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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 302, Number 1, July 1987 

THE SET OF CONTINUOUS FUNCTIONS 
WTTH EVERYWHERE CONVERGENT FOURIER SERIES 

M. AJTAI AND A. S. KECH:RIS 

ABSTRACT. This paper deals with the descriptive set theoretic properties of 
the class EC of continuous functions with everywhere convergent Fourier se- 
ries. It is shown that this set is a complete coanalytic set in C(T). A natural 
coanalytic rank function on EC is studied that assigns to each f e EC a count- 
able ordinal number, which measures the 'icomplexity" of the convergerlce of 
the Fourier series of f. It is shown that there exist functions in EC (in fact 
even diSerentiable ones) which have arbitrarily large countable rank, so that 
this provides a proper hierarchy on EC with cv1 distinct levels. 

Let C(T) be the Banach space of continuous 27r-periodic functions on the reals 
with the sup norm. We study in this paper descriptive set theoretic aspects of 
the subset EC of C(T) consisting of the continuous functions with everywhere 

. n * h convergent qourler serles. 
It is easy to verify that EC is a coanalytic set. We show in §3 that EC is actually 

a complete coanalytic set and therefore in particular is not Borel; This answers a 
question in [Ku] and provides another example of a coanalytic non-Borel set. We 
also discuss in §2 (see in addition the Appendix) the relations of this kind of result 
to the studies in the literature concerning the classiScation of the set of points of 
divergence of the Fourier series of a continuous function. 

It follows also immediately that the set EC' of f E L1(T) with everywhere 
convergent Fourier series is (coanalytic but) not Borel (in the Banach space L1(T) 
of Lebesgue integrable functions on [0, 27r]). Equivalently working in the Banach 
space co(z) of Z-sequences converging to 0 at infinity, the set P' (resp. P) of 
sequences {an }n4iZ E C0 (Z) such that E aneinX is an everywhere convergent Fourier 
series (resp. of a continuous function) is also (coanalytic but) not Borel. This rules 
out the possibility of any "reasonable" criteria on the coefficients for characterizing 
when a given Fourier series LaneinXn even of a continuous function, is everywhere 
convergent. 

By specializing a construction of Zalcwasser [Za] and independently Gillespie- 
Hurewicz [GH], we associate to each f E EC a countable ordinal number IflZ 
which measures the "complexity" of the convergence of the Fourier series of f. 
The functions with ordinal rank 1 are exactly the ones with uniformly convergent 
Fourier series. The standard examples of continuous functions with everywhere 
but not uniformly convergent Fourier series turn out to have rank exactly 2. We 

show in §4 that the rank function Z If lz has the right descriptive set theoretic 

properties summarized in the concept of a coanalytic-norm. It follows that there are 
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continuous functions whose Fourier series converge everywhere but the convergence 
is arbitrarily complex, i.e. for every countable ordinal number Ol there is an f E EC 
with I f lZ > a. sO this gives a proper hierarchy of all the functions with everywhere 
convergent Fourier series in 1 levels, with functions occupying higher levels having 
more and more complex convergence behavior of their Fourier series. 

1. Preliminaries. 
1.1. Let N = {1, 2, 3, . . . } be the set of positive integers, and N*(_ N'N) the 

set of all finite sequences s = (a1,...,an) from N (including the empty one ( )). 
The length n of s is denoted by isl (thus 1( )l = O). An initial segment v of u is a 
sequence of the form v = (a1,...,am), for 1 < m < n or v = ( ). We write also 
v = u p m in this case (( ) = u p O). We call moreover u an extension of v, and u 
a proper extension if in addition u + v. The concatenation uw of two sequences 
u = (a1, . . ., an), w = (b1, . . ., bm) is the sequence uw = (a1, . . ., an, b1, , bm) 
In particular u(a) is a one-element or immediate extension of u. 

For an infinite sequence ct = (c*(1), c*(2), . . . ) E NN we let also u = ct p m = 
(c*(l), . . ., c*(m)) be the initial segment of ct of length m and we call ct an extension 
of any such u. We denote by u c v or u C- ct the relation of being an initial segment 
of. Let u C v iff u C v and u + v. 

By a tree T on N we will mean a nonempty subset of N* closed under initial 
segments (u E T & v c u =} v E T). Thus ( ) E T. For each such tree we denote 
by [T] the set of all its infinite branches or paths, i.e., 

[T] = {ct E NN: kln(ot r n E T)}. 

We call T wellfounded iff [T] = 0. 
By 2<N we denote the set of all binary finite sequences (here 2 = {O, 1}) and 

by 2N the set of all infinite binary sequences. All the above carry over mutatis 
mutandis to the context of binary sequences. 

1.2. A basic method for showing that a given Il1 (= coanalytic) set is not Borel, 
is to demonstrate that it is complete in the sense of the following definition. 

DEFINITION. Let X be a Polish space. A Il1 subset A of X is called complete 
if for any Polish space Y and any fI1 subset B of Y there is a Borel function 
f: Y )XsuchthatB=>-l[A]. 

Since for some Polish space Y (e.g. Y = R _ the set of reals) there is some 
B C Y which is Il1 but not Borel, it follows that no complete Il1 set is Borel. 

It is clear that if X, X' are Polish spaces, 9: X ) X' is a Borel function, A C X 
is complete Il1 and A' C X' is Il1 and such that A = g-l[A'], then A' is also 
complete Il1. (When A = g-l[A'] as above we say that A is reduced to A' via 9. 
The terminology comes from the fact that x E A X g(x) E A', which means that 
the question of membership in A is reduced via g to that of A'). So a standard 
procedure for showing the fI1-completeness of a set is to reduce one of the already 
known Il1 complete sets to it. For our purposes it is most convenient to use as our 
starting complete Il1 set the set WF of wellfounded trees. 

As a subset of N*, any tree T on N can be identified with its characteristic 
function, which is a member of the Polish space 2N = {O, 1}N, homeomorphic to 
2N, i.e. the Cantor set. The set of all trees is then a closed subset of 2N . Let WF 
be the set of all wellfounded trees on N. Then it is a classical result that WF is a 
complete Il1 set (see e.g. the introduction of [KW]). 

This content downloaded from 131.215.71.79 on Mon, 20 May 2013 13:08:56 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


THE SET OF CONTINUOUS FUNCTIONS 209 

1.3. A rank f?lnction or norm on a set P is just a map p: P ) ORD from P 
into the class of ordinals ORD. This induces a prewellordering <,> on P defined 
by x <,> y X p(x) < p(y). We consider two norms , ' on P eq?livalent if they 
induce the same prewellordering <,> = <,>,. We will be mainly interested in special 
norms on Il1 subsets of Polish spaces. 

Given a Polish space X and Il1 subset P of X we say that a norm p: P ) ORD 
is a H1-norm if there is a S1 (= analytic) subset R of x2 and a fI1 subset Q of 
X2 (i.e. R, Q are binary relations on X) such that 

y E P > [x E P & p(x) < p(y) ¢ R(x, y) ¢ Q(x, y)]. 

This implies that the initial segments of <,> are Borel, but the above condition 
is much stronger than that. In some sense it says that the initial segments are 
"uniformly" Borel. 

Every Il1-norm is equivalent with one which takes values in 1 = the first 
countable ordinal. This is because every proper initial segment of the induced 
prewellordering is Borel and Borel prewellorderings have countable ranks (see [M]). 
It is a fundamental fact of the structure theory of Il1 sets (see [M]), that every Il1 
set P admits a Il1-norm p: P ) 1. Such a norm can be found by means of the 
general theory and it is by no means unique. It is an interesting question to find for 
a given Il1 set P, which arises naturally in some context in analysis, topology, etc., 
a natural Il1-norm which reflects the properties of the set P in question. We deal 
with this problem for the set of continuous functions with everywhere convergent 
Fourier series in §4. 

Recall now the following basic criterion (see [M]). 
Given a Il1 set P C X, X a Polish space, and given any Il1-norm p: P 

the following are equivalent: 
(i) P is Borel. 
(ii) {p(x): x E P} is bounded below 1. 

Then in particular if P is not Borel and we let for any Ol < £1, P,> = {x E P: p(x) < 
Ol} then {P,>},><G^,1 is a hierarchy of 1 stages on P. If p is a naturally defined Il1- 
norm, this hierarchy can provide in a natural way a measure of complexity for the 
elements of P. 

We conclude by noticing one further thing about Il1-norms. Given Polish space 
X, Y, Ill sets P C X, Q C Y and a Borel function f: X ) T such that P = 
f-1[Q], and given a norm p: Q ) ORD, we can define a norm +: P ) ORD by 
f(x) = p(f(x)). Then it is easy to verify that if p is a Il1-norm on P, + is a 
Il1-norm on Q. 

2. The set of continuous functions with everywhere convergent Fourier 
series. Let T denote the unit circle and C(T) the Polish space of continuous real 
functions on T with the uniform metric 

d(f, g) = sup{lf (x)-g(x)l: x E T}. 

We can also identify C(T) with the space of all continuous 27r-periodic real functions 
on R, viewing T as R/27rZ. Thus we will often view an f E C(T) as a continuous 
f: [O, 27r] ) R with f (O) = f (27r). 

This content downloaded from 131.215.71.79 on Mon, 20 May 2013 13:08:56 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


210 
M. AJTAI AND A. S. KECHRIS 

To each f E C(T) one associates its Fourier series 
+oo 

S[S] , f( ) int 
n=-oo 

where the nth Fourier coefficient f(n) is given by 
1 2Fr 

Let also 
N 

SN(f, t) = E f(n)eint 
n=-N 

be the Nth partial sum of the Fourier series of f. To say that the Fourier series S[f] converges at a point t E [O, 27r] means that the sequence {SN(f, t)} converges, and in this case we write 

+oo 

S(f, t) = , f(n)e 

n=-oo 

We will be concerned in this paper with the subset EC of C(T) consisting of all continuous functions with everywhere convergent Fourier series. By a standard theomm (see [Ka]) if the Fourier series of a continuous function f converges at some point t, then it converges to f(t), thus 
EC = {f E C(T): klt E [O, 27r] ({SN(f, t)} converges)} 

= II,f E C(T): Vt E [O,27r] (f(t) = , f(n)e ) ) . 

In [Ku] Kuratowski gives several applications of the then newly discovered "Kuratowski-Tarski" algorithm, and points out (attributing this to Banach) that EC is a Il1 set. He then raises the question of whether this calculation is best possible. We show here that it is, in fact we have 
THEOREM. The set EC of continuous functions with everywhere convergent Fourier series is complete H1. In particular it is not Borel. 
REMARK. Other examples of coanalytic non-Borel classes of functions are for example: (1) The differentiable functions (see [Maz]), (2) the continuous nowhere differentiable functions (see [Mau] and also [Ke]), (3) the L1 functions with every- where divergent Fourier series (see [Ke]). 
One can view the Il1-completeness of EC as a consequence of certain results concerning the set of points at which the Fourier series of a continuous function diverges. Let for f E C(T) 

PVf = {x E [O, 2X): {sN(SX x)} diverges}. 
It is easy to calculate that PVf is a Gsa set. Moreover by Carleson's theorem (see [C]) PVf has measure 0. One now has the following partial converse 
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THE SET OF CONTINUOUS FUNCTIONS 211 

THEOREM (SLADKOWSKA [S1]) . let B C (0,2X) be Qn F,, set of logarithmic 
measure 0 and let A C B be a G^a Then there is an f . C(T) with DVf = A. 

Recall here that a set E has logarithmic measure 0 if for each s > 0 there is a 
sequence {In} of intervals with E C Un In X IIn I = Ln < 1 and E 1/1 log Ln I < £. 

Fix now a perfect set E C (0, 27r) of logarithmic measure 0. As a particular case 
of the above theorem we can assign to each GE subset G of E an f(G) E C(T) with 

DVf(G) = G. Then G = 0 X DVf(G) = 0 X f(G) E EC. Now the crucial point is 
that the construction of f(G) is sufficiently effective, so that given a code c of a Ge 

set G = Gc one can find in a Borel way the function f(G) = f(Gc)-F(c). Since 
P(c) ¢ Gc = 0 X ;;c is a GE code of the empty set" is a complete Il1 set, and 
P(c) X F(c) E EC, where F is Borel, the same is true for EC. We do not spell out 
the details of this type of argument (e.g. what we mean by a code for a GE etc. ) 
since we will give shortly a direct proof of the II1-completeness of EC. See however 
[KW, §2], where an analogous situation is treated in some detail. 

Since the exposition in [S1] is fairly complicated, we present for completeness in 
an appendix a sketch of a simplified proof of this result, which could be presumably 
known to the experts in this area. What essentially amounts to a special case 
of this simpler argument gives a fairly direct and self-contained proof of the Il1- 
completeness of ECX which we give in the next section. 

Before we do that however let us say a few more things on the subject of the 
characterization of the sets DVf. Whether every G^a set of measure 0 in [0,27r) 
can be represented in that form seems to be unknown. Let also for f E C(T), 

a D Vf = {x E [0, 2X): {SN (f, x)} diverges unboundedly} 

= {X E [0,2T): lim|Sy(f,x)l = x} 

Then clearly lDVf C DVf is a GE set measure of 0. The problem has been raised 
(see for example [Bul]) whether for every G, set G of measure 0 in [0, 2X) there 
is a continuous f with lDVf = DVf = G, i.e., f diverges unboundedly on G and 
converges outside of G. It was shown by Buzdalin [Bu2] that this is indeed true 
if G is both a GE and an F,, of measure 0. We sketch in the appendix a simpler 
argument which actually shows something a bit stronger, namely that the above is 
true if G is a GE contained in an F.S set of measure 0. We do not know if this is 
new, but we could not locate it in the literature. We will also need a byproduct of 
this construction in §4 and we will comment on it there. 

3. A proof of the Il1-completeness of EC. We give now a direct proof of 
IT1-completeness of EC. 

First let us recall that a trigonometric polynomial is any expression of the form 

N 
w_ . 

P(t) = L a etnt 
n=-N 

with an E C. The numbers-N < n < N with an + 0 are called the frequencies of 

P. The trigonometric polynomial P is real if a_n = an. We will be dealing with 
real trigonometric polynomials in the sequel. 
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212 M. AJTAI AND A. S. KECHRIS 

Let for n E N, 

Q( ) cos(nx) + cos(n + l )x + + cos(2n-l )x 

cos(2n + l)x + cos(2n + 2)x + + cos(3n)x 

2n-1 1 3n 

t , ) (ei + e ) E 2(m-2n) ) 

p( ) cos(nx) + cos(n + l)x + + cos(2n-l)x 

be the Feje'r polynomials. (Thus P is just the "first half" of Q.) Two basic prop- 
erties of the polynomials that we will need are the following: 

(1) (P is large around O) For n E N, there is bn > O with Ixl < En t Q(X, n) > 

log n. 
(2) (Q is bounded everywhere) For some absolute constant C > O and all n E 

N,xER IQ(x, n)l < C. 
The proof of (i) is obvious since P(O, n) = 1 + 2 + * * * + 1 . For (ii) note that by 

grouping, 

Q( ) cos(nx)-cos(3n)x + cos(n + l)x-cos(3n-l)x 

+ + cos(2n-l )x-cos(2n + l )x 
1 

= 2 sin(2nx) E sin(kx) 
k=l 

IQ( )I ' 2 sE sin(kx) < 2 (2 + 1) 
k=l 

(see for example [St, p. 507]). 
We will define first a perfect set E, homeomorphic to 2N. Enumerate 2'N as 

follows: (( )) = O, ((O)) = 1, ((1)) = 2, ((0,0)) = 3, ((0,1)) = 4, ((1,0)) = 5, 
((1, 1)) = 6, .... Define then inductively on Isl, a closed interval IS of [O, 27r] with 
center xS as follows: I( ) = [0,27r]; to define I(0,I(1) let first Js be a small 
enough closed interval with center xS, for example having IJ8I < 62(S)2 will suffice, 
and let I(0,I(1) be two disjoint subintervals of J8. 

Finally let 
E = U n Ickrn- 

c>e2N nEN 

The basic lemma about E is now this 

LEMMA. Let O < a < c < d < b < 27r. For each n,m E N there is a real 
trigonometric polynomial T all of whose frequencies have absolute value > m such 
that 

(1) IT(z)l < 1/2nn for all x; 
(2) The partial sums of T are uniformly bounded by some absolute constant; 
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(3) The partial sums Si(T,x) are bounded (in absolute value) by 1/2n outside 
[a, b]; 

(4) For some absolute constant c > O, 

x E En [c,d] > maxlSi(t,x)-Sj(t,x)l > c. 
,,? . 

Granting this lemma it is not hard to see that the set WF of wellfounded trees 
on N can be reduced via a Borel function to EC, therefore proving the theorem. 
Indeed define first, inductively on lul, for u E N* two open intervals K,, C Lu of 
(O, 27r) such that Ku n E 7& 0 as follows: 

L( ) = (O, 27r): K( ) is some open interval with closure contained in L( ) which 
intersects E and has length < 2 * 2er; to define Lll(n)(n E N) take any disjoint 
sequence of open intervals I1, I2, . . ., with closures contained in K,, each of which 
intersects E, and put L(n) = In; let KUn be some open interval with closure 
contained in LU(n)X which intersects E and has length < l/(lul + 3) 21r. 

Enumerate now in a 1-1 sequence u1,u2,..., the set N* and let (ai,bi) = Lut, 
(ci,di) = Ku so that ai < ci < di < bi. Let Ti be a trigonometric polynomial 
given by the lemma for ai < ci < di < bi with n = i and m chosen so that the 
frequencies of Ti have absolute values bigger than those of Tj, j < i. 

Given now a tree T on N associate to it the function fT = S{Ti: ui E T} = 
u eT Ti. Since {Ti(x)l is bounded everywhere by 1/2i, fT E C(T). We will show 
that 

T E WF X fT E EC . 

Since the map T § > fT is clearly Borel this will complete the proof. 
Let P(T) = {i E N: ui E T}, so that fT = ,iEP(T) Ti. The basic observation is 

that i: T E WF then for every x E O, 2tr , x belongs only to finitely many intervals 
[ai,b,], i E P(T), while if T ¢ WF there is some x E E such that x belongs to 
infinitely many intervals [ci,di]. Thus it is enough to show that 

(a) x belongs to only finitely many [ai.bi], i E P(T) => {SN(fT, X)} converges, 
(b) x E E belongs to infinitely many [ci, d], i E P(T) > {SN (fT, X)} diverges. 
First notice that because of the uniform convergence °f EiEP(T) Ti and the 

noninterference of the frequencies of the Ti's the Fourier series of fT is exactly this 
sum (after "removing the parentheses around each Ti"). 

PROOF OF (a). Let io be suchthat forieP(T), i tio, x [ai,bi]. Fixe >O. 
Then for i E P(T), i > io, 

Sn(fTex) = Sn E Tj,X + E Sn(TjxX) 
jOi j>i 

kjEP(T) J jEP(T) 

Choose il(£)-il > io with }_il 1/2 < s. Then choose no(E) _ no bigger than 
all the absolute values of the frequencies of T^, j < il. Then 

Sn+P E Tj,x -Sn E TS,x = () 
.X<il 2<t1 

tjEP(T) ) tEP(T) J 
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for any p > O, n > no. So for p > O, n > no 

|Sn+p(fT, X)-Sn(fT, X)| < E Sn+p(Tjx X) + E Sn(Tjx X) 
j,il j,il 

jEP(T) jEP(T) 
But since x ¢ [ay, bj], for j > i1, j E P(T) we have that 1sk(TjX x)l < 1/2j for such j's by (3) of the lemma, thus- the above sum is bounded by 

2 E 21j < 2e 
j,il 

and thus |Sn+p(fTX x)-Sn(fT, x)l < 2s, for all n > nO(E), p > O, so that {Sn(fTx x)} converges. 
PROOF OF (b). By (4) of the lemma and since x E En [ci, di] for infinitely many i E P(T), we have infinitely many gi < 22 with iSj1 (fT, x)-Sj2 (fT, x)l > c > O, so that {SN ( fT, X) } diverges. 
It remains only to give the 
PROOF OF THE LEMMA. Let 

00 

f(X) E k2Q (x xk,2 ), 

where xk = xs for (s) = k. This is a continuous filnction and the expression on the right is its Fourier series (after "removing parentheses" note again that there is no interference in the frequencies of two different summands). Let A(x) be a C°° 27r-periodic function which is _ 1 on [c,d] and _ O outside [a,b], and has absolute value < 1 everywhere. Then by a standard theorem (see [Zy, I, p. 53]) 
limN oo(sN(AfX X)->(X)SN(f, X)) = O uniformly on x E [O, 27r], so choose mo > m such that for N > mo and all x 

(*) |SN(>f, X)->(z)SN(f, X)| < 4 * 2n . 

Choose now m1 > mo such that 

C ( E 2) < 2 2n' 
m=m 1 

where C is the constant given in property (2) of the Fejer polynomials. Note now that from our enumeration of 2<N the binary sequences of length I > 1 have exactly the code numbers between 

p(l) = ((O, . . ., O)) = 21 - 

and 

q(l) = ((1, * *, 1)) = 21+l - 2 

Also the frequencies of Q(x-xk, 2k ) are (in absolute value) strictly between ,ks(k) = 2k _ 1 and v(k) = 3 2k + 1. Finally let I = m1 + 1 and put 
T(x) = S>(q(l)) (S f, x)-Sp(p(l,, (S f, x). 
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By (*) this is a close approximation of A(x) multiplied by 

T(x) = SL,(q(A)) ( f, x)-S(p(l)) ( f, x) 

= E ( )2Q(x-x,s,2(8) ). 

Clearly the frequencies of T(x) have absolute value > m. We verify now (1)-(4) 
of the lemma. 

(1) By (*) it is enough to check that iT(x)l < (1/2) (1/2n) for all x. But 

i ( )] ( E m2) 2 2n 
m=ml 

(2) Note that every partial sum SN(>f,x) of Af for N > m1 is bounded by 
l + lSN ( f, x) l, so it is enough to show these partial sums SN( f, X) of f are bounded. 
But any partial sum of f has the form Ek-l k-2Q(x-Xk, 2k ) + a partial suin of 
(l/p2)Q(X-Xp, 2P ). From the definition of Q it is easy to verify that any partial 
sum of Q(x,n) is bounded by 2(1 + 2 + ' + 1) therefore by 410gn. So every 
partial sum of p-2Q(x - xp, 2P ) is bounded by l/p2 * 4 log(2P ) = 4 log 2 and we 
are done. 

(3) Note that a partial sum of T is a difference of two partial sums Si(Af, x) 
and Sj(Af, x) of Af, for ,(s(p(l)) < i, j < v(q(l)). So it is enough to show that for 
,(;(p(l)) <i < v(q(>)), 15i(>f,X)1 < 2 1/2n+1 for x ¢ [a,b]. But A(x) = O for 
x ¢ [a,b] so we are done by (*). 

(4) Let now x E E n [c,d]. Let a E 2N be such that x E nn Iarn = nn Jol rn 
In particular x E J<krl. Say s = a P I and (s) = k. Thus p(l) < k < q(l) and 
,(s(p(l)) < ,(s(k) < v(k) < v(q(l)). Note that (s)-2P(x-xs,2(8) ) is the difference 
between two partial sums of f, say Si(f,x) - Sj(f,x) where i = ,(s(k), j < v(k). 
Since x E Js and IJsI < 62(9)2 we have Ix-xsl < 62(9)2, thus P(x-xs,2(8) ) > 
log(2(8) ) = (S)2 log2, so Si(f,x) -Sj(f,x) > log2. The rest is really obvious: we 

have (remembering that A(x) 1, since x E [c, d]) 

Sj(T, x)-Si(T, x) I = ISj(Af, x)-Si(Af, x) I 

> |Sj(f,x)-Si(f,x) |-1/2 2n 
> log2-1/2 2n > log2-2 = C > O. O 

REMARK. Note that we have not used property (2) of the lemma in the proof 
of the Il1-completeness of EC. We can use it however to obtain a stronger result. 
Let 

EC1 = {f E C(T): f has partial sums bounded 
(in absolute value) by 1 and f E EC}. 

Then we have 

THEOREM. The set EC1 is H1-complete. In fact there is a Borel function 
f: 2N , C(T) such that T E WF > f (T) E EC1 and T fX WF > f (T) ¢ EC. 

In particular this implies that there is no Borel set B with EC1 C B C EC. We 
will use this in the next section. 
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4. The Zalcwasser ranlz. We will introduce now a natural fI1-norm on EC. 
The ordinal rank attached to each f E EC will measure how "nicely" the Fourier 
series of f converges. 

Let a < b be real numbers and let C[a, b] be the space of continuous functions 
on [a, b] with the uniform metric. Consider then the Polish space X = C[a, b]N of 
all infinite sequences {fn} from C[a,b]. Let 

CN = {{fn} E X: VX E [a, b] ({fn(x)} converges)}. 
Then CN is a complete fI1 subset of X. Zalewasser [Za] and independently Gil- 
lespie and IIurewicz [GH] have assigned to each {fn} E CN a countable ordinal 
number in order to prove by transfinite induction that for every {fn} E CN with 
{llfn llcro} bounded and lim fn = f continuous, there is a sequence of functions {(pn} in C[a, b] each of which is a convex combination of functions in fn (i.e. has the form 

>1 * fnl + * * * + Ak * fnk, >t > 0) Ek=l Ai = 1) such that pn f uniformly. This is 

of course a very special case of Mazur's theorem that in a metrizable locally convex 
space B, if {xn} is a sequence in X which converges weakly to x e B then there 
is a sequence {Yi} of convex combinations of {xn} which converges to x (in the 
topology of B). (See e.g. [R, 3.13].) XJse of ordinal indices in the theory of Banach 
spaces in Szlenk [Sz] (and subsequent papers) seems also to have been motivated 
by the construction of Zalewasser and Gillespie-Hurewicz. 

We will explain now the definition and basic properties of this rank function on 
CN and we will then show that it defines a fI1-norm on CN. By specializing it 
to the Fourier series of a continuous function we will then obtain the II1-norm on 

. 

DEFINITION. Let f = {fn} be a sequence of continuous functions on [a, b]. Let 
P C [a,b] be a closed set and let x E P. We define the value of the oscillation 
function of f on P at x as follows 

Uf(x,P) = infO lEnNsup{lfm(x')-fn(x')l: m > n > p & x' E P & Ix'-xl < b}* 
DEFINITION. For each f = {fn} E C[a,b]N and each E E Q+ (= the set 

of positive rationals) define a "derivative operation" on closed subsets of [a, b] as 
follows: Given a closed set P C [a, b] let 

p f _ p = {x e P: wf (x, P) > s} 
Clearly P£ is a closed subset of P. Thus we can define inductively for each f E 
C[a,b]N, E E Q+, a closed set P£'>f-P£'>, for oe an ordinal, as follows: 

P£ = [a, b]) P£ = (P£ ) ) 

P£ = n P£( for A limit. 
a<S 

Then ow < d t Pt < P (and note also that E < f5t > Pt C P). So for each 
E E Q+ there is a least olf-(E) _ cv(E) < 1 such that P£ = Pg (S) _ P°° for all 
Ol > Ol(E). We have now the following 

FACT 4.1 (ZALCWASSER, GILLESPIE_HUREWICZ). LetfeC[a,b]N. Then 
f e CN ¢ Ve E Q+(pg = 0) 

X 8e E Q+30e < 1(Pt = 0) 
(¢ En30l < w1(Pl/n = 0)) 
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PROOF. (t): It is enough to show the following 

LEMMA 4.1.1. Let f E C[a,b]N and assume 0 7& P is closed and klx E P 
{fn(x)} converges. Then P' is nowhere dense in P, and thus P' C P, for all 
6 E Q+ 

PROOF. Assume that for some E E Q+, there is an open interval I with 0 7& 
InP C P'. Set 

Gp = {x E P: Sm > n > Plfm(z)-fn(x)l > s/2} 

Then Gp is open and dense in I n P. This is because if 0 7& I' n P c I n P, I' an 
open interval, let x E I' n P. Let also 6 > O be so small that {x' - xl < 6 => x' E I'. 
Since x E P' we have that 

suP{lfm(z')-fn(x/)l m > n > p & x' E P & |x'-xl < b} > s/2, 

thus find x' E P, {x' xl < 6 with Ifm(x/) - fn(x/)l > ff/2 for some m > n > p. 

Then clearly x' E Gp, and x' E I' n P. 
By the Baire category theorem nP Gp 7& 0. If x0 E nP Gp then clearly {fn(Xo)} 

diverges, a contradiction. 
(<=): Assume that {fn} ¢ CN. Let x E [a,b] be such that {fn(x)} diverges. 

Choose E > 0 such that for all p there is n > m > p with Ifn(x) - fm(x)l > f5. Then 
clearly (by induction on oe), x E Pa for all oe, thus P°° 7& 0. O 

Thus if f E CN, there is for each E E Q+, a least countable ordinal oe(E) such 
that P(6) = 0. (Obviously oe(E) is a successor ordinal.) Thus we can define a rank 
function for CN as follows: 

DEFINITION. For each f E CN let 

If l = sup{0e(d5) fy E Q+} (= sup{cx(l/n): n E N}) 
= the least ordinal oe for which Pa = 0, for all E E Q+. 

Clearly the smallest possible rank is 1. Sequences with this least possible rank 
should be "nicely" convergent. This is indeed the case. 

FACT 4.2 (ZALCWASSER, GILLESPIE-HuREwIcz). Let f = {fn} E CN. 
Then If l = 1 ¢ {fn} is uniformly convergent. 

PROOF. Assume {fn} converges uniformly. Then for each E > 0 there is p so 
that if n > m > p, we have Ifn (x) - fm (x) | < , all x. Thus clearly Wf (X, [a, b]) = O, 
soP1=0and Ifl=1 

Assume conversely that If I = 1. Then for any x E [a, b], Wf (X: [a, b]) = O. Fix 
E > 0. Let x E [a, b] and find Ex > 0, Px E N such that 

sup{lfm(x )-fn(x )| m > n > Px & {x -xl < Ex} < s. 

By compactness find x1 X . . . X xn E [a, b] such that if x E [a, b] then for some 1 < i < 
n, {x - xil < Ex. Let p = maXlionpx. Then for any x 

SUP | fm (x)-fn (X) | < sup I fm (z)-fn (X) | < z5: m>n>p m>n>pzt 
where {x - xil < Ext Thus {fn} converges uniformly. [] 

The basic definability property of the rank function f § ) If l is expressed in the 
following fact. 
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FACT 4.3. The rank function § If l is a II1-norm on CN. 

The proof is entirely similar to that of Fact 3.6. in [KW] and we omit it here. By specialiging to the partial sums of the Fourier series of a continuous function we obtain a Il1-norm on EC. 
DEFINITION. Let f E EC. The Zalewasser rank of f is the ordinal Iflz = §{sn(f)}|) where Sn(f)(x) = Sn(f,x). 
Since the map f I > {Sn(f)} is clearly a Borel map from C(T) into C[0,2vr]N and f E EC X {Sn(f)} E CN, it follows immediately that we have the following FACT 4 . 4. The Zalcwasser rank is a Il1-norm on EC. From 4.2. we also have 
FACT 4.5. Let f E EC. Then 

If lZ = 1 the Fourier series of f converges uniformly. 
There are some standard examples of continuous functions whose Fourier series converge everywhere but not uniformly. For instance see [Ba, I, p. 125] for Fejer's example of an Fo E EC whose Fourier series converges uniformly on any closed interval avoiding 0 but not on [0,27r]. It follows that IFolz = 2, so this is an example of such a behavior of least complexity. By the method of "condensation of singularities" one can easily produce an example of an F1 E EC such that the Fourier series of F1 converges nonuniformly in any interval. Indeed let r1,r2,.... be the rationals in [0,27r]. Let then Fl(x) = Ek=12-kFo(x-rk); F1 easily works (see [Ba, I, p. 342]). Again however iF1lz = 2. This is because for each £ > O t (-P1{s (F1)}) consists of a finite set of rationals, thus p2 = ,0. One can see however that there must exist functions in EC whose Fourier series have arbitrarily large Zalcwasser rank, i.e. exhibit arbitrarily complicated conver- gence behavior. 

FACT 4.6. For each ordinal oe < W1 there is a continuous function f whose Fourier series converges everywhere and has partial sums bounded by 1, such that If lz ' a 
PROOF. We have seen at the end of §3 that there is no Borel set between EC1 

and EC. Since a IflZ is a Il1-norm on EC, {f E EC: IflZ < a} is a Borel 

subset of EC, so some f E EC1 avoids it, i.e. there is f E EC1 If lZ > a. ° One can obtain further results here. Recall the standard fact (see e.g. [Ba, I, p. 114]) that every differentiable function f E C(T) has everywhere convergent Fourier series. So one can ask whether the convergence behavior of the Fourier series of a differentiable function can be also arbitrarily complicated. This is indeed the case. Letting D = {f E C(T): f is differentiable}, so that D C EC, it will follow from Theorem A.2 in the Appendix that no Borel set B exists with D C B C EC. Thus as before 
FACT 4. 7. For each ordinal a < S1 there is a differentiable function f such thatlflz>ol. 
T. Ramsamujh has verified that if v is a function of bounded variation on II, then l{Sn(F)}l < 2. This points out an interesting qualitative difference in the convergence behavior of the Fourier series of differentiable functions vs. those of bounded variation. 
It follows also from Fact 4.7 that the set of Fourier series of differentiable func- tions is not a Borel set (in co(Z)). Thus there can be no "reasonable" criteria 
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for characterizing when a given Fourier series SaneinX is that of a differentiable 
function. (Again there are well-known Borel criteria (see e.g. [Ba]) for the case of 
functions of bounded variation.) 

5. Remarks and problems. 
5.1. In §4 we have shown that there are functions in EC of arbitrarily large 

Zalewasser rank. It would be interesting to construct explicitly for each ordinal a a 
function in EC of rank exceeding Ol. This would give in particular a different proof 
of the non-Borelness of EC. 

5.2. In §4 we have seen that each of D and EC1 is unbounded in the Zalewasser 
norm. Is this true for D n EC1, i.e. can one construct functions of arbitrarily 
large Zalewasser rank which are both diSerentiable and whose Fourier series have 
bounded partial sums? 

5.3. It is a standard result, as we mentioned earlier, that D C EC. To each 
f E D one associates (see [KW]) an ordinal rank Ifl -- iflD which measures 
the "niceness" of the derivative of f. Thus one would like to find a quantitative 
version of the inclusion D C EC which would relate If lD and If lZ, when f E D. 
If If lD = 1, then ft ls continuous, so clearly If lZ = 1 (since the Fourier series of 
f con+rerges absolutely, therefore uniformly). So it is natural to guess that always 
r E D t If lD > If lz 

To each | E D one can also associate another ordinal, called the Denjoy rank 
of f, say tflDJ, which measures the number of steps it takes to recover f from f/ 
via the Denjoy process (see [Br]). T. Ramsamujh has shown that |j|D > If lDJ. 
Now If lDJ = 1 iff ft is integrable. So again if If lDJ = 1 we have that the Fourier 
series of f is uniformly convergent, so If lZ = 1. Thus it is reasonable to propose 
the following stronger conjecture: 

J E D > [lflDJ > If lz] 
Appendix. We sketch first a simpler proof, using ideas from [EHP], [Ze] (see 

also [Ba, I, pp. 470-479]) of 

THEOREM A1 (SLADKOWSKA [S1]) . Let A E G^a and assume there is B C 
[O, 21r), B E E¢, of logarithmic measure O with A C B. Then there is a continuous 
furLction L E C(T) with lifil < 1 and ItSy(f)ll < 1 for all N, and such that the 
Fourier series of f diverges exactly at the points in A (modulo 27r). 

PROOF. First notice that it is enough to handle the special case when A E Ga 

and B is closed. So assume B F is closed and A = E is a G^. Since E E Ge there 

is a sequence O < ai < ct < bi < 27r such that every x E E belongs to infinitely 
many [ci, di], but every x ¢ E belongs only to finitely many [ai, bi]. The result then 
follows easily from the following. 

LEMMA 1. Let O < a < b < c < d < 27r. For m, n there is a real trigonometric 
polynomial Tm,n = T such that (1) tiTIIoo < 1/2nn (2) itSk(T)tIoo < 1, for all k, (3) 
forsome absolute constantp > O, if x E Fn[c,d], thenmaxp,q iSp(T,x)-Sq(Tx)l > 
p, (4) if x ¢ la, b], then 1Sk(t, x)l < 1/2n for all k, and (5) the frequencies of T have 
absolute values > m. 

Granting this lemma define inductively trigonometric polynomials Ti for ai, ci, 
di, bi, n = i and m > the absolute values of the frequencies of Ty, j < i. Let finally 
f = SiTi This is easily seen to work as in §3. 
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It remains to prove the lemma. For that one needs a construction of real trigono- metric polynomials with certain behavior on a given interval due to Erdos, Herzog . . . . - _ ancl . lraman . S . J . 

LEMMA 2. Let I C [0,21r] be an interval of length L < 4. For each m there is a trigonometric polynomial Qm = Q such that (1) IlQlloo < l/llogLIn (2) |lsk(Q)lloo < 1, (3) for some absolute constant P1 > O, 
maX | Sp (Q) x)-Sq (Q) x) I > P1 for all x E I 

and (4) the frequencaes of Q have absoZute values > m. 
From that the proof of Lemma 1 is completed as follows: Let F C Un In where {Inl = tn < 4, ElillogEnl < 1 and every x E F belongs to infinitely many In's. By Lemma 2 there are trigonometric polynomials Qn having the above properties for In and with frequencies of absolute value between wunX vn where Aln < Z2n < fibn+l < vn+l. Put f = EQn Let A E C(T) be in C°°, A-1 on [c,d], A _ O off [a, b], llAlloo < 1. Then Si(Af, x)-A(x)Si(f, x) ) O uniformly. So choose no > m so that iSi (>f, x)-A(x)St (f, x) | < (1/4 2n) P1 for i > no and all x. Choose n1 > no so that E n1 1/1 log Li i < 1/2n+l . Then for each x E F n [c, d] let ix > nl be such that max/ln1<p,q<l, gSp(f,x)-Sq(f,x)| > P1 By compactness there is il > n with 

x E F n [c, d] > H mpaqx<> |SP(f, x) - Sq(f, x)l > 1/2 
- 

- Put finally T(x) = Sl,i1 (>f,x)-Slln1 (>f,x) Then T = T/6 easily works as in §3. D We finally outline the proof of a strengthening of the result in [Bu2], using ideas from [Ka and Ze]. We state it in a form that is needed for the conclusion concerning the Zalcwasser rank of differentiable functions in §4. 
THEOREM A2. Let E E Ga, F E Fan E C F, F C [O, 27r) and assume F has measure 0. Then there is a continuous function f E C(T) such that the Fourier series of f diverges unboundedly on E and f' (x) exists for every x ¢ E ( in particular the Fourier series of f converges off E). 
PROOF. Again we need the following 
LEMMA. Let H be a closed set of measure 0. Let O < a < c < d < b < 27r. For each E > O, m there is a real trigonometric polynomial TeXm = T such that (1) ITloo < 6n (2) afx E Hn[c) d], then maxp,q ISp(t, x)-Sq(T, x)l > 1/s, (3) if x ¢ [a, b], then ISk (T, x) { < E for all k, (4) if x ¢ [a, b], then l (T(x + h) - T(x) ) /hl < , for all h and (5) the frequencies of T have absolute values > m. 
Granting this lemma the proof can be completed as before. For the proof of the lemma notice that by [Ka and Bul] there is a real function g E C(T) such that the Fourier series of g diverges unboundedly on H. The construction of T then is similar to that in pp. 417-479 of [Ba], starting from that y. Cl It fc)llows from the preceding theorem and its proof that if C is say the Cantor set, and G t: C is a Ge we can associate to G a continuous function f E C(T) with 

x E G > {SN(f, x)} diverges, 
x ¢ G > f'(x) exists. 
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Moreover there is a Borel function c fC such that if c is a code of Ge subset Gc 

of C then fC is the above function for Gc Thus 

GC = 0 > fC E D, 
GC + 0 > fC ¢ EC. 

Since P(c) X ''GC = 0" is complete Il1 this shows that there is no Borel set B 
with D C B C EC. (One can also easily, as in j3, translate this into an argument 
that shows that there is a Borel function F: 2N , C(T) such that 

T E WF > F(T) E D, T ¢ WF > F(T) ¢ EC.) 
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