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We report a search for CP violation in the decay modes D� ! K0
SK

�, D�
s ! K0

SK
�, and D�

s ! K0
S�

�

using a data set corresponding to an integrated luminosity of 469 fb�1 collected with the BABAR

detector at the PEP-II asymmetric energy eþe� storage rings. The decay rate CP asymmetries, ACP,

are determined to be ðþ0:13� 0:36ðstatÞ � 0:25ðsystÞÞ%, ð�0:05� 0:23ðstatÞ � 0:24ðsystÞÞ%, and

ðþ0:6� 2:0ðstatÞ � 0:3ðsystÞÞ%, respectively. These measurements are consistent with zero, and also

with the Standard Model prediction [ð�0:332� 0:006Þ% for the D� ! K0
SK

� and D�
s ! K0

SK
� modes,

and ðþ0:332� 0:006Þ% for the D�
s ! K0

S�
� mode]. They are the most precise determinations to date.

DOI: 10.1103/PhysRevD.87.052012 PACS numbers: 11.30.Er, 13.25.Ft, 14.40.Lb

I. INTRODUCTION

The search for CP violation (CPV) in charm decays

provides a sensitive probe of physics beyond the Standard

Model (SM). Owing to its suppression within the SM, a

significant observation of direct CPV in charm decays

would indicate the possible presence of new physics effects

in the decay processes. In a previous article [1], we re-

ported a precise measurement of the CP asymmetry in the

D� ! K0
S�

� mode, where the measured asymmetry was

found to be consistent with the value expected from indi-

rect CPV in the K0 system.
The LHCb and CDF Collaborations have recently re-

ported evidence for CPV in charm decays by measuring
the difference of CP asymmetries in the D0 ! KþK� and
D0 ! �þ�� channels [2,3], which is mainly sensitive to
direct CPV. The size of the world average direct CP
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asymmetry difference, ð�6:56� 1:54Þ � 10�3 [4], sug-
gests either a significant enhancement of SM penguin
amplitudes or of new physics amplitudes (or both) in
charm decays [5]. Improved measurements of the CP
asymmetries in the individual two-body modes, along
with measurements in other channels, are needed to deter-
mine the nature of the contributing amplitudes.

We present herein measurements of the decay rate CP
asymmetry, ACP, defined as

ACP ¼ �ðDþ
ðsÞ ! fÞ � �ðD�

ðsÞ ! �fÞ
�ðDþ

ðsÞ ! fÞ þ �ðD�
ðsÞ ! �fÞ ; (1)

in the decay modes D� ! K0
SK

�, D�
s ! K0

SK
�, and

D�
s ! K0

S�
�. Previous measurements of ACP in these

channels have been reported by the CLEO-c [6] and
Belle Collaborations [7]. As for the ACP measurement
in D� ! K0

S�
�, we expect an ACP asymmetry of

ð�0:332� 0:006Þ% [8] resulting from CPV in K0 � �K0

mixing [9]. The sign of the K0-induced asymmetry is
positive (negative) if a K0 ( �K0) is present in the corre-
sponding tree-level Feynman diagram. Because it is iden-
tified by its �þ�� decay, the intermediate state is a
coherent mix of K0

S and K0
L amplitudes. It has been shown

in Ref. [10] that theK0
S � K0

L interference term gives rise to

a measured CP asymmetry that depends on the range in
proper time over which the decay rates are integrated and
on the efficiency for the reconstruction of the intermediate
state as a function of its proper flight time.

For this analysis we employ a technique similar to that
used for our measurement of CPV in the D� ! K0

S�
�

mode [1]. As a result, reference to our previous publication
is given for the description of some of the analysis details.

II. THE BABAR DETECTOR
AND EVENT SELECTION

The data used for these measurements were recorded at
or near the �ð4SÞ resonance by the BABAR detector at the
PEP-IIstorage rings and correspond to an integrated lumi-
nosity of 469 fb�1. Charged particles are detected, and
their momenta measured, by a combination of a silicon
vertex tracker, consisting of five layers of double-sided
detectors, and a 40-layer central drift chamber, both oper-
ating in a 1.5 T axial magnetic field. Charged-particle
identification is provided by specific ionization energy
loss measurements in the tracking system and by the
measured Cherenkov angle from an internally reflecting
ring-imaging Cherenkov detector covering the central re-
gion of the detector. Electrons are detected by a CsI(Tl)
electromagnetic calorimeter. The BABAR detector, and the
coordinate system used throughout, are described in detail
in Refs. [11,12]. We validate the analysis procedure using
Monte Carlo (MC) simulation based on GEANT4 [13]. The
MC samples include eþe� ! q �qðq ¼ u; d; s; cÞ events,
simulated with JETSET [14] and B �B decays simulated

with the EVTGEN generator [15]. To avoid potential bias
in the measurements we finalize the event selection for
each channel, as well as the procedures for efficiency
correction, fitting, and the determination of the systematic
uncertainties and possible biases in the measurements,
prior to extracting the value of ACP from the data.
Signal candidates are reconstructed by combining a K0

S

candidate, reconstructed in the decay mode K0
S ! �þ��,

with a charged pion or kaon candidate. A K0
S candidate is

reconstructed from two oppositely charged tracks with an
invariant mass within a �10 MeV=c2 interval centered on
the nominalK0

S mass [8], which is approximately�2:5� in

the measuredK0
S mass resolution. The �2 probability of the

�þ�� vertex fit must be greater than 0.1%. Motivated by
MC studies, we require the measured flight length of the
K0

S candidate to be at least 3 times greater than its uncer-

tainty, to reduce combinatorial background. A recon-
structed charged-particle track that has pT � 400 MeV=c
is selected as a pion or kaon candidate, where pT is the
magnitude of the momentum in the plane perpendicular to
the z axis (transverse plane). In our measurement, we
require that a pion candidate not be identified as a kaon,
a proton, or an electron, and that a kaon candidate be
identified as a kaon, and not as a pion, a proton, or an
electron. Identification efficiencies and misidentification
rates for electron, pions, kaons, and protons with
2 GeV=c momentum in the laboratory frame are reported
in Table I. The criteria used to select pion or kaon candi-
dates are very effective in reducing the charge asymmetry
from track reconstruction and identification, as inferred
from studying the data control samples described below.
A vertex fit to the whole decay chain, constraining the D�

ðsÞ
production vertex to be within the eþe� interaction region,
is then performed [16]. We retain only D�

ðsÞ candidates

having a �2 probability for this fit greater than 0.1%, and
an invariant mass mðK0

ShÞ, h ¼ �, K, within a

�65 MeV=c2 interval centered on the nominal D�
ðsÞ mass

[8], which is approximately equivalent to �8� in the
measured D�

ðsÞ mass resolution.

TABLE I. Identification efficiencies and misidentification
rates for electron, pions, kaons, and protons with 2 GeV=c
momentum in the laboratory frame. The values for kaons on
the third row refers to the identification criterion used to reject
kaons from the pion sample, while the values on the fourth row
to the criterion used in the kaon selection.

Misidentification rate [%]

Particle Efficiency [%] �� K�

e� 91 0.04 <0:2
�� 88 not applicable 1

K� (applied to ��) 91 1 not applicable

K� (applied to K�) 99 8 not applicable

p� 80 0.2 0.2
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We require further that the magnitude of the D�
s candi-

date momentum in the eþe� center-of-mass system, p�, be
between 2.6 and 5:0 GeV=c, in order to suppress combi-
natorial background from B �B events. For theD� ! K0

SK
�

mode, the MC simulated sample shows that retaining
candidates with p� between 2.0 and 5:0 GeV=c allows
signal candidates from B-meson decays, without introduc-
ing an excessive amount of combinatorial background.
Assuming that CPT is conserved, there is no contribution
to ACP from CP violation in B meson decays from
Standard Model processes. Additional background rejec-
tion is obtained by requiring that the impact parameter of
the D�

ðsÞ candidate with respect to the beam spot [11],

projected onto the transverse plane, be less than 0.3 cm,
and that the D�

ðsÞ proper decay time, txy, be between �15

and 35 ps. The decay time is measured using Lxy, defined

as the distance of the D�
ðsÞ decay vertex from the beam spot

projected onto the transverse plane.
In order to further optimize the sensitivity of the ACP

measurements, we construct a multivariate algorithm,
based on seven discriminating variables for each D�

ðsÞ
candidate: txy, Lxy, p�, the momentum magnitude and

component in the transverse plane for the K0
S candidate,

and also for the pion or kaon candidate. For the D� !
K0

SK
� and D�

s ! K0
SK

� modes the multivariate algorithm

with the best performance is a boosted decision tree [17],
while for the D�

s ! K0
S�

� mode the best algorithm is a

projective likelihood method [17]. The final selection cri-
teria, based on the outputs of the multivariate selectors, are
optimized using truth-matched signal and background can-
didates from the MC sample. For the optimization, we

maximize the S=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Sþ B
p

ratio, where S and B are the
numbers of signal and background candidates, respec-
tively, with invariant mass within �30 MeV=c2 of the
nominal D�

ðsÞ mass, which is approximately �3� in the

measured mass resolution.

III. SIGNAL YIELD AND ASYMMETRY
EXTRACTION

For each mode the signal yield is extracted using a
binned maximum likelihood (ML) fit to the distribution
of the invariant mass mðK0

ShÞ for the selected D�
ðsÞ candi-

dates. The total probability density function (PDF) is the
sum of signal and background components. The signal
PDF is modeled as a sum of two Gaussian functions for
theD�

ðsÞ ! K0
SK

� modes, and as a single Gaussian function

for the D�
s ! K0

S�
� mode. The background PDF is taken

as the sum of two components: a distribution describing the
invariant mass of misreconstructed charm meson decays,
and a combinatorial background modeling the mass
distribution from other sources. For the D� ! K0

SK
�

(D�
s ! K0

S�
�) mode the charm background is mainly

from the tail of the invariant mass distribution for
D�

s ! K0
SK

� (D� ! K0
S�

�) candidates. For the D�
s !

K0
SK

� mode, the misreconstructed charm background

originates mainly from D� ! K0
S�

� decays for which

the �� is misidentified as a K�. Assigning the wrong
mass to the pion shifts the reconstructed invariant mass,
and the resulting distribution is a broad peak with
mean value close to the D�

s mass. For each mode, the
invariant mass distribution due to charm background is
modeled using a histogram PDF obtained from a MC
sample of simulated charm background decays. The com-
binatorial background is described by a first(second)-order
polynomial for the D�

s ! K0
S�

� mode (D� ! K0
SK

�
and D�

s ! K0
SK

� modes). The fits to the mðK0
ShÞ

distributions yield ð159:4� 0:8Þ � 103 D� ! K0
SK

� de-

cays, ð288:2� 1:1Þ � 103 D�
s ! K0

SK
� decays, and

ð14:33� 0:31Þ � 103 D�
s ! K0

S�
� decays. The data and

the fit results are shown in Fig. 1. All of the PDF parame-
ters are extracted from fits to the data.
For each channel, we determine ACP by measuring the

signal yield asymmetry A defined as
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FIG. 1 (color online). Invariant mass distribution for (a) D� ! K0
SK

�, (b) D�
s ! K0

SK
�, and (c) D�

s ! K0
S�

� candidates (points
with error bars). The solid curve shows the result of the fit to the data. The dashed curve represents the sum of all background
contributions, while the dotted curve indicates combinatorial background only.
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A ¼
NDþ

ðsÞ
� ND�

ðsÞ

NDþ
ðsÞ
þ ND�

ðsÞ

; (2)

where NDþ
ðsÞ

(ND�
ðsÞ
) is the number of Dþ

ðsÞ (D�
ðsÞ) decays

determined from the fit to the invariant mass distribution.
The asymmetry A contains two contributions in addition to
ACP, namely the forward-backward (FB) asymmetry (AFB),
and a detector-induced component. We measure AFB

together with ACP using the selected data set, while we
correct the data for the detector-induced component using
coefficients derived from a control sample.

IV. CORRECTION OF DETECTOR-RELATED
ASYMMETRIES

We use a data-driven method, described in detail in
Ref. [1], to determine the charge asymmetry in track
reconstruction as a function of the magnitude of the track
momentum and its polar angle in the laboratory frame. The
method exploits the fact that�ð4SÞ ! B �B events provide a
sample evenly populated with positive and negative tracks,
free of any physics-induced asymmetries. The off-
resonance momentum distribution is subtracted from the
on-resonance one, to remove any contribution from
continuum, for which there is a FB asymmetry in the
center-of-mass frame. This sample is used to compute
the detector-related asymmetries in the reconstruction of
charged-particle tracks. Starting from a sample of
50:6 fb�1 of data collected at the �ð4SÞ resonance and
an off-resonance data sample of 44:8 fb�1, we obtain a
large sample of charged-particle tracks and apply the same
charged pion or kaon track selection criteria used in the
reconstruction of the D�

ðsÞ ! K0
SK

� and D�
s ! K0

S�
�

modes. Then, after subtracting the off-resonance contribu-
tion from the on-resonance sample, we obtain a sample of
more than 120� 106 pion candidates, and 40� 106 kaon
candidates, originating from �ð4SÞ decays. We use the full
off-resonance sample and an equivalent luminosity for the
on-resonance sample, because, due to the subtraction pro-
cedure, including additional data in the on-resonance sam-
ple does not improve the statistical error on the correction
ratios mentioned below. These candidates are then used to
compute the efficiency ratios for positive and negative
pions and kaons. The ratio values and their statistical errors
for pions and kaons are shown in Figs. 2 and 3, respec-
tively. For the D�

ðsÞ ! K0
SK

� (D�
s ! K0

S�
�) modes, the

D�
ðsÞ (D

�
s ) yields, in intervals of kaon (pion) momentum

and cosine of its polar angle, cos�, are weighted with the
kaon (pion) efficiency ratios to correct for the detection
efficiency differences between Kþ and K� (�þ and ��).
Momentum and cosine of its polar angle intervals are not
uniform in order to have similar statistics, and therefore
similar correction uncertainty, in each interval. Interval
sizes vary from (0:05 GeV=c, 0.06) to (4:4 GeV=c, 0.96),
where the first number is the momentum interval, and the

second its cosine of polar angle interval. The largest
correction is approximately 1% for pions and 2% for
kaons. After correcting the data for the detector-induced
component only AFB and ACP contribute to the measured
asymmetry A.
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FIG. 3 (color online). (Top) The ratio between the detection
efficiency for Kþ and K�, and (bottom) the corresponding
statistical errors. The values are computed using the numbers
of Kþ and K� tracks in the selected control sample.
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FIG. 2 (color online). (Top) The ratio between the detection
efficiency for �þ and ��, and (bottom) the corresponding
statistical errors. The values are computed using the numbers
of �þ and �� tracks in the selected control sample.
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V. EXTRACTION OF ACP AND AFB

Neglecting higher-order terms that contain ACP and AFB,
the resulting asymmetry can be expressed simply as the
sum of the two. Given that AFB is an odd function of
cos ��D, where ��D is the polar angle of the D�

ðsÞ candidate
momentum in the center-of-mass frame, ACP and AFB can
be written as a function of j cos��Dj as follows:

ACPðj cos ��DjÞ ¼
Aðþj cos��DjÞ þ Að�j cos��DjÞ

2
(3)

and

AFBðj cos��DjÞ ¼
Aðþj cos ��DjÞ � Að�j cos ��DjÞ

2
; (4)

where Aðþj cos ��DjÞ ½Að�j cos��DjÞ� is the measured
asymmetry for the D�

ðsÞ candidates in a positive (negative)

cos ��D interval.
A simultaneous ML fit to the Dþ

ðsÞ and D�
ðsÞ invariant

mass distributions is carried out to extract the signal yield
asymmetry in each of ten equally spaced cos ��D intervals,
starting with interval 1 at ½�1:0;�0:8�. The PDF model
that describes the distribution in each subsample is the
same as that used in the fit to the full sample, but the

following parameters are allowed to float separately in
each subsample (referred to as split parameters): the yields
for signal, charm background and combinatorial candi-
dates; the asymmetries for signal and combinatorial can-
didates; the width, and the fraction of the Gaussian
function with the larger contribution to the signal PDF;
and the first-order coefficient of the polynomial that mod-
els the combinatorial background. For the D� ! K0

SK
�

mode the yields for the charm background candidates in
intervals 1, 2, and 3 were fixed to 0 to obtain a fully
convergent fit. Since interval 10 contains the smallest
number of candidates, we use a single Gaussian function
to model the signal PDF for the D�

ðsÞ ! K0
SK

� modes. For

theCP asymmetry of charm background candidates we use
the same floating parameters as for the signal candidates,
because the largest source of CP asymmetry for both
samples is due to CPV in K0 � �K0 mixing. For the
D�

s ! K0
S�

� mode, where the primary charm background

channel, D� ! K0
S�

�, has the same magnitude but

opposite-sign asymmetry due to K0 � �K0 mixing, we use
a separate parameter for the asymmetry of the charm
background candidates. To achieve a more stable fit, if
the fit results for a split parameter are statistically compat-
ible between two or more subsamples, the parameter is
forced to have the same floating value among those sub-
samples only. For the D�

s ! K0
S�

� mode the width of the
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FIG. 4. CP asymmetry, ACP, for (a) D
� ! K0

SK
�, (b) D�

s ! K0
SK

�, and (c) D�
s ! K0

S�
� as a function of jcos��Dj in the data

sample. The solid line represents the central value of ACP and the gray band is the�1� interval, both obtained from a �2 minimization
assuming no dependence on jcos��Dj. The corresponding forward-backward asymmetries, AFB, are shown in (d)–(f).
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first Gaussian function for the signal PDF is set to the same
floating value in intervals 1, 2, 3, and 4. The first-order
coefficient of the polynomial describing the combinatorial
background is set to the same floating value in intervals
4–8 (D� ! K0

SK
�), in intervals 4–8 (D�

s ! K0
SK

�),
and in intervals 2–7 (D�

s ! K0
S�

�). The final fit contains

70, 80, and 64 free parameters for theD� ! K0
SK

�,D�
s !

K0
SK

�, and D�
s ! K0

S�
� modes, respectively.

The ACP and AFB values for the five jcos ��Dj bins are
shown in Fig. 4 for the three decay modes. The weighted
average of the five ACP values is ð0:16� 0:36Þ% for the
D� ! K0

SK
� mode, ð0:00� 0:23Þ% for D�

s ! K0
SK

�,
and ð0:6� 2:0Þ% for D�

s ! K0
S�

�, where the errors are

statistical only.
We perform two tests to validate the analysis procedure

for each channel. The first involves generating 5000 toy
MC experiments with a statistics equal to data using the
PDF and the parameters obtained from the fit to data.
After extracting ACP from each experiment, for the D� !
K0

SK
� and D�

s ! K0
SK

� modes, we deduce from the

mean of the ACP pull distributions the presence of a small
bias in the fitted value of each fit parameter (the means
are �0:036� 0:014 and þ0:041� 0:014, respectively).
To account for this effect we apply a correction to the
final values equal to þ0:013% for the D� ! K0

SK
�

mode, and �0:01% for the D�
s ! K0

SK
� mode. The

ACP pull distributions show that the fit provides an accu-
rate estimate of the statistical error for all the modes. The
second test involves fitting a large number of MC events
from the full BABAR detector simulation. We measure
ACP from this MC sample to be consistent with the
generated value of zero.

VI. SYSTEMATICS

The main sources of systematic uncertainty are listed in
Table II for each decay mode, together with the overall
uncertainties. The primary sources of systematic uncer-
tainty are the detection efficiency ratios used to weight
the D�

ðsÞ yields, and the contributions from misidentified

particles in the data control sample used to determine the
charge asymmetry in track reconstruction efficiency.

The technique used to remove the charge asymmetry due
to detector-induced effects produces a small systematic
uncertainty in the measurement of ACP due to the statistical
error in the relative efficiency estimation. This systematic
uncertainty depends only on the type of charged particle
(pion or kaon) in the final state, and not on the initial state.
To estimate the systematic uncertainty on ACP resulting
from this source, the relative charged-particle efficiency in
each interval of momentum and cos� is randomly drawn
from a Gaussian distribution whose mean is the nominal
relative efficiency in that interval, and where the root-
mean-squared (rms) deviation is the corresponding
statistical error. For each mode, we generate 500 such
charged-particle relative-efficiency distributions and use
them to obtain 500 ACP values, following the procedure
described earlier to determine the nominal value of ACP.
The rms deviation of these 500 values from the nominal
ACP is taken to be the systematic uncertainty. For the
D�

ðsÞ ! K0
SK

� modes, the estimated systematic uncertainty

is 0.23%. For the D�
s ! K0

S�
� mode, we assign the same

systematic uncertainty, 0.06%, as that estimated for the
D� ! K0

S�
� mode in Ref. [1].

The small fraction of misidentified particles in the ge-
neric track sample can introduce small biases in the esti-
mation of the efficiencies, and subsequently in the ACP

measurements. Because of the good agreement between
data and MC samples, we can use the simulated MC
candidates to measure the shift in the ACP value from the
fit when the corrections are applied, and when they are not.
Again, this contribution depends only on the type of the
charged-particle track. Hence, for the D�

s ! K0
S�

� mode,

we assume the same shift obtained in Ref. [1], namely
þ0:05%. By fitting the D�

s ! K0
SK

� MC sample when

the corrections are applied, and again when not, we
obtain a shift of þ0:05% and we assume this for both the
D�

s ! K0
SK

� and D� ! K0
SK

� modes. For all the modes,

we shift the measured ACP by this correction value and
then, conservatively, include the magnitude of this shift as
a contribution to the systematic uncertainty.
Using MC simulation, we evaluate an additional system-

atic uncertainty of�0:01% due to a possible charge asym-
metry present in the control sample before applying the

TABLE II. Summary of the systematic uncertainty contributions for the ACP measurement in each mode. The values are absolute
uncertainties, even though given as percentages. The total value corresponds to the sum in quadrature of the individual contributions.

Systematic uncertainty D� ! K0
SK

� [%] D�
s ! K0

SK
� [%] D�

s ! K0
S�

� [%]

Efficiency of particle-identification selectors 0.05 0.05 0.05

Statistics of the control sample 0.23 0.23 0.06

Misidentified tracks in the control sample 0.01 0.01 0.01

cos ��D interval size 0.04 0.02 0.27

K0 � �K0 regeneration 0.05 0.05 0.06

K0
S � K0

L interference 0.015 0.014 0.008

Total 0.25 0.24 0.29
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selection criteria. Another source of systematic uncertainty
is due to the choice of the cos ��D interval size in the
simultaneous ML fit. The systematic uncertainty is
taken to be the largest absolute difference between the
nominal ACP extracted using ten cos ��D intervals and that
obtained when the fit is performed using either 8 or 12
intervals in cos��D. This is the dominant source of system-
atic uncertainty for the D�

s ! K0
S�

� mode, as shown in

Table II.
We also consider a possible systematic uncertainty due

to the regeneration of neutral kaons in the material of the
detector. The K0 and �K0 mesons produced in the decay
processes can interact with the material in the tracking
volume before they decay. Following a method similar to
that described in Ref. [18], we compute the probability for
a K0 or a �K0 meson to interact inside the BABAR tracking
system and estimate systematic uncertainties of 0.05%
(D�

ðsÞ ! K0
SK

�) and 0.06% (D�
s ! K0

S�
�).

Although the intermediate state is labeled as a K0
S, we

apply a correction term to the measured ACP to include the
effect of K0

S � K0
L interference in the intermediate state

[19]. This correction term depends on the proper time
range over which decay distributions are integrated, and
on the efficiency of the reconstruction of the �þ�� final
state as a function of proper time. We compute the recon-
struction efficiency distribution as a function of proper
time using MC truth-matched K0

S decays after the full

selection. Following the method in Ref. [19] we estimate
the asymmetry-correction term �ACP defined as

�ACP ¼ Acorr
CP � Afit

CP; (5)

where Afit
CP is the value obtained from the fit and Acorr

CP is the

corrected value. The correction terms are reported in
Table III and, to be conservative, we include their absolute
values as contributions to the systematic uncertainty
estimates. We also estimate the correction factor for the
D� ! K0

S�
� mode using the K0

S reconstruction efficiency

distribution after the selection detailed in Ref. [1] and
obtain the value þ0:002%. All these corrections are rather
small, even compared to those estimated in a similar
analysis [20]. The smaller values of the corrections in the
present analysis are due to the improved efficiency for K0

S

mesons with short decay times that we obtain by applying
the requirement on the decay length divided by its uncer-
tainty, rather than on the decay length alone.

VII. CONCLUSION

In conclusion, we measure the directCP asymmetry ACP

in the D� ! K0
SK

�, D�
s ! K0

SK
�, and D�

s ! K0
S�

�
modes using approximately 159000, 288000, and 14000
signal candidates, respectively. The measured ACP value
for each mode is reported in Table III, where the first
errors are statistical and the second are systematic. In the
last row of the table, we also report the ACP values after
subtracting the expected ACP contribution for each mode
due to K0 � �K0 mixing. The results are consistent with
zero, and with the SM prediction, within 1 standard
deviation.
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TABLE III. Summary of the ACP measurements. Where reported, the first uncertainty is statistical, and the second is systematic.

D� ! K0
SK

� D�
s ! K0

SK
� D�

s ! K0
S�

�

ACP value from the fit ðþ0:155� 0:360Þ% ð0:00� 0:23Þ% ðþ0:6� 2:0Þ%
Correction for the bias from toy MC experiments þ0:013% �0:01% not applied

Correction for the bias in the particle-identification

selectors

�0:05% �0:05% �0:05%

Correction for the K0
S � K0

L interference (�ACP) þ0:015% þ0:014% �0:008%
ACP final value ðþ0:13� 0:36� 0:25Þ% ð�0:05� 0:23� 0:24Þ% ðþ0:6� 2:0� 0:3Þ%
ACP contribution from K0 � �K0 mixing ð�0:332� 0:006Þ% ð�0:332� 0:006Þ% ðþ0:332� 0:006Þ%
ACP final value (charm only) ðþ0:46� 0:36� 0:25Þ% ðþ0:28� 0:23� 0:24Þ% ðþ0:3� 2:0� 0:3Þ%
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