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Sign-free determinant projector QMC

The determinant QMC has been shown to be an excellent and unbiased approach to deal with strongly correlated
system with Hubbard interactions.[1–8] In the projector algorithm, the ground state wave function |Ψ0〉 can be
obtained using standard projection procedures on a trivial wave function |ΨT 〉, as long as one requires 〈ΨT |Ψ0〉 6= 0.
The expectation value of an observable A is obtained by

〈A〉 = lim
Θ→∞

〈ΨT |e−
Θ
2
HAe−

Θ
2
H |ΨT 〉

〈ΨT |e−ΘH |ΨT 〉
. (1)

The projection operator e−ΘH can be discretized into many time slices e−ΘH = [e−∆τH]M with Θ = ∆τM where
∆τ ≪ 1 and M is the number of time slices with a large integer number; e−∆τH = e−∆τ(H0+HU ) is the imaginary
time-evolution propagator during ∆τ . The noninteracting ground state of H0 is a good candidate for the trial wave
function |ΨT 〉. With this trial wave function, we have confirmed that the determinant projector QMC is in a good
agreement with our exact diagonalization results on a L × L = 3 × 3 system. By the first order Suzuki-Trotter
decomposition, one can decompose e−∆τH as

e−∆τH ≃ e−∆τH0e−∆τHU , (2)

where H0 is the tight-binding Hamiltonian of the generalized Kane-Mele-Hubbard (KMH) model as shown in Eq. (1)
of the main text. HU = U

2

∑

i(ni − 1)2 involves 4 fermionic operators and cannot be represented in terms of single-
particle basis. However, by the discrete SU(2)-invariant Hubbard-Stratonovich transformation, [9] the interacting
imaginary time-evolution operator e−∆τHU (for U > 0) can be decomposed as

e−∆τ U
2
(ni−1)2 =

1

4

∑

l=±1,±2

γ(l)ei
√

∆τ U
2
η(l)(ni−1) +O(∆τ4), (3)

where γ(±1) = 1 +
√
6/3, γ(±2) = 1 −

√
6/3; η(±1) = ±

√

2(3−
√
6) and η(±2) = ±

√

2(3 +
√
6) are 4-component

auxiliary fields determined by Monte Carlo samplings. Ref. [10–12] provide pedagogical introductions about the QMC
method. In this work, we employ ∆τt = 0.05 in all the QMC simulations.
In the determinant algorithm with the Suzuki-Trotter decomposition Eq. (2) and the Hubbard-Stratonovich trans-

formation Eq. (3), the denominator of Eq. (1) reads as [2, 10, 13, 14] (up to a constant factor)

〈ΨT |e−ΘH |ΨT 〉 = 〈ΨT |
M
∏

τ=1

e−∆τHτ |ΨT 〉 = 〈ΨT |
M
∏

τ=1

e−∆τH0e−∆τHU,τ |ΨT 〉 (4)

=
∑

{li,τ}

{

∏

i,τ

γ(li,τ )
∏

σ

Tr
(

M
∏

τ=1

e−∆τ
∑

i,j c
†
i,σ

[Hσ
0
]ijcj,σei

√
∆τ U

2
η(li,τ )(ni,σ−

1
2
)
)}

=
∑

{li,τ}

{

∏

i,τ

γ(li,τ )p[{η(li)}]
}

,
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where
∑

li,τ
runs over possible auxiliary configurations η(li,τ ), where i = 1−N , τ = 1−M ; Hσ

0
is the matrix kernel

of H0 with spin-σ. The probability weight p for a given auxiliary configuration {η(li,τ )} is simply denoted as [15]

p({η}) = det
(

O↑[η(li,τ )]
)

det
(

O↓[η(li,τ )]
)

, (5)

where det
(

Oσ[η(li,τ )]
)

= Tr
(

∏M
τ=1 e

−∆τ
∑

i,j
c
†
i,σ

[Hσ
0
]ijcj,σei

√
∆τ U

2
η(li,τ )(ni,σ−

1
2
)
)

. When p < 0, QMC simulations meet

notorious minus-sign problems.
It has been proven, that at half filling, there exists a particle-hole symmetry in the Kane-Mele-Hubbard model (H0

without t3N terms), such that the probability is always positive-definitive.[13, 14] To show the positiveness of p({η})
in the generalized KMH model, we employ the particle-hole transformation on the H0 and HU with ↓ but remain
those with ↑ unchanged. The particle-hole transformation acts as

ci,σ → ξid
†
i,σ , c†i,σ → ξidi,σ,

where ξi = −1 (ξi = 1) if i belongs to A (B) sublattice. In the Kane-Mele-Hubbard model, upon such a transformation,
the nearest-neighbor tight-binding term turns out to be

−tc†i,↓cj,↓ − tc†j,↓ci,↓

→ −tξiξjdi,↓d
†
j,↓ − tξiξjdj,↓d

†
i,↓ = −t(d†j,↓di,↓ + d†i,↓dj,↓).

Note that the t hopping connects A and B sublattices, so we have (−1)ξiξj = 1. The correspondence spin-up term

on the same 〈i, j〉 bond is −t(c†i,↑cj,↑ + c†j,↑ci,↑). For the second-nearest-neighbor hopping term with spin-down, the
particle-hole transformation acts it as

iλSOc
†
i,↓cj,↓ − iλSOc

†
j,↓ci,↓

→ iλSO(−1)ξiξj(d
†
j,↓di,↓ − d†i,↓dj,↓) = −iλSO(d

†
j,↓di,↓ − d†i,↓dj,↓).

Here the iλSO hopping connects the same sublattices, so we have (−1)ξiξj = −1. The correspondence spin-up term

on the same 〈〈i, j〉〉 bond is −iλSOc
†
i,↑cj,↑ + iλSOc

†
j,↑ci,↑. Thus, under the particle-hole symmetry, the tight-binding

matrix kernel with the first and second nearest-neighbor hopping transforms as H
↓
0
→ H̃

↓
0
= H

↑
0

∗
, and thus the

Kane-Mele-Hubbard model is particle-hole symmetric. For the third-nearest-neighbor hopping t3N , the particle-hole
transformation provides

−t3Nc†i,↓cj,↓

→ −t3Nξiξjdi,↓d
†
j,↓ = −t3Nd†j,↓di,↓

unchanged since the t3N hopping connects A and B sublattices. Therefore, the real-valued third-neighbor hopping
t3N in the generalized KMH model remains H0 particle-hole symmetric at half-filling.
The Hubbard interaction HU on ↓ transforms as

i

√

∆τ
U

2
η(li,τ )(ni,↓ −

1

2
)

→ i

√

∆τ
U

2
η(li,τ )

{

(ξi)
2di,↓d

†
i,↓ −

1

2

}

= −i

√

∆τ
U

2
η(li,τ )(d

†
i,↓di,↓ −

1

2
),

which is the complex conjugate of HU on ↑. Consequently, upon the particle-hole symmetry, one can have det(O↓) =
det(O↑)

∗ and the probability weight p = det(O↑) det(O↓) = | det(O↑)|2 being real positive. The QMC simulation in
the half-filled generalized KMH model is sign-free and numerically exact.

single particle Green’s functions and Z2 invariant

Without sign problems, the QMC samplings provide highly accurate not only in equal-time Green’s functions but
also in time-displaced Green’s functions[5, 16]

Gσ(~r, τ) = 〈Ψ0|cσ(~r, τ)c†σ(0)|Ψ0〉,
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where τ > 0. By performing double Fourier transformation we obtain the Green’s functions in momentum space and
with Matsubara frequency, i. e. Gσ(k, iωn).
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FIG. 1: (Color online) The Brillouin zone of the honeycomb lattice. The time-reversal invariant momentum (TRIM) points
labeled by the green dots are Γ = (0, 0), M1,2 = (± π

√

3a
, π
3a
), and M3 = (0, 2π

3a
). The open and solid circles denote graphene

Dirac points K1,2 = (± 4π

3
√

3a
, 0)

.

It has been shown that the zero frequency Green’s functions are able to evaluate the Z2 invariant index in the
interacting case.[17] The Z2 invariant is determined by the parity of the eigenvectors of the inverse Green’s functions
on time-reversal invariant momentum (TRIM) points which are obtained from

[G(ki, 0)]
−1|µi〉 = µi|µi〉.

Note that since there still exists an inversion symmetry in the generalized KMH model, the inverse Green’s functions
and the parity operator have simultaneous eigenvectors, i.e. P |µi〉 = ηµi

|µi〉. In the (generalized) KMH model,
the parity operator exchanges A, B sublattices independent of spin index. Therefore, with the spinor convention
Ψ† = (c†A,↑ c†B,↑ c†A,↓ c†B,↓), the parity operator is defined as P = I⊗σx.[18] In the QMC simulations, the particle-hole
symmetry provides G↑(ki, 0) = G↓(ki, 0), while ki is at TRIM, i.e., k = −k+G for a reciprocal vectors G. Therefore,
we can directly diagonalize Gσ(ki, 0) = [−Hk − Σ(ki, 0)]

−1 instead of inverse Green’s functions for all ki ∈ TRIM
points

Gσ(ki, 0)|µ̃i〉 = µ̃i|µ̃i〉,

and choose the eigenvectors associated with positive eigenvalues (µ̃i > 0, denoting occupied bands and are called
right-zero [19]). In the honeycomb lattice, the TRIM points are Γ, M1,2,3 as depicted in Fig. 1. Then we can employ
the formalism proposed by Fu and Kane[18, 19] to evaluate the Z2 invariant as

(−1)ν =
∏

ki∈TRIM

η̃µi
, (6)

where η̃µi
= 〈µ̃i|P |µ̃i〉. When ν = 0 for a trivial insulator, whereas ν = 1 for a Z2 topological insulator. In the

case of U = 0, η̃µi
= ±1. In the cases of finite U , we find that 〈η̃µi

〉 = ±1 can be still obtained by sufficient QMC
simulations. As t3N approaches the topological critical point, (−1)ν will be smeared out and is laid between ±1. In
this case, more QMC samplings are required for more accurate values.
Note that since G↑(ki, 0) = G↓(ki, 0), and G(ki, 0) [= G↑(ki, 0)⊕G↓(ki, 0)] and P (= I⊗σx) have the simultaneous

eigenvector sets, one has a relation:

G↑,↓(ki, 0) = αki
σx. (7)

In the context we show that in addition to the Z2 invariant, the proportional coefficient αk also plays another
role to characterize the Z2 topological insulator/trivial insulator phase transition and even is more sensitive than ν
numerically. Upon the topological phase transition, the bulk gap will close at the TRIM points. Thus, the zero-
frequency single-particle Green’s functions are divergent on the poles. [20]
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The relation Eq. (7) should be expected both in the noninteracting and interacting cases. However, as U 6= 0
Eq. (7) is not guaranteed in a single measurement in the QMC simulations. The proportionality relation between
the zero-frequency Green’s functions and the parity matrix σx can be recovered only upon enough samplings. To
interpret this, we present the 6× 6 benchmark results for the matrix elements of the zero-frequency Green’s functions
at ki = M1 as a function of the number of measurements in Figs. 2. gij = [G(M1, 0)]ij and m denotes the number
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FIG. 2: (Color online) The matrix elements of the zero-frequency Green functions G(M1, 0) vs the number of samplings m at
(a) t3N = 0.32t and (b) t3N = 0.37t. λSO = 0.4t and U = 4t. Re[gij ] and Im[gij ] denote the real part and imaginary part of
[G(M1, 0)]ij , respectively; ||gii|| denotes the diagonal component of G(M1, 0) in magnitudes.

of measurements. λSO = 0.4t and U = 4t are used. In this case, the topological phase boundary is identified at
t3N = 0.348t. We choose the value of t3N close to the critical point. Fig. 2 (a) shows t3N = 0.32t in the Z2 topological
insulator phase and (b) for t3N = 0.37t in the trivial insulator. From the panels, it is evident that the structure of the
Green’s function does not satisfy Eq. (7) without sufficient samplings. At small m, the real parts of g12 and g21 are
not equal; furthermore, g12 and g21 have imaginary parts, and both of g11 and g22 are finite. However, one can see
that, upon sampling sufficient times, Re[g12] ≃ Re[g21], and meanwhile Im[g12], Im[g21], ||g11(22)|| go to zero. Thus,
in the m → ∞ limit, Eq. (7) is recovered. Also note that, αM1

= Re[g12] in both cases indicates opposite sign as
observed by the signature of the topological phase transition. Moreover, by such m scaling, we also confirm that, the
value of the Z2 invariant also monotonically approaches to ±1. In our paper, we choose the value of m large enough
to determine the σx structure and extract the coefficients, i.e., αki

in Eq. (7).

Critical Hubbard interactions for antiferromagnetism

In the generalized KMH model, a strong Hubbard interaction can also derive the antiferromagnetic (AF) ordering,
due to the bipartite lattice structure. Similarly to the KMH model (with t3N = 0) [13, 21, 22], in the generalized
KMH model, finite values of λSO also break the SU(2) symmetry down to the U(1) symmetry and the dominant
magnetism behavior lies on x-y plane. The planar spin structure factor can be defined as[13, 22]

SAF =
∑

~r,~rj

(−1)~ri+~rj 〈S+
i S−

j + S−
i S+

j 〉.

(−1)~ri = 1(−1) for i ∈ A(B) sublattice. This is similar to determining the Néel type ordering using the antiferromag-
netic spin structure factor at k = (π, π) in a square lattice.
To identify whether there exists the antiferromagnetism in the thermodynamic limit, we study the finite-size scaling

behavior of SAF at L → ∞. Generally speaking, the spin-orbital coupling will suppress AF ordering, and larger λSO’s
are associated with larger Uc’s to induce the AF ordering. Note that, due to the presence of third nearest neighboring
hopping t3N which favors the Néel pattern in the second order perturbation, the threshold interaction Uc in the
generalized KMH model is smaller than that in the KMH model.
The QMC results on SAF /N vs 1/L are shown in Figs. 3. In (a), we can see that, for λSO = 0.4t, U = 4t is not

sufficiently large to induce the AF ordering. At U = 5t, SAF is enhanced and the U value is close to the critical
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FIG. 3: (Color online) (a)-(c) The finite size scaling of the antiferromagnetic spin structure factor SAF/N vs 1/L at λSO = 0.4t
and different U = 4t, 5t, 6t. (d) SAF /N vs 1/L at λSO = t and U = 6t. Here N = 2× L2.

value to drive the AF ordering. In (c) under the interaction U = 6t, SAF saturates to a finite value at 1/L → 0,
suggesting that the AF ordering exists in the thermodynamic limit. Fig. 3 (d) depicts the case of U = 6t but at
λSO = t. Compared to (c), where an AF ordering is induced, the structure factor in (d) still goes to zero in the
L → ∞ limit. Thus, stronger spin-orbital couplings obviously suppress the existence of AF ordering and raise values
of critical interactions Uc in the generalized KMH model.

Single-particle excitation

In this subsection, we present the approach to evaluate the single-particle excitation (charge gap) ∆c in the QMC
simulations. The charge gap is defined as the energy cost to add a particle into (or remove a particle from) the system
composed of Ne fermions. Supposed that, Ĥ |ΨNe+1

n 〉 = ENe+1
n |ΨNe+1

n 〉 and Ĥ|ΨNe
n 〉 = ENe

n |ΨNe
n 〉, then the charge

gap reads ∆c ≡ ENe+1
0 − ENe

0 . It can be obtained via calculating the on-site time-displaced Green’s functions which
are written as

G(~r = 0, τ) =
1

N

∑

i,σ

Gσ(i, i; τ)

=
1

N

∑

i,σ

〈ΨNe

0 |cσ(i, τ)c†σ(i)|ΨNe

0 〉

=
1

N

∑

i,σ

〈ΨNe

0 |eτĤcσ(i)e
−τĤc†σ(i)|ΨNe

0 〉.

=
1

N

∑

n,i,σ

e−τ(ENe+1
n −E

Ne
0 )|〈ΨNe

0 |cσ(i)|ΨNe+1
n 〉|2.

Therefore, at large τ , we have G(~r = 0, τ) ∼ e−τ∆c and then one can find the slope of lnG(~r = 0, τ) at large τ to
determine the value of ∆c. Refs. [5, 12, 16, 23] provide the detailed descriptions. The evaluation of the excitation by
the on-site single-particle Green’s function can determine the value of the single-particle excitation without concerning
about specific momentum points, e.g. ∆c(k). (Note that, in the noninteracting limit, the gap of the KMH model
with λ = 0 closes at the Dirac points K1,2, whereas the gap of the generalized KMH model with tc closes at M1,2,3.)
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