

Supporting Online Material for

Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria

Lars E. P. Dietrich, Tracy K. Teal, Alexa Price-Whelan, Dianne K. Newman*

*To whom correspondence should be addressed. E-mail: dkn@mit.edu

Published 29 August 2008, *Science* **321**, 1203 (2008) DOI: 10.1126/science.1160619

This PDF file includes

Materials and Methods Figs. S1 to S5 Table S1 References

Supporting online material

Materials and Methods SOM references SOM figures S1-S5 SOM table S1

Materials and Methods

Quantitative real time PCR

Streptomyces coelicolor A3(2) strains were grown on R5⁻ plates that were overlain with cellophane membranes (Spectrum Laboratory Products, Inc.) (1). Plates were incubated at 30°C for three days to allow pigment production. Then cells were treated with RNAProtect Bacteria Reagent (Qiagen) for 5 min at room temperature, scraped off the cellophane membrane and centrifuged for 10 min at 5000 g. Total RNA was extracted from the cell pellets using the RNeasy Plant Mini Kit (Qiagen) according to the manufacturer's instructions, including the optional DNase treatment, cDNA was generated with iScript (BioRad) and served as template for quantitative RT-PCR (Real Time 7300 PCR Machine, Applied Biosystems) using the Sybr Green detection system (Applied Biosystems). Samples were assayed in triplicate. The signal was standardized to SCO4548 (2) using the following equation: Relative expression = $2^{(CTstandard - CTsample)}$. where CT (cycle time) was determined automatically by the Real Time 7300 PCR software (Applied Biosystems). Primers (Integrated DNA Technologies) for Q-RT-PCR were designed using Primer3 software (3). Criteria for primer design were a melting temperature of 60°C, primer length of ~20 nucleotides, and an amplified PCR fragment of 100 base pairs. The following primers were used:

SCO1697: 5'-tgcctcagattccagagaaga-3' and 5'- tcagacccttggactcgtaga-3'

SCO2478: 5'- acaccgtctccttccacaac-3' and 5'- ctggtcgagcatcgtcttg-3'

SCO2479: 5'- agatcgtcgcgacctgtg-3' and 5'- ccctggggtacacctgct-3'

SCO4266: 5'- gatgggcatcctccagttc-3' and 5'- cgttcttcgcgtactgcac-3'

SCO4548: 5'- agatettegageteaacaagg-3' and 5'- gggcatetecatgateca-3'

Colony morphology assay

a) Pseudomonas aeruginosa PA14:

Strains were grown in LB medium to late exponential phase, then 10 μ l were spotted onto 1% agar plates containing 10 g/L Tryptone Broth, supplemented with 40 μ g/l Congo Red and 20 μ g/l Coomassie Blue as described previously (4). Plates were incubated at room temperature. Colonies were imaged using an Epson Perfection 2400 Photo Scanner at 600 dpi resolution, Nikon stereomicroscope or a digital microscope (Proscope).

b) Streptomyces coelicolor A3(2):

10 μ l of a spore suspension in water was spotted onto plates with R5⁻ medium. Plates were incubated at room temperature for six days. Colonies were imaged using a Nikon stereomicroscope.

Phenazine extraction from agar plates

Biological triplicate cultures of the wild type and each mutant were grown up overnight in LB. OD500 was normalized using spent supernatant so that all colonies would be spotted using the same cell density. Cultures were spotted three times onto an agar miniplate (10ml of 1% tryptone, 1% agar in a 60 x15 mm plate) and incubated at room temperature for 6 days. Cells were scraped off the agar surface with a spatula. Agar was submerged in 10 ml chloroform in a glass jar and nutated for 30 minutes. The chloroform was transferred to a brown glass vial and the sample was dried down under a stream of nitrogen gas. The solid was resuspended in 1 ml acetonitrile and filtered. 100 ul were loaded onto the HPLC and analyzed as described previously (5).

SOM references

- S1. J. Huang, C. J. Lih, K. H. Pan, S. N. Cohen, *Genes and Development* **15**, 3183 (2001).
- S2. S. Mehra *et al.*, *Journal of Industrial Microbiology and Biotechnology* **33**, 159 (2006).
- S3. S. Rozen, H. Skaletsky, *Methods Mol Biol* 132, 365 (2000).
- S4. L. Friedman, R. Kolter, *Mol Microbiol* **51**, 675 (2004).
- S5 L. E. Dietrich, A. Price-Whelan, A. Petersen, M. Whiteley, D. K. Newman, *Mol Microbiol* **61**, 1308 (2006).
- S6. E. Hidalgo, V. Leautaud, B. Demple, The EMBO Journal 17, 2629 (May 1, 1998).
- S7. C. T. Brown and C. G. Callan, Jr., Proc Natl Acad Sci USA 101 (8), 2404 (2004).
- S8. B. Floriano, M. Bibb, *Mol Microbiol* **21**, 385 (Jul, 1996).

SOM Captions

Fig. S1. (A) The *P. aeruginosa* SoxR regulon differs from the *E. coli* paradigm. In *E. coli*, the SoxR homodimer binds to the soxRbox in the *soxS* promoter region (see also Fig. 1B). *soxR* and *soxS* are divergently transcribed. The binding of reduced SoxR to the soxRbox represses expression of *soxR* and *soxS*. Oxidation of the SoxR [2Fe-2S] cluster induces a conformational change that allows transcription of *soxS* (6). SoxS regulates genes involved in superoxide tolerance and detoxification. In contrast, in *P. aeruginosa*,

the gene adjacent to *soxR* encodes a putative monooxygenase. Two additional soxRboxes, found elsewhere in the *P. aeruginosa* genome, regulate expression of putative drug transporters.

(**B**) SoxRbox consensus sequence. SoxR binding sites (soxRboxes) are palindromic sequences positioned between the -35 and -10 promoter elements. The promoter region upstream of *E. coli*'s *soxS* is shown. +1 marks the transcriptional start site, <u>ATG</u> the start codon in *soxS*. A position weight matrix was generated based on 12 soxRbox sites from diverse bacteria. A modified version of the program pyscangenes.py (7) was used to find the site energy of all motifs in 616 genomes (Table S1). Dots indicate nucleotides that are identical to those in the *E. coli* soxRbox.

Fig. S2. Phylogenetic tree based on SoxR orthologs. We constructed a phylogenetic tree based on 123 SoxR orthologs using the desktop software CLC protein workbench 3. The sequences were aligned with the ClustalW algorithm (gap open penalty = 35; gap extension penalty = 0.75; Scoring matrix = GONNET). Using this alignment we created a UPGMA (algorithm which assumes a constant rate of evolution) tree and performed a bootstrap analysis with 1000 replicates.

Fig. S3. (A) Structures of undecylprodigiosin and actinorhodin. Both compounds are produced by the *S. coelicolor* A3(2) parent strain M145, but not by *S. coelicolor* A3(2) M512 ($\Delta redD \Delta actII$ -ORF4 (8)).

(B) Spore suspensions of the *S. coelicolor* A3(2) parent strain M145 and M512 were distributed over cellophane sheets that were placed on R5⁻ plates and incubated at 30°C. After three days the M145 spread turned red due to the production of undecylprodigiosin, after four days it turned blue due to actinorhodin production. At day 5 we lifted the cellophane sheets of the agar plates, scraped off and prepared RNA for quantitative RT-PCR (Fig. 2).

Fig. S4. The phenazine null mutant forms smooth colonies in the presence of exogenous phenazines. (A) PA14 wt and the phenazine null mutant were spotted onto 1% tryptone, 1% agar plates that were supplemented with 50μ M HPLC-purified pyocyanin or an equal volume of water. (B) 50μ l cell suspensions of PA14 phenazine null mutant and the phenazine overproducer were streaked onto 1% tryptone, 1% agar plates (supplemented with Congo Red and Coomassie Blue). Image was taken after 5 days.

Fig. S5. (A) Genomic localization of *mexGHI-opmD*, *phzM*, *phzA1-G1*, and *phzS* in *P. aeruginosa* PA14. (B) Deletion of the RND efflux pump *mexGHI-opmD* results in an extended lag phase. This phenotype is dependent on phenazine production as a *mexGHI-opmD* deletion in the phenazine null-mutant does not show this phenotype. All strains were inoculated from late stationary phase cultures into 5ml LB to an OD (600nm) of 0.05, then incubated shaking (225 rpm) at 37°C.

Table S1. SoxRbox analysis. 616 bacterial genomes were analyzed for the presence of soxRbox elements. Strains containing soxRbox elements are listed. Site energy was calculated such that the site energy equals 0 for the consensus site and is greater than 0 for all other sites (7).

Sequence is the soxRbox sequence for a given site. The *operon position* indicates whether the adjacent gene/operon is located 3' (left) or 5' (right) of the soxRbox, with respect to the top strand. *Distance to start* is the distance from the soxRbox to the start of the predicted operon. *Orientation* is the orientation of the soxRbox element, using the -35 region as the start of the soxRbox motif.

Annotations for soxRbox genes can be found at http://soxRbox.mit.edu.

A Organization of SoxR regulons in E. coli and P. aeruginosa

B SoxRbox consensus sequence

 $\mathsf{sequence\ logo\ }\widehat{\mathsf{T}}_{\breve{\mathsf{C}}}\mathsf{A}\check{\breve{\mathsf{C}}}\check{\breve{\mathsf{C}}}}\mathsf{T}_{\breve{\mathtt{C}}}\mathsf{A}\mathsf{\ }_{\breve{\mathtt{C}}}\mathsf{f}_{\mp}\check{\mathtt{A}}}\mathsf{E}\mathsf{T}\mathsf{T}_{\breve{\mathtt{C}}}\mathsf{A}\mathsf{\ }_{\breve{\mathtt{G}}}\mathsf{e}_{\tilde{\mathtt{T}}}_{\tilde{\mathtt{T}}}\mathsf{f}_{\tilde{\mathtt{T}}}}$

Figure S2 Dietrich et al.

alpha 🗌

delta

alpha delta

acidobacteria

A Pigments produced by *Streptomyces coelicolor* A3(2)

undecylprodigiosin

actinorhodin

B Pigment production by S. coelicolor A3(2) strains

M145

M512

Figure S4 Dietrich e*t al.*

Α

WT

∆**phz**

+PYO

Β

В

Acidobacteria bacterium Ellin345, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
1.30	TTGACCTCAAGTTTACTTGAGGTTTT	left	-14	Acid345 _3972	right
		right	-97	Acid345 _3973- Acid345 _3974	-

Acidovorax avenae subsp. citrulli AAC00-1, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.23		left	-62	Aave _2275	left
		right	-90	Aave _2276	
6.60	TTGACCTCAACAATGGTTGAGGTTTG	left	-214	Aave _1362	right

Acinetobacter baumannii ATCC 17978, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.93	TTGACCTCAACTTAAGTTGAGGTTGG	left	-35	A1S _0564	left

Acinetobacter baumannii AYE, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.93	TTGACCTCAACTTAAGTTGAGGTTGG	left	-42	ABAYE3195- ABAYE3196	right
7.91	TTGACTTCAAGTGAACTTTAACTTGC	left right	-9 -98	ABAYE3692 ABAYE3693- ABAYE3694	right

Acinetobacter baumannii, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.93	TTGACCTCAACTTAAGTTGAGGTTGG	left	-42	ABSDF2956- ABSDF2957	right

Acinetobacter sp. ADP1, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
1.54	TTGACCTCAAGTTAACTTGAGCTTTG	left	-4	soxR (ACIAD3082)	right
		right	-42	ACIAD3083- ACIAD3084	

Aeromonas hydrophila subsp. hydrophila ATCC 7966, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.03	TTGACCTCAAGTTAGCTTTAACTTGC	left	-8	soxR (AHA _2710)	right
		right	-90	AHA _2711	

Aeromonas salmonicida subsp. salmonicida A449, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.03	TTGACCTCAAGTTAGCTTTAACTTGC	left right	-32 -54	ASA_1662 soxR (ASA_1663)- ASA_1664- ASA_1665	left

Agrobacterium tumefaciens str. C58 chromosome circular, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.25	TTGACCTCAACTATGGTTGAGGAATT	left	-33	Atu2361	left

Agrobacterium tume faciens str. C58 chromosome linear, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
3.97	TTGACCTCAACTATAGTTGAGGAATT	left	-68	soxR (Atu3915)	left
5.63	TCGACCTCAACTCAAGTTGAGGTTGT	left	-108	Atu4895	right

Agrobacterium tumefaciens str. C58 plasmid At, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.36	TTGACCTCAACTCTAGTTGAGGTTGT	left	-56	Atu5152	left
		right	-762	atsB (Atu5155)	len

Arthrobacter aurescens TC1, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.97	TTGACCTCAACTTAAGTTGAGGTCCT	left right	-64 -160	AAur_0213 ureA (AAur_0214)- ureB (AAur_0215)- ureC (AAur_0216)- ureE (AAur_0217)	left

Azoarcus sp. BH72, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.91	TTGACCTCAAGTCGACTTGAACTTGC	left	-5	soxR (azo2618)- azo2617- azo2616	right
		right	-92	azo2619	

Bacillus anthracis str. 'Ames Ancestor', complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.99	TTGACCTAAACTTAAGTTTAGGCTGT	left	-171	fumC (GBAA1767)	left

Bacillus anthracis str. Ames, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.99	TTGACCTAAACTTAAGTTTAGGCTGT	left	-171	fumC (BA1767)	left

Bacillus anthracis str. Sterne, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.99	TTGACCTAAACTTAAGTTTAGGCTGT	left	-171	fumC (BAS1637)	left

Bacillus cereus ATCC 14579, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.99	TTGACCTAAACTTAAGTTTAGGCTGT	left	-46	BC1711- BC1710	left
		right	-171	fumC (BC1712)	

Bacillus cereus E33L, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.99	TTGACCTAAACTTAAGTTTAGGCTGT	left	-171	fumC (BCZK1587)	left

Bacillus subtilis subsp. subtilis str. 168, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.19	TTGACTTAAAGTTAACTTTAAGTGTT	left	-35	yraB (BSU27000)	left
		right	-498	adhA (BSU27010)	

Bacillus thuringiensis str. Al Hakam, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.99	TTGACCTAAACTTAAGTTTAGGCTGT	left	-169	fumC (BALH_1553)	left

Bacillus thuringiensis serovar konkukian str. 97-27, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.99	TTGACCTAAACTTAAGTTTAGGCTGT	left	-46	BT9727_1616- BT9727_1615	left
		right	-171	fumC (BT9727_1617)	

Bdellovibrio bacteriovorus HD100, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
1.20	TTGACCTCAAGTTAACTTGAGGTTGT	left	-7	soxR (Bd1002)	right
		right	-113	Bd1003	

Bordetella bronchiseptica RB50, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.04	TTGACCTCAAGCTAGCTTGAGGGTCC	left	-90	BB4154	right

Bordetella pertussis Tohama I, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.04	TTGACCTCAAGCTAGCTTGAGGGTCC	left	-141	BP2837	left

Burkholderia sp. 383 chromosome 2, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.23	TTGACCTCAAGTGAACTTGAAGTTGC	left	-2	Bcep18194_B1905	right
		right	-164	Bcep18194_B1906	8
7.70	TTGACTTGAAGTTAACTTCAACTTTT	left	-19	Bcep18194_B1003	right
		right	-87	Bcep18194_B1004-	
				Bcep18194_B1005-	
				BCep18194_B1006	

Burkholderia ambifaria MC40-6 chromosome 2, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.23	TTGACCTCAAGTGAACTTGAAGTTGC	left	-54	BamMC406_4022	left
7.70	TTGACTTGAAGTTAACTTCAACTTTT	left	-68	BamMC406_4594	left

Burkholderia cenocepacia AU 1054 chromosome 2, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4 23	TTGACCTCAAGTGAACTTGAAGTTGC	left	-2	Bcen_4236	right
1.20		right	-164	Bcen_4237	TIGHT
7 70		left	-18	Bcen_3620	right
1.10		right	-87	Bcen_3621	right

Burkholderia cenocepacia HI2424 chromosome 2, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.23	TTGACCTCAAGTGAACTTGAAGTTGC	left right	-112 -54	Bcen2424_4129 Bcen2424_4130	left
7.70	TTGACTTGAAGTTAACTTCAACTTTT	left	-35	Bcen2424_4746- Bcen2424_4745- Bcen2424_4744	left
		right	-70	Bcen2424_4747	

Burkholderia cenocepacia MC0-3 chromosome 2, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.23	TTGACCTCAAGTGAACTTGAAGTTGC	left	-2	Bcenmc03_3389	right
		right	-158	Bcenmc03_3390	
7.70	TTGACTTGAAGTTAACTTCAACTTTT	left	-18	Bcenmc03_5536	right
		right	-87	Bcenmc03_5537-	0
				Bcenmc03_5539	

Burkholderia cepacia AMMD chromosome 2, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.23	TTGACCTCAAGTGAACTTGAAGTTGC	left	-54	Bamb_3541	left
7 70	TTGACTTGAAGTTAACTTCAACTTTT	left	-35	Bamb_4129	loft
7.70		right	-69	Bamb_4130	leit

Burkholderia multivorans ATCC 17616 chromosome 2, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.51	TTGACCTCAAGTGAGCTTGAAGTTGC	left	-2	Bmul_4462	right
		right	-194	Bmul_4463	_
5.39		left	-18	Bmul_3929	right
		right	-87	Bmul_3930-	0
				Bmul_3931- Bmul_3932	

Chromobacterium violaceum ATCC 12472, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.63	TTGACTTCAAGTTAACTTGAACTTTG	left right	-7 -87	soxR (CV_2793) CV_2794- CV_2795	right
5.33	TTGACTTCAAGTTAACTTTAACTTTC	left	-87	ebr B (CV_3243)	right

Citrobacter koseri ATCC BAA-895, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-7	CKO_03827	right
2102		right	-105	CKO_03828	

Clavibacter michiganensis subsp. sepedonicus, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.68	TTGACCTCAAGTTCGCTTGAGGTGCT	left	-11	CMS1293	left

Clostridium beijerinckii NCIMB 8052, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.81	TTGACCTAAAGTTAACTTTAGGGTGT	left right	-127 -79	Cbei_3182 Cbei_3183	left
6.19	TTGACTTAAAGTTAACTTTAAGTGTT	left	-34	Cbei_3974	left

Delftia acidovorans SPH-1, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.80	TTCACCTCAACTTTCCTTCACCTTC	left	-54	Daci_1188	left
1.00		right	-101	Daci_1189	1010

Desulfitobacterium hafniense Y51, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.69	TTGACCTAAAGTTAAGTTTAGGTGCT	left	-88	DSY1467	right

Enterobacter sp. 638, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
1 90	TTGACCTCAAGTTAACTTTAGCTTTT	left	-41	Ent638_2697	left
1.50		right	-359	Ent638_2698	1010
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-64	Ent638_0266	left
		right	-60	Ent638_0267	1010

Enterobacter sakazakii ATCC BAA-894, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-53	ESA_00114	left
		right	-59	ESA_00115	leit

Erythrobacter litoralis HTCC2594, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.81	TTGACCTCAAGTCAGCTTGAGGTTGC	left	-27	ELI_02950	right
2.01		right	-142	ELI_02955	118110

Escherichia coli 536, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02		left	-52	ECP_4290	left
2.02		right	-59	ECP_4291	1010

Escherichia coli APEC O1, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-59	soxR (APECO1_2394)	left

Escherichia coli CFT073, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCA AGTTA ACTTGAGGA ATT	left	-52	soxS (c5053)	left
		right	-59	soxR (c5054)	

Escherichia coli DH10B, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-52	$\begin{array}{c} \text{soxS} \\ (\text{ECDH10B}_{-4251}) \end{array}$	left
		right	-59	$ soxR $ (ECDH10B_4252)	

Escherichia coli E24377A, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-52	soxS (EcE24377A_4615) left
		right	-59	soxR (EcE24377A_4616))

Escherichia coli HS, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-52	$soxS$ (EcHS_A4304)	left
		right	-59	$soxR$ (EcHS_A4305)	

Escherichia coli str. K-12 substr. MG1655, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-52	soxS (b4062)	left
		right	-59	sox R (b4063)	leit

Escherichia coli O157:H7 EDL933, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-52	soxS (Z5661)	left
		right	-59	soxR (Z5662)	1010

Escherichia coli O157:H7 str. Sakai, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCA AGTTA ACTTGAGGA ATT	left	-52	ECs5044	left
2102		right	-59	ECs5045	1010

Escherichia coli SECEC SMS-3-5, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-52	$\begin{array}{c} \text{soxS} (\text{Ec-} \\ \text{SMS35}_{4524}) \end{array}$	left
		right	-59	soxR (Ec- SMS35_4525)	

Escherichia coli UTI89, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-52	soxS (UTI89_C4648)	left
		right	-59	soxR (UTI89_C4649)- UTI89_C4650	

Frankia sp. CcI3, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.76	TTGACTTCAATCATGGTTGAGGTTTT	left	-113	Francci3_1887	right

Frankia sp. EAN1pec, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.87	TTGACCTGAAGTCAACTTCAGATATT	left	-213	Franean1_1305	right
6.36	TTGACCTGAAGTCAGGTTTAACTTTT	left	-64	Franean1_4948	right

Hahella chejuensis KCTC 2396, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
1.49	TTGACCTAAAGTTAAGTTGAGGTTTT	left	-10	$ soxR $ (HCH_01441)	right
		right	-96	HCH_01442	
5.28	TTCACCTCAACTCCACTTCACCTTCT	left	-6	HCH_01327	right
0.20		right	-140	HCH_01328	right

Herpetosiphon aurantiacus ATCC 23779, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.78	TTGACTTCCAGTTAACTTGAACTTGT	left	-56	Haur_3151	left
		right	-75	Haur_3152	len

Hyphomonas neptunium ATCC 15444, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.57	TTGATCTAAAGTGAACTTGAGATTGT	left	-43	HNE_3425	left
		right	-64	$soxR$ (HNE_3426)	

Idiomarina loihiensis L2TR, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.91	TTGACCTAAAGTTAACTTTAAGTTGT	left	-9	$soxR_2$ (IL0801)	right
		right	-96	IL0802	0

Janthinobacterium sp. Marseille, complete genome

0 00000000	Vanchingsbacterrain spr mansente, comprete geneme							
Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation			
0.29	TTGACCTCAAGTTAAGTTGAGGTTTT	left	-8	mma_1929	right			
		right	-169	mma_1930				

Kineococcus radiotolerans SRS30216, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.07	TTGACCTCAAGTCCGCTTGAGCAGGT	left	-11	Krad_2687	left
7.07	I I GACCICAAGI CCGCI I GAGCAGGI	right	-382	Krad_2688	lett

Klebsiella pneumoniae subsp. pneumoniae MGH 78578, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-51	$soxS$ (KPN_04462)	left
		right	-86	soxR (KPN_04463)	
3.00	TTGATCTCAAGTTAACTTGAGGTTGT	left	-202	KPN_01860	right
		right	-88	KPN_01861	1.8

Lactobacillus casei ATCC 334, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.21	TTGACCTAAAGCTAACTTTAGGGGTT	left	-30	LSEI_0442	right
		right	-167	LSEI_0443	rigiti

Lactobacillus sakei subsp. sakei 23K, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.47	TTGACCTCAAGTCAGCTTGAGGTTGT	left	-89	LSA0238	right

Lactobacillus salivarius UCC118, complete genome

	/ * 0							
Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation			
3.09	TTGACTTCAAGTTAACTTGAAGTTTT	left	-124	LSL_0710- LSL_0711- LSL_0712	right			

Lactococcus lactis subsp. cremoris MG1363, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.56	TTGCTCTCAAGTTAACTTGAGGGTTT	left	-33	pcaC (llmg_2230)	left
		right	-69	rmeD (llmg_2231)	

Lactococcus lactis subsp. cremoris SK11, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.56	TTGCTCTCAAGTTAACTTGAGGGTTT	left	-33	LACR_2239	left
0.00		right	-69	LACR_2240	1010

Lactococcus lactis subsp. lactis Il1403, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.06	TTGCCCTCAAGTTAACTTGAAGGTTT	left	-34	pcaC (L35675)	left
		right	-69	rmeD (L35965)	

Maricaulis maris MCS10, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.17	TTGACCTCAACCAAGGTTAAGCAATT	left	-3	Mmar10_0144	right
0.11		right	-103	Mmar10_0145	1.8

Marinomonas sp. MWYL1, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4 72	TTGACCTCAACTTAAGTTCAGGTTGC	left	-99	Mmwyl1_1994	left
1.12		right	-59	$Mmwyl1_1995$	1010

Mesorhizobium loti MAFF303099, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
3.06	TTGACCTCAACTTAAGTTGAGATTGT	left	-104	mlr7819	right
4.26	TTGACCTCAAGTTATGTTGAGCTTGT	left	-66	mlr2720	left

Mycobacterium abscessus chromosome Chromosome, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.48	TTGACCTCAAGTCCAGTTGAGGATTT	left	-180	MAB_{-4665c}	left
5.05	TTGACCTCAAGTGCGCTTGAGATTTT	left right	-4 -65	MAB_4677c MAB_4678- MAB_4679	right

Mycobacterium gilvum PYR-GCK, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.33	TTGACCTGAAGGTTGGTTGAGGTTGC	left	-12	Mflv_1248	left

Mycobacterium sp. JLS, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.86	TTGACCTGAACTTTGGTTGAGGTCTT	left	-13	Mjls_1491	left
0.00		right	-108	Mjls_1492	1010
7.91	TTGACCTGAACTTTGGTTGAGGTCGG	left	-32	Mjls_2737	right
		right	-64	Mjls_2738	iigiit

Mycobacterium sp. KMS, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.86	TTGACCTGAACTTTGGTTGAGGTCTT	left	-13	Mkms_1515	left
0.00		right	-180	$Mkms_1516$	1010
7.91	TTGACCTGAACTTTGGTTGAGGTCGG	left	-32	Mkms_2751	right
		right	-64	$Mkms_2752$	right

Mycobacterium sp. MCS, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.86	TTGACCTGAACTTTGGTTGAGGTCTT	left	-13	Mmcs_1493	left
0.00		right	-180	$Mmcs_1494$	1010
7.91	TTGACCTGAACTTTGGTTGAGGTCGG	left	-32	Mmcs_2707	right
		right	-64	Mmcs_2708	Tight

Mycobacterium smegmatis str. MC2 155, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation	
7.01	TTCACCTGAAGTAAGGTTTAGGTGTC	left	-20	arcA (MSMEG_5448)	right	
		right	-58			
7.23	TTGACCTCAACCTCACTTGAGGTGCC	left	-171	MSMEG_0572- MSMEG_0571- MSMEG_0569- MSMEG_0568- MSMEG_0567- MSMEG_0566- MSMEG_0566- MSMEG_0565- MSMEG_0564	right	
		right	-170	$MSMEG_0574$		
7.33	TTGACCTCATCATTGGTTGAGGTTTT	left	-11	MSMEG_5661	left	
		right	-130	prrA (MSMEG_5662)- MSMEG_5663		

Mycoplasma penetrans HF-2, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.87	TTGACTTAAACTTAGGTTTAAGTTGT	left	-32	MYPE6210	left
	110101101101	right	-275	MYPE6220	1010

Myxococcus xanthus DK 1622, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.60	TTGACCTCAAGTCGACTTGAACTGGC	left	-46	MXAN_6982	left
		right	-56	MXAN_6983	1010

Nocardia farcinica IFM 10152, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.46	TTGACTTCAAGTGAACTTGAAATTTT	left right	-66 -76	nfa33330 nfa33340	left
7.12	TTGACCTCAACATTGGTTGAGGAAGC	left	-54	nfa29630- nfa29620	left

Novosphingobium aromaticivorans DSM 12444, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.25	TTGATCTCAAGCTAACTTGAGGTTGC	left	-49	Saro_0953- Saro_0952	left
		right	-128	Saro_0954	

Ochrobactrum anthropi ATCC 49188 chromosome 2, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.17	TTGACCTCAACCAAGGTTGAGGAACT	left	-536	Oant_2947	right
		right	-86	Oant_2948	8

Pelotomaculum thermopropionicum SI, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.64	TTTACCTCAAGTCAACTTAAGGTGGA	left	-139	PTH_2806	left

Photobacterium profundum SS9 chromosome 2, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.37	TTGACCTCAAGTTAACCTGAGGCACT	left	-23	PBPRB1505	right
		right	-91	PBPRB1506	Tight

Polaromonas sp. JS666, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
1.89	TTGACCTCAACTTTACTTGAGGTTTT	left	-10	Bpro_1373	right
1100		right	-112	Bpro_1374	1.8

Pseudoalteromonas atlantica T6c, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.47	TTGATCTAAAGTTAGCTTTAGATATT	left	-43	Patl_1581	left
		right	-73	Patl_1582	leit

Pseudomonas aeruginosa PAO1, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
0.59	TTGACCTCAACTTAACTTGAGGTTTT	left	-154	mexG (PA4205)-mexH (PA4206)-mexI (PA4207)-opmD (PA4208)	right
1.59	TTGACCTCAAGTTTGCTTGAGGTTTT	left right	-7 -96	PA2273 PA2274	right
2.23	TTTACCTCAAGTTAACTTGAGCTATC	left	-60	PA3718	left

Pseudomonas aeruginosa PA7, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
1.30	TTGACCTCAAGTTTACTTGAGGTTTT	left right	-44 -59	PSPA7_2966 soxR (PSPA7_2967)	left
2.52	TTTACCTCAAGTTAAGTTGAGCTATC	left	-115	PSPA7_1403	right
3.18	TTGACCTCAACTTAAGTTGAGGTTCT	left	-103	PSPA7_0893- PSPA7_0892- PSPA7_0891- PSPA7_0890	left

Pseudomonas aeruginosa UCBPP-PA14, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
0.59	TTGACCTCAACTTAACTTGAGGTTTT	left	-102	mexG (PA14_09540)- mexH (PA14_09530)- mexI (PA14_09520)- opmD (PA14_09500)	left
1.59	TTGACCTCAAGTTTGCTTGAGGTTTT	left right	-44 -59	PA14_35160 PA14_35170	left
2.23	TTTACCTCAAGTTAACTTGAGCTATC	left	-112	PA14_16310	right

Pseudomonas entomophila L48, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.27	TTGACCTTGAGTTAACTGGAGGTTTT	left right	-48 -63	PSEEN3529 soxR (PSEEN3530)	left

Pseudomonas fluorescens Pf-5, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.86	TTGACCTTGACTTAACTAGAGGTTTT	left right	-55 -79	PFL_4159 soxR (PFL_4160)	left

Pseudomonas fluorescens PfO-1, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.48	TTTACCTCTAGTTAACTCGAGGTTTT	left	-50	PflO1_3919	left
		right	-66	PflO1_3920	1010

Pseudomonas mendocina ymp, complete genome

1 bouldo	r soudomonas monacema jimp, comprese geneme							
Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation			
2.59	TTGACCTTAAGTTAAGTTGAGGTTTT	left	-12	Pmen_1341	right			
		right	-92	Pmen_1342	_			

Pseudomonas putida F1, complete genome

Site Energy	Sequence	$\begin{array}{c} \operatorname{Operon} \\ \operatorname{pos} \end{array}$	Distance to start	Genes in operon	Orientation
1.96	TTGACCTCAAGTAAAGTTGAGCTTTT	left	-53	Pput_3679- Pput_3678	left
		right	-57	Pput_3680	
6.17		left	-57	Pput_3216	left
0.17	110heorodadi matemaderi i	right	-335	Pput_3217	1010
6.96	TTGACCTTGACTTTGCTTGAGGTTTT	left	-48	Pput_3505	left
7.02		left	-443	Pput_2251	right
1.02		right	-89	$Pput_2252$	118110

Pseudomonas putida GB-1, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.77	TTGACCTCAAGTTAAGTTGAGCTCTT	left right	-5 -105	PputGB1_1579 PputGB1_1580- PputGB1_1581	right
6.96	TTGACCTTGACTTTGCTTGAGGTTTT	left	-100	PputGB1_1858	right

Pseudomonas putida KT2440, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.75	TCGACCTAAAGTTAAGTTGAGCTTTT	left	-6	soxR (PP_2060)	right
6.17	TTGACCTCGAGTTAAGTCAAGGTTTT	left	-288	PP_2505	right
		right	-55	PP_2506	right

Pseudomonas putida W619, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.27	TTGACCTTGAGTTAACTGGAGGTTTT	left	-64	PputW619_3439	left

Pseudomonas stutzeri A1501, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.98	TTGACCTCAAGTTCGCTTGAACTTCT	left	-8	PST_1793	left

Ralstonia eutropha H16 chromosome 1, complete sequence

	- / -	-			
Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.60	TTGACCTCAAGTCGACTTGAACTGGC	left	-45	h16_A0054 (H16_A0054)- h16_A0053 (H16_A0053)	left
		right	-55	h16_A0055 (H16_A0055)	

Ralstonia eutropha H16 chromosome 2, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
3.62	TTGACCTCAATTTAGGTTGAGGTTTG	left	-50	h16_B2318 (H16_B2318)	left
		right	-71	h16_B2319 (H16_B2319)	

Ralstonia metallidurans CH34 chromosome 2, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4 74	TTCACCTCAACCCTCCTTCACCTTTC	left	-63	Rmet_4538	right
1.1 1		right	-85	$Rmet_{4539}$	118110

Renibacterium salmoninarum ATCC 33209, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.59	TTGACCTCAAGTTAGCTTGAGGTTCT	left	-9	soxR (RSal33209_3062)- RSal33209_3061- RSal33209_3060	. right
		right	-593	RSal33209_3063	
6.65	TTGACCTCAACAAAGGTTGAGGGATT	left	-11	RSal33209_3297	left

Rhizobium etli CFN 42, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4 88	TTGACCTCAACCATAGTTGAGGAATT	left	-399	RHE_CH02960	right
1.00		right	-89	RHE_CH02961	11810
6.09	TTGACCTCAATATTAGTTGAGGTTTT	left	-6	soxR (RHE_CH03863)	right
		right	-606	RHE_CH03864- RHE_CH03865	

Rhizobium etli CFN 42 plasmid p42f, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.29	TTAACTTCAAGTTAACTTGAACTTGT	left	-34	RHE_PF00559- RHE_PF00558	left
		right	-77	RHE_PF00560	

Rhizobium leguminosarum bv. viciae 3841, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
3.38	TTGACCTCAGGTTAACTTGAGGAATT	left	-92	RL3412	right
3.89	TTGACCTCAAGATTAGTTGAGGTTTT	left	-6	RL4397	right
		right	-103	RL4398	right

Rhodopseudomonas palustris BisB5, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation				
4.45	TTGACCTCAACTAAGGTTGAGGTTCT	left	-73	RPD_3140- RPD_3139	left				
		right	-58	RPD_3141					

Saccharopolyspora erythraea NRRL 2338, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation				
6.27	TTGACCTCGACCTTGCTTGAGCTTTT	left	-44	SACE_4991	right				
		right	-95	SACE_4992	0				
7.12	TTGACCTCCAGCCAACTCGAAGTTTC	left	-11	SACE_5763- SACE_5762	left				
		right	-98	$ soxR (SACE_5764) $					

Salinispora tropica CNB-440, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.46	TTGACCTCAACCACGGTTGAGGTTTT	left	-42	Strop_0660	left
6.91	TTGATCTGAAGTTAACTTCAGGTTGT	left	-242	Strop_4405	right
		right	-63	Strop_4406	right

Salmonella enterica subsp. arizonae serovar 62:z4,z23:-, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-7	SARI_03411	right
		right	-105	SARI_03412	rigitt

Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-53	soxS (SC4144)	left
		right	-59	soxR (SC4145)	

Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCA AGTTA ACTTGAGGA ATT	left	-53	soxS (SPA4081)	left
2.02		right	-59	soxR (SPA4082)	1010

Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02		left	-53	SPAB_05256	left
2.02		right	-59	SPAB_05257	1010

Salmonella typhimurium LT2, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left right	-53 -59	soxS (STM4265) soxR (STM4266)	left

Salmonella enterica subsp. enterica serovar Typhi str. CT18, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left right	-53 -59	soxS (STY4463) soxR (STY4464)	left

Salmonella enterica subsp. enterica serovar Typhi Ty2, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-53	soxS (t4171)	left
		right	-59	soxR (t4172)	

Shewanella amazonensis SB2B, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.90	TTGACCTCAAGTTGACTTGAAGTTGT	left	-9	Sama_3347	right
		right	-91	Sama_3348	right

Shewanella denitrificans OS217, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
0.98	TTGACCTCAAGTTAGCTTGAGCTTTT	left	-38	Sden_0647	left
		right	-271	Sden_0648	1010
2 1 2	TTTACCTCAAGCTAACTTGAGGTTTT	left	-33	Sden_2124	loft
2.12		right	-145	$Sden_2125$	1010

Shewanella frigidimarina NCIMB 400, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2 70	TTTACCTCAACTTACCTTTACCTATT	left	-41	Sfri_1565	right
2.70	TTACCICAAGTIAGCITIAGGIATI	right	-86	Sfri_1566	right

Shewanella loihica PV-4, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.88	TTGACCTCAAGTCGACTTGAAGTTGT	left	-42	Shew_0422	left
5.88	I I GACCICAAGI CGACI I GAAGI I GI	right	-61	Shew_0423	leit

Shigella dysenteriae Sd197, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-7	$ soxR (SDY_4504) $	right
		right	-104	$\begin{array}{c} \text{soxS} \\ (\text{SDY}_{4505}) \end{array}$	

Shigella flexneri 2a str. 2457T, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-52	soxS (S3589)	left
		right	-59	sox R (S3590)	

Shigella flexneri 2a str. 301, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCA AGTTA ACTTG AGGA ATT	left	-52	soxS (SF4122)	left
2.02	TTACTCAAGTTAACTTGAGGAATT	right	-59	soxR (SF4123)	len

Shigella flexneri 5 str. 8401, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-7	$soxR$ (SFV_4149)	right
		right	-104	$ soxS (SFV_4150) $	

Shigella sonnei Ss046, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.02	TTTACCTCAAGTTAACTTGAGGAATT	left	-52	$soxS$ (SSON_4242)	left
		right	-349	SSON_4243	

Silicibacter pomeroyi DSS-3, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.78	TTGACCTAAAGTTAGGTTTAGAAATT	left	-38	SPO0313	left
		right	-72	soxR (SPO0314)	

Silicibacter sp. TM1040 mega plasmid, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.26	TTGAGCTAAAGTTAGGTTTAGAAATT	left	-80	TM1040_3746	right
		right	-91	$TM1040_{-}3747$	1.8

Silicibacter sp. TM1040, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.48	TTGATCTAAAGTGAGCTTGAGGAATT	left	-96	TM1040_1862- TM1040_1861- TM1040_1860- TM1040_1859	right
		right	-122	$TM1040_{-}1863$	

Sinorhizobium medicae WSM419, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4 48	TTGACCTCAACTTTAGTTGAGGTTCT	left	-5	$Smed_{-1545}$	left
	11010010110110101101001101	right	-60	$Smed_{-1546}$	1010

Sinorhizobium meliloti 1021, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.46	TTGACCTCAACTATAGTTGAGGTTCT	left	-44	SMc00183	left
		right	-60	SMc00182	
7.29	TTGACCTCAAGTACGGTTGAGGTCGC	left	-88	SMc03095	right

Sorangium cellulosum 'So ce 56', complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.63	TTGACCTCAAGTTGACTTGAGCTTGC	left	-45	sce1907	left
4.05		right	-54	sce1908	

Sphingopyxis alaskensis RB2256, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
7.19	TTGACCTCCACTGCACTTGAGCTTTC	left	-37	Sala_2373	left

Streptomyces avermitilis MA-4680, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.02	TTGACCTGAAGTTTGGTTGAGGTTGC	left	-637	$gbsA1$ (SAV_1622)	right
		right	-64	SAV_{-1623}	
6 19		left	-253	SAV_7217	right
0.15		right	-64	SAV_7218	118110
6.82	TTCACCTCAACATTCCTTCACCTACC	left	-328	SAV_5664	right
0.02		right	-82	SAV_5665	IIght

Streptomyces coelicolor A3(2), complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.54	TTGACCTCAAGCAAACTTGAGGTACC	left	-57	SCO2478	left
1101		right	-178	SCO2479	1010
7.58	TTGACCTCAAGCAGGCTTGAGGTCGT	left	-45	SCO4266	left

Thermobifida fusca YX, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.46	TTGACCTCAACTTTGGTTGAGGTTTT	left	-278	Tfu_1696- Tfu_1695	right
		right	-133	Tfu_1697	
5.00		left	-27	Tfu_0408	right
5.50		right	-141	Tfu_0409	Tight

Trichodesmium erythraeum IMS101, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
5.69	TTAACCTCAAGTTAACTTTAGATAGT	left	-1745	Tery_1256	right

Vibrio cholerae O1 biovar eltor str. N16961 chromosome II, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.41	TTTACCTAAAGTTAACTTGAGGTATT	left	-115	VCA0084	right
		right	-89	VCA0085	1.8

Vibrio cholerae O395 chromosome 1, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
2.41	TTTACCTAAAGTTAACTTGAGGTATT	left right	-37 -168	VC0395_0055 soxR (VC0395_0056)	left

Vibrio harveyi ATCC BAA-1116 chromosome I, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
1.90	TTGACCTAAAGTTAACTTGAGCTTTT	left	-35	VIBHAR_02685	left
		right	-260	VIBHAR_02686	leit

Vibrio harveyi ATCC BAA-1116 chromosome II, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
3 56	TTGACCTCAACTTCGGTTGAGGTTTT	left	-41	VIBHAR_06924	left
5.50		right	-274	VIBHAR_06925	icit
4 10	TTTACCTTAACTTAACTTGAGGTTTT	left	-44	VIBHAR_04755	loft
4.10		right	-124	VIBHAR_04756	leit
4.10	TTAACCTCAACCTAGCTTGAGGTTTT	left	-129	VIBHAR_07059	left
		right	-206	VIBHAR_07060	1010

Vibrio parahaemolyticus RIMD 2210633 chromosome II, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
3.69	TTGACCTAAACCAAACTTGAGGTTTT	left	-99	VPA1738	right
4.81	TTTACCTCAAGTTTACTTGAGGTTCT	left	-89	VPA0335	left
5 50		left	-163	VPA0390	n: mb t
5.55		right	-98	VPA0391	right
5.89	TTTACCTCGATTTAACTTGAGGTTTT	left	-96	VPA1685	right

Vibrio vulnificus CMCP6 chromosome II, complete sequence

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
0.81	TTGACCTCAAGTTAACTTGAGGAATT	left	-109	VV2_1129	right
2 10	TTTACCTCAAGTTAAGTTGAGCTTTT	left	-57	VV2_0936	right
2.15		right	-97	VV2_0937	right
3.40	TTTACCTCAATTTAACTTGAGGTTTT	left	-35	VV2_0607	loft
		right	-230	VV2_0608	leit

Vibrio vulnificus YJ016 chromosome II, complete sequence

		-			
Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
0.81	TTGACCTCAAGTTAACTTGAGGAATT	left	-110	VVA1655- VVA1656	right
2.19		left	-57	VVA1425	right
2.10		right	-79	VVA1426	118110
3 40		left	-35	VVA1158	left
0.10		right	-230	VVA1159	1010

Xanthomonas campestris pv. campestris str. 8004, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.93	TTGACCTCAACCTTGGTTGAGGCAGG	left	-166	XC_1279	left
		right	-56	XC_1280	1010

Xanthomonas campestris pv. campestris str. ATCC 33913, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
6.93	TTGACCTCAACCTTGGTTGAGGCAGG	left	-4	soxR (XCC2831)	right
		right	-729	XCC2832	

Xanthomonas campestris pv. vesicatoria str. 85-10, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.72	TTGACCTCAACTTAGGTTGAGGCAGG	left	-4	soxR (XCV3149)	right
		right	-121	XCV3150	

Xanthomonas axonopodis pv. citri str. 306, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.72	TTGACCTCAACTTAGGTTGAGGCAGG	left	-4	soxR (XAC3000)	right
		right	-121	ptr $(XAC3001)$	
7 66	TTCACCTCAACTCCCCTTCACCTCCT	left	-31	XAC0314	loft
1.00		right	-278	XAC0315	1010

Xanthomonas oryzae pv. oryzae MAFF 311018, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation				
7.31	TTGACCTCAACTCAGGTTAAGGCAGG	left	-70	XOO1154 (XOO_1154)	left				
		right	-56	XOO1155 (XOO_1155)					

Zymomonas mobilis subsp. mobilis ZM4, complete genome

Site Energy	Sequence	Operon pos	Distance to start	Genes in operon	Orientation
4.25	TTGACCTCAAGTTAACTTGAGGTTCA	left	-116	ZMO0169	left