from the experiment of Reynolds et al. [31]. They measured the responses to (1) the reference
stimulus, (2) the probe stimulus, (3) the pair, while the monkey attended somewhere else, (4) the pair, while
attending to the location of the reference stimulus and (5) the pair, while attending to the location of the
probe. To investigate the competition of two equal stimuli against another one, we propose to add a second
probe to the pair. (B) Schematic diagram of how a-erents determine the cell’s output. Prior knowledge, that
is spatial attention and the lateral input, can each enhance the e-ective input gain. The a-erents are then
pooled by either a linear summation or by a nonlinear maximum-like rule. Inhibitory pooling performs a
normalization and provides competitive interactions among active populations. Each population consists of
11 cells.

elicits a high ,ring rate and the probe a low ,ring rate, then the response to both is in
between. Attending to the location of one of the stimuli biases the competition towards
the attended stimulus.
In order to di-erentiate between both pooling mechanisms, we added a second probe

to the pair. Our model predicts that the
∑

-pooling induces a bottom-up bias that inter-
feres with spatial attention. Thus, according to our model, the attentional competition
among stimuli using a max-pooling function is more robust against the number of
stimuli.

3. Model of attention in V4

We present a model that describes how spatial attention assigns a processing priority
to optimize object recognition. The interactions in V4 are modeled using a population
code approach. One inKuential and often-used approach for modeling cooperative and
competitive interactions is based on an additive activation function [1,16,2,27]. How-
ever, a comparison with neural data is diIcult, since unlike real cells, units with
less input are very quickly suppressed. These models typically show a winner-take-all
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behavior, i.e. they converge to a single activity hill. The shape of the hill is, in general,
determined by the weights and the position of the hill depends only on the input. An
encoding of multiple stimuli is diIcult to explain by such codes. To overcome this
limitation, Grossberg [12] introduced a shunting activation function with automatic gain
control to reduce the sensitivity to the input range. A normalization term found in the
shunting model was also used in additive activation function models [20]. Nevertheless,
both types o-er no rule regarding how to incorporate top-down input. I now suggest a
related model which, however, allows the balanced representation of multiple stimuli
including a de,nition of their modulation by top-down stimuli.
The V2 layer contains at each location x∈{1; 2; 3} a population of 11 cells each

encoding a di-erent orientation of a bar. The V4 layer is simulated by a single popu-
lation of the same size on which the V2 populations project. We consider feedforward,
lateral excitory and inhibitory input and spatially organized attentional feedback as
relevant factors (see [29]), but do not model feedback from IT. Each V4 cell receives
a weighted input from each V2 population (Eq. (1)) at di-erent locations x within
the V4 RF (Fig. 1B). Excitory lateral connections (Eq. (2)) and spatial attention (Eq.
(3)) increase the input gain. After the gain control stage, spatial pooling is applied
(Eq. (4)). We consider two alternative pooling functions: max-pooling and

∑
-pooling.

Inhibition among V4 cells is modeled by an inhibitory pooling among all cells in the
population (Eq. (5)). The ,nal response is then determined by a di-erential equation
(Eq. (6)), which describes the change through time of a model V4 cell.
Since we map orientation-selective cells in V2 onto orientation-selective cells in V4,

the weights wik (Eqs. (1)–(3)) of the ,lter F are simply determined by a Gaussian
kernel wik=gk(‖uV4k −uV2i ‖) (with wii=1:3 and �2=0:1), according to the similarity of
the preferred stimulus of a cell in the source population uV2i to the preferred stimulus of
a cell in the target population uV4k . That is, a projection is maximal from a cell i with
a preferred orientation (e.g., uV2i = 30◦=180◦) in V2 to a cell k in V4 which has the
same preferred orientation (uV4k =30◦=180◦). The projection weight to cells with other
preferred orientations decreases. The a-erents ai;x of V4 are driven by the feedforward
term yV2i; x gk(i). The lateral weights wL

kj are computed from a Gaussian (with wL
ii = 0:3

and � = 1).
A neural interpretation of the Bayesian inference theory is used for input gain

control, as suggested by Koechlin et al. [22]. Bayesian inference is an approach to
statistics in which all forms of uncertainty are expressed in terms of probability. The
priors are meant to capture the beliefs about aspects of the scene before seeing the
actual input. After presenting the input a posterior distribution is obtained, which takes
account of both the prior and the input. From this posterior distribution, predictive
distributions for future observations can be computed. It has been suggested that the
,ring rates yi, assumed as stochastic, implicitly code the posterior probability distribu-
tion p(V |!) of the variable V given the available information !, and the set of input
tuning curves or receptive ,elds fi(V ) [42]. Although we do not explicitly decode
posterior distributions from ,ring rates, this interpretation allows an intuitive explana-
tion of the e-ect of prior knowledge. An increase of the input gain, for example, if
we attend to a certain location or to a speci,c feature, enhances the probability of an
object being detected. We consider the top-down spatial attention signal Ax = 3 (its
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value is chosen to achieve a ,t with the experimental data in the pair condition) and
the lateral input wL

kjy
V4
j as prior knowledge (Eqs. (2) and (3)). It has been shown

that a multiplication of the neural input (not the neural activity) with the prior is a
good approximation of this concept [22]. Our additional simulations have shown that
the de,nition of the lateral input as prior knowledge is not essential for the ,nd-
ings reported here. An additive inKuence on the cell or no lateral interactions lead to
similar results. However, the multiplicative e-ect of the top-down signal on the input is
essential for our results, since it implements an enhancement of the e-ective gain. Al-
though the exact mechanism is still not known, such an input gain control is supported
by ,ndings that indicate that spatial attention increases neural sensitivity towards the
input signal [23,31,9] and that feedback connections can rapidly facilitate responses to
stimuli, but do not drive cells without bottom-up activation [19]:

aFi; x = wiky
V2
i; x + N; (1)

aLi; x = wiky
V2
i; x ·

∑

j

wL
kjy

V4
j + N; (2)

aAi; x = wiky
V2
i; x · Ax + N: (3)

N is a noise term that leads to variations in the transmission from one cell to another.
Each connection has an independent noise term. As in the gain ,eld approach [35], we
multiply the attentional gain signal with the input of the cell (Eq. (3)). Additionally,
we add up the feedforward aF, the lateral aL and the attention term aA (see Eq. (6))
after applying the pooling (Eq. (4)). Thus, provided a cell is sensitive towards a given
stimulus in its receptive ,eld, the cell ,res even when attention is directed elsewhere.
Attention, in this model, induces a preferred processing, but does not operate in an all
or none fashion. This is consistent with recent results [24,31,5].
The pooling function f de,nes the inKuence of the a-erents ai;x; x∈{1; 2; 3} on the

cell k, where x is the spatial location of a bar in V2:

IFk = f(aFi; x); ILk = f(aLi; x); IAk = f(aAi; x); f =max
i;x
∨ f =

∑

i;x

: (4)

The normalization of responses [12,22,3] is performed by a shunting inhibition which
inhibits the cell k depending on the overall activity within the population

∑
j y

V4
j and

on its own activity yV4k (Eq. (5)). Thus, vigorously ,ring cells receive more inhibi-
tion than less active cells. This guarantees that the entire distribution of the population
and not just one activity hill can encode meaningful information. To induce more
competition among active populations, a small fraction (wf

inh = 0:1) of the population
activity inhibits the cell independent of its own activity. Such an inhibition term is
necessary to simulate the competitive interactions among active populations if more
than one stimulus is within the receptive ,eld. Here, we model the temporal process
of this competition explicitly. However, the ,nal cell response (steady state) is similar
to a standard normalization model (e.g. [3]), in which the linear response of every
cell is divided by a number that grows with the activity of a large number of cor-
tical cells, except that our steady-state response would be reduced by wf

inh=winh. The
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baseline inhibition ByV4k prohibits an overly high baseline resulting from the noise N
(Eqs. (1)–(3)):

I inhk = (winhyV4k + wf
inh)

∑

j

yV4j + ByV4k ; winh = 1:6; wf
inh = 0:1: (5)

The cell’s response is computed by a di-erential equation:

�
d
dt
yV4k = IFk + ILk + IAk − I inhk : (6)

Simulations with di-erent pooling functions were performed with the same equations
and parameters. The e-ect of spatial attention in our model is a direct enhancement
of the input and a indirect suppression that acts after pooling. Essential parameters are
the strength of spatial attention Ax and the inhibitory weights wf

inh and winh.

4. Results

The ,nding that attention implements a multiplicative gain increase if only one
stimulus is presented [24,38] is replicated by both the

∑
- and max-pooling functions

(Fig. 2). To work out the predictions of the alternative pooling functions, we now
observe the e-ect of di-erent attentional conditions, when a reference, a probe or
both stimuli are presented. In order to determine the e-ect of adding a probe on
the whole population, we computed a selectivity value and interaction index for each
cell and each condition (Fig. 3A) as done by Reynolds et al. [31] (please refer to
the Appendix for details). Our model reliably describes the neural interactions of two
stimuli within the RF of V4 cells. A slope of 0.5 indicates that reference and probe
are equally well represented by the population. The small positive y-intercept signi,es
a slight overall increase in activity when presenting the additional probe, regardless of
selectivity. Attending to the probe increases the slope, indicating the greater inKuence
of the attended probe over the population. Attending to the reference reduces the slope,
signifying the greater inKuence of the attended reference stimulus. Attention, in general,
enhances the overall response within the population, which is observed by the greater
upward shift of the sensory interaction index as compared to the attend away condition.
Before the stimulus appears, the model shows a baseline increase of individual cells
when attention is directed towards a location, which replicates ,ndings in V4 [23,31]
(Fig. 3B).
The model using each pooling function matches with the experimental data measur-

ing the attention e-ect over the entire population. However, a look at the shape of the
population response reveals that the

∑
-pooling of a-erents leads to an uniform distri-

bution around the average stimulus (Fig. 4). The information of both stimuli is hidden
within a broad tuning curve. In fact, the cell with the highest activity is optimally tuned
for a stimulus orientation that is not presented to the cell population. However, only
the cells with almost identical responses to reference and probe (selectivity=0) clearly
indicate the pooling mechanism. A very careful analysis of the shape of the tuning
curve would be required in order to favor one pooling function against the other.
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Fig. 2. Population responses to a single stimulus 100 ms after stimulus onset. (A) Spatial attention increases
the e-ective gain. A sum-pooling function leads to a broader tuning curve. The reference stimulus elicits the
highest response at cell 4, whereas the preferred stimulus of cell 8 is the presented probe. (B) Responses
of the non-attended case are plotted against the attended case (see [24]). The multiplicative gain increase
is not impaired by the pooling function used (both have a CorrCoe- = 0:99). With the same parameters,
the max-pooling results in a 13% increase (slope = 1:13), whereas the sum-pooling results in approx. 26%
increase (slope = 1:26) of the population response by attention.

We now simulate an experimental approach using three stimuli. Since the
∑

-pooling
mechanism results in an input gain increase of cells which are sensitive to both stimuli
presented in isolation (Fig. 4), an additional bias for cells encoding the probe must
occur by adding an additional probe to the pair (Fig. 1A). In contrast, a max-pooling
would ignore that two equal probe stimuli are presented to the population.
Our simulation results con,rm that there is no change in the sensory interaction index

when adding an additional probe to the pair using a max-pooling function (Fig. 5A).
Our model with the

∑
-pooling function, however, predicts that the response can

be biased towards the probe by placing more than one probe in the receptive ,eld
(Fig. 5A). In the ”attend away” condition, the population response is now dominated
by the two probe stimuli, although attention is directed elsewhere. Even attending
to the reference can only achieve an equal representation within the population. The
population response (Fig. 6) completes this view. The insuIcient separation and the
broad shape in the attend reference condition hardly allows a detection of the reference
stimulus within a following stage.
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5. Discussion

We used a model of attention to explore the possible e-ects of pooling on the
response of cells under di-erent attentional conditions. Alternately using spatial max-
pooling and

∑
-pooling, our model accounts for the ,nding that if the receptive ,eld

contains just one stimulus attention results in a multiplicative gain increase, as observed
in MT, MST and V4 [38,24]. If two stimuli are presented within the receptive ,eld,
the model using each pooling function can reproduce the data of Reynolds et al. [31].
According to the model, those attention e-ects in V4 can be explained by an input
gain increase prior to pooling and additionally by an indirect inhibition among active
populations after pooling has occurred. The fact that the population response to the
attended stimulus is increased more than the response to the unattended is suppressed
also explains the observed upward shift towards a higher sensory interaction index.
However, the sensory interaction index only estimates the average competitive weights
of the stimuli. Pooling already plays a role as indicated by the shape of the tuning
curves (Fig. 4). A max-pooling function tries to keep the information of both stimuli
separate within the joint representation, whereas the

∑
-pooling function tends to merge

both stimuli into a uniform, but broader distribution.
We have seen that

∑
-pooling results in an increase of a cell’s ,ring rate to a

pair of stimuli if the cell is sensitive to both the reference and the probe. When the
reference stimulus appears together with two equal probe stimuli, a

∑
-pooling of

a-erents predicts that the two identical probe stimuli will bias the population response
as if the probe stimulus would have been selected by spatial attention. In comparison
to the pair condition, a max-like pooling function predicts no change.
If we de,ne that an eIcient processing of stimuli does indicate the content of the

receptive ,eld and the saliency of the stimuli independent of its number, then our model
with a max-like pooling function is more eIcient than our model with the

∑
-pooling

function. However, our simulations cannot completely rule out the
∑

-pooling function.
Even though we made sure that the model accounts for relevant ,ndings, attention can
be more complex than the mechanisms captured by our model. A biologically plausible
max-pooling function could be implemented by a winner-take-all (WTA) among all

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 3. InKuence of attention on the sensory interaction by using the max- and sum-pooling compared to the
data of single-cell recordings in V4 (modi,ed from [31]). (A) For each cell, its selectivity index is plotted
over its sensory interaction. A selectivity value of 0 indicates identical responses to reference and probe in
isolation, a positive value a preference towards the probe and a negative preference towards the reference.
An interaction index of 0 signi,es that the cell is una-ected by adding a probe. Positive values indicate that
the cell’s response to the reference is increased by adding a probe and negative values signify a suppression
by the probe. Both pooling functions account for the data, which measures the overall population response.
However, the activity of some cells strongly depends on the pooling function. With a

∑
-pooling, the cell

with identical responses to reference and probe (selectivity = 0) is enhanced by addition of a probe, whereas
it is suppressed when using a max-pooling function. (B) The course of activity of single cells. The temporal
course of the observed cell using the

∑
-pooling (circled in the population response) shows that the cell is

hardly suppressed by adding a probe, although it is much more selective to the reference stimulus. The bar
indicates the stimulus presentation period.



10 F.H. Hamker /Neurocomputing ( ) –

ARTICLE IN PRESS

2 4 6 8 10
0

0.1

0.2

0.3

ce
ll 

ac
tiv

ity
 a

t 1
00

m
s

cell within population

Pair Attend Away

max-rule
sum-rule

2 4 6 8 10
0

0.1

0.2

0.3

ce
ll 

ac
tiv

ity
 a

t 1
00

m
s

cell within population

Pair Attend Probe

max-rule
sum-rule

2 4 6 8 10
0

0.1

0.2

0.3

ce
ll 

ac
tiv

ity
 a

t 1
00

m
s

cell within population

Pair Attend Reference

max-rule
sum-rule

Reference ReferenceProbe ReferenceProbe Probe

Fig. 4. InKuence of attention on the response of cells within the population 100 ms after the presentation of
the pair. Each stimulus activates a number of cells. The competition among stimuli occurs due to inhibitory
pooling within the population. Attending to one location increases the gain of the attended population,
whereas the other population is slightly suppressed. The

∑
-rule predicts that cells which are sensitive to

both of each stimulus presented alone gain advantage when both stimuli are shown. The circle indicates the
cell shown in Fig. 3B.

a-erents. This would not only require that all other inputs are suppressed, but also that
the saliency of the input signal is maintained, that is, a signal representing a stimulus
with low saliency should not be transformed into high saliency. A number of WTA
networks have been investigated regarding their realization of maximum operations [41]
including spike timing [39,34].
How does our model relate to previous models? Along with the experimental data,

Reynolds et al. [31] demonstrated that a feedforward shunting model [12] can account
for their ,ndings [7]. In their model, competition among cells occurs due to feedfor-
ward inhibition from V2 cells onto V4 cells. Spatial attention was implemented by
increasing the excitory and inhibitory connections originating from the attended loca-
tion. Our approach is similar, but competition occurs after pooling. It is based on lateral
short-range excitory and long-range inhibitory connections within the population, which
is in accordance with ,ndings in V4 [8,29]. With respect to pooling, our simulations
suggest that an additional max-like competition among a-erents would prevent a bias
due to the fact that multiple distractors add up their competitive weight. Such a case
was not discussed in earlier models of attention and the model of Reynolds et al. [31]
predicts a bias similar to our model using the

∑
-pooling. Comparisons with other

models that are able to simulate the interactions among stimuli under di-erent atten-
tional conditions [13,6] are diIcult, because neither a quantitative comparison with the
experimental data discussed here nor an investigation of spatial pooling was made.
Similar to the claim of Riesenhuber and Poggio [32], but here from the viewpoint

of attention, we suggest that max-pooling is more eIcient than
∑

-pooling. Since ob-
ject recognition requires an interpretation of a V4 population response at a subsequent
stage (e.g. IT or prefrontal areas), the mechanism of spatial attention should increase
the competitive weight of the attended stimulus such that it dominates the population
response regardless of other stimuli in the same RF. In so far our results also indicate
that object recognition is facilitated by a max-pooling function. However, Riesenhuber
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Fig. 5. InKuence of attention on the sensory interaction when presenting a triplet. (A) The
∑

-rule predicts
a bottom-up bias in the attend-away condition due to the fact that the responses of the same stimuli at the
di-erent locations in the RF add up. The e-ect is similar to as if the probe is attended. Thus, competition
can be biased towards the probe by presenting a second probe with the pair. (B) The course of activity of
the circled cell shows almost no suppressive e-ect to the reference stimulus when the probe is presented
simultaneously.
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Fig. 6. InKuence of attention on the response of cells within the population 100 ms after the presentation
of the reference and two probe stimuli. Due to the bias of the additional probe, the reference stimulus is
hidden in the population response using the

∑
-pooling. The circle indicates the cell shown in Fig. 5(B).

and Poggio [32] compared max-model neurons to linear model neurons. Linear neurons
are biologically implausible. Here, we have compared the e-ects of di-erent pooling
functions on populations of non-linear neurons. A pure max-function as proposed by
Riesenhuber and Poggio [32] is inconsistent with the discussed competitive e-ects. It
would predict no change of a cell’s response on a pair compared with the response
of the preferred stimulus in isolation. Experiments, however, revealed an averaging
of the individual responses [31,23,30]. For example, Recanzone, Wurtz and Schwarz
measured the interactions between the responses to two moving objects within a single
receptive ,eld in MT and MST [30]. They found that averaging, compared to sum-
mation, multiplication, or vector addition of the stimulus responses best modeled the
data. However, a recent study of Gawne and Martin [11] compared the responses of
V4 cells with a max-, a linear-, and a weighted average model. They found that the
max- and weighted average model somehow ,t the data, with a slight advantage for
the max-model. A potential weakness of this study is the missing control of attention.
The stimuli are presented for approximately 282 ms. Such a long presentation time
elicits attentional e-ects. Although they initially train the monkey to ,xate, it is not
clear if the monkey maintains attention at the ,xation point.
The problem with the current experimental data is that several other models can be

consistent with the ,ndings. Note from Fig. 3b that our model in case of max-pooling
is not a true weighted average model. In addition, we have shown that our model using
either sum- or max-pooling is consistent with the data of Reynolds et al. [31]. Fig. 3b
illustrates that our model with sum-pooling is also consistent with the data of Gawne
and Martin [11] since the inhibition forces the response to the pair to be not higher
than the response to the reference. Using just two stimuli does not allow to dissociate
between sum- and max-pooling on the population level given normalized neurons. It
would require a thorough analysis of the tuning curve, which is diIcult due to the
noisy responses. Thus, we suggested a paradigm using three stimuli to better dissociate
pooling from normalization. From the viewpoint of our model, a max-like pooling
avoids a bottom-up bias for attentional competition in the presence of multiple stimuli.
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Concluding, our model provides a good ,t with the experimental data in V4 showing
a multiplicative gain increase [24] and competitive interactions among stimuli in di-er-
ent attentional conditions [31]. Current experimental data do not allow to dissociate the
subtle di-erences between the di-erent models and do not even rule out sum-pooling,
assuming that the cells within the population are inhibited by the overall population ac-
tivity. Our model suggests that pooling across the receptive ,eld is based on a max-like
operation, since this avoids a bottom-up bias independent of the number of stimuli.
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Appendix A

Simulation and data analysis

Input stimuli are encoded as a population determined by a Gaussian distribution. Such
populations were presented to the model for 150 ms (simulation time). For realistic
experimental conditions, we delayed the input for 30 ms to account for the time a
stimulus needs to reach V2. Since V1 cells typically ,re very strongly in the beginning
and then decrease in sensitivity, we use a short-term synaptic depression Si (similar
to [4]) of the input IV2i Si:

�S
d
dt
si = IV2i − si; Si = (1− dsi); d= 0:35: (A.1)

We would like to emphasize that our simulation, on the basis of a population code,
has the advantage that all the cells in the network are used to compute the overall
response. The population response is not computed from repeated simulations.

Data analysis

The data of the model V4 cells were analyzed in the same manner as the experimen-
tal data [31]. For each cell, in each condition, the average ,ring rate was computed
beginning 70 ms after stimulus onset and ending at 250 ms:

Ty i =mean(yi(t)): (A.2)

All responses are normalized by dividing by the highest ,ring rate ymax observed in all
stimulus con,gurations (reference, probe, pair) and in any attentional condition (attend
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away, attend probe, attend reference):

ỹ i = Ty i=ymax: (A.3)

The selectivity and interaction values are obtained by computing the di-erence for each
cell in each condition. All 11 cells in the population are used in the analysis. For the
selectivity index (SE), this yields into

SEi = ỹ
probe
i − ỹreferencei (A.4)

and for the interaction index (SI) into

SIi = ỹ
pair
i − ỹreferencei : (A.5)

For a comparison with real data in the attend-away condition, we chose the results
computed from cells whose response changed signi,cantly when attention was directed
to the probe stimulus (see [31]).
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