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Synopsis

The motion of a single Brownian particle in a complex fluid can reveal material behavior both at

and away from equilibrium. In active microrheology, a probe particle is driven by an external force

through a complex medium and its motion studied in order to infer properties of the embedding

material. Most work in microrheology has focused on steady behavior and established the

relationship between the motion of the probe, the microstructure, and the effective microviscosity

of the medium. Transient behavior in the near-equilibrium, linear-response regime has also been

studied via its connection to low-amplitude oscillatory probe forcing and the complex modulus; at

very weak forcing, the microstructural response that drives viscosity is indistinguishable from

equilibrium fluctuations. But important information about the basic physical aspects of structural

development and relaxation in a medium is captured by startup and cessation of the imposed

deformation in the nonlinear regime, where the structure is driven far from equilibrium. Here, we

study theoretically and by dynamic simulation the transient behavior of a colloidal dispersion

undergoing nonlinear microrheological forcing. The strength with which the probe is forced, Fext,

compared to thermal forces, kT/b, governs the dynamics and defines a P�eclet number,

Pe ¼ Fext=ðkT=bÞ, where kT is the thermal energy and b is the colloidal bath particle size. For large

Pe, a boundary layer (in which unsteady advection balances diffusion) forms at particle contact on

the time scale of the flow, a/U, where a is the probe size and U its speed, whereas the wake forms

over O(Pe) diffusive time steps. Similarly, relaxation following cessation occurs over several time

scales corresponding to distinct physical processes. For very short times, the time scale for

relaxation is set by a boundary layer of thickness d � ðaþ bÞ=Pe, and so s � d2=Dr , where Dr is

the relative diffusivity between the probe of size a and a bath particle. Nearly all stress relaxation

occurs during this time. At longer times, the Brownian diffusion of the bath particles acts to close

the wake on a time scale set by how long it takes a bath particle to diffuse laterally across it,

s � ðaþ bÞ2=Dr . Although the majority of the microstructural relaxation occurs during this wake-

healing process, it does so with little change in the stress. Also during relaxation, the probe travels

backward in the suspension; this recovered strain is proportional to the free energy stored in the
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compressed particle configuration, an indicator that the stress is proportional to the free energy

density stored entropically in the microstructure. Theoretical results are compared with Brownian

dynamics simulation where it is found that the dilute theory captures the correct behavior even for

concentrated suspensions. Two modes of forcing are studied: Constant force and constant velocity.

Results are compared to analogous macrorheology results for suspensions undergoing simple shear

flow. VC 2013 The Society of Rheology. [http://dx.doi.org/10.1122/1.4775349]

I. INTRODUCTION

Complex fluids are ubiquitous in natural and engineered systems, ranging from the in-

tracellular compartment to pharmaceutical products to foodstuffs. Due to their multiphase

structure, such materials exhibit a rich spectrum of flow-rate dependent responses that

include shear thinning, shear thickening, and time-dependent behavior such as viscoelas-

ticity and memory effects. Such nonequilibrium rheological behavior may be studied by

inducing bulk material displacements via a shearing or extensional flow, for example.

The imposed flow may be constant, in order to interrogate steady behavior, or it may

vary in time—e.g., steady oscillation or sudden flow startup—in order to study visco-

elastic or transient response. In traditional rheology, these perturbations are imposed over

macroscopic length scales and therefore may exclude important materials of interest such

as those in which steady or transient behaviors vary over the microscale or materials not

available in sufficient quantities for bulk interrogation, e.g., rare biological fluids. An al-

ternative approach is to interrogate the material over microscopic length scales—a micro-

scale version of rheometry. This type of microscale probing, known as “microrheology,”

has a long history, tracing back to the work of Einstein (1906) and Perrin (1909); but

advances in microscopy and other techniques in the last two decades [see, e.g., Crocker

and Grier (1996)] has prompted considerable new study in the literature in recent years,

in both experimental and theoretical investigations [MacKintosh and Schmidt (1999);

Habdas et al. (2004); Meyer et al. (2006); Squires and Brady (2006); Khair and Brady

(2006); Wilson et al. (2009); Zia and Brady (2010, 2012)].

In microrheology, the motion of a colloidal particle (or set of particles) is tracked in

order to determine the properties of the surrounding medium [MacKintosh and Schmidt

(1999)]. In passive microrheology, random displacements of tracers arise due to thermal

fluctuations. These displacements are tracked and connected to the material modulus

through a generalized Stokes-Einstein-Sutherland relation, a process which reveals the

equilibrium and linear-response properties of the embedding material. Passive micro-

rheology can be used to interrogate linear viscoelasticity [Mason and Weitz (1995)];

recent studies also account for the effect of probe size [Lu and Solomon (2002)] and

shape [Khair and Brady (2008)]. Microrheological techniques have been used to study

cells [Bausch et al. (1998); Guilford et al. (1995); Lau et al. (2003)], actin networks [Gis-

ler and Weitz (1999); Ziemann et al. (1994)], gelatin [Freundlich and Seifriz (1923)],

DNA and polyethylene oxide solutions [Mason et al. (2005)], the glass transition in col-

loids [Habdas et al. (2004)], as well as fundamental interactions between pairs of colloi-

dal spheres [Crocker (1997); Crocker et al. (2000); Levine and Lubensky (2000)] and

entropic forces in binary colloids [Crocker et al. (1999)]. Microrheology has also been

proposed as a tool for high-throughput material screening [Breedveld and Pine (2003);

Schultz and Furst (2011)].

But to study nonlinear response, the tracers must actively drive the microstructure out

of equilibrium. In this active or nonlinear microrheology regime, a constant or oscillatory

force is applied to the tracers using optical tweezers or magnetic fields, for example. In

such a system, the tracer particles undergo displacements not only due to random thermal
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fluctuations but also due to the external force applied directly to the tracer, or “probe.”

The dispersion is driven out of equilibrium and, as with macrorheology, dynamic

responses such as microviscosity can be determined. Since the probe interrogates the ma-

terial at the microscale, localized material heterogeneity can be explored.

Most work thus far in nonlinear microrheology has focused on steady dynamic behav-

ior, to establish the relationship between steady-state microstructural mechanics and

transport properties, such as the diffusivity, viscosity, and stress [Squires and Brady

(2005); Khair and Brady (2006); Zia and Brady (2010, 2012)]. Transient behavior has

been studied in the near-equilibrium, linear-response regime—in the microrheological

context via its connection to low-amplitude oscillatory probe forcing and the complex

modulus [Khair and Brady (2005)]. Such studies show that for very weak forcing, the

microstructural response that drives stress (and relaxation) is indistinguishable from equi-

librium fluctuations. Previous macrorheological studies of transient behavior in colloidal

dispersions also reveal a range of interesting time-dependent phenomena, including tem-

porary stress overshoot behavior, viscoelastic and memory effects such as strain recov-

ery, and the existence of multiple relaxation modes.

Stress formation and relaxation in colloidal dispersions accompanies the storage and

loss of microstructural memory. In equilibrium colloidal dispersions, thermal fluctuation

of a single particle in a solvent is dissipated back to the solvent via viscous drag [Einstein

(1906); Perrin (1909)]. The decay of viscous particle momentum occurs on the order of

10�7 s (for a 0.5-lm particle in water); from a particle perspective, memory loss is nearly

instantaneous [for a discussion of relaxation on the solvent time scale, see, e.g., Russel

(1981); Hocquart and Hinch (1983)]. But a particle diffusing through a dispersion of

other particles deforms the suspension, giving rise to stresses that relax on time scales

much longer than the individual-particle momentum-relaxation time. The temporal decay

of stress (and velocity) fluctuations can be understood from the perspective of linear

response theory [Green (1954); Kubo (1966)]: While the shear stress in an equilibrium

system is zero on average, thermal fluctuations produce small perturbations in micro-

structural isotropy, which give rise to temporary shear stresses, which are characterized

by the shear stress autocorrelation function, CsðtÞ ¼ hr0xyðtÞr0xyð0Þi. Stress relaxation

accompanies memory decay. {The time integral of the stress correlation contributes to

the effective suspension viscosity, g �
Ð

Csðt0Þdt0 [N€agele and Bergenholtz (1998)].} One

may also view this as a connection between viscous dissipation and memory loss. A simi-

lar connection between the suspension stress and nonequilibrium fluctuation dissipation

has been made by Zia and Brady (2012). Here, we seek to understand the link between

the development and relaxation of material stress and microstructural memory by study-

ing the transient viscosity during startup and cessation of microrheological flow.

A material may have multiple relaxation modes which can be probed via low-

amplitude oscillatory displacements, for example. The high-frequency limit corresponds

to the shortest relaxation time scale of the material; for hard-sphere colloidal dispersions,

the stress decays as t�1=2 at very short times (in the absence of hydrodynamic interac-

tions) [Lionberger and Russel (1994); Brady (1993); Khair and Brady (2005)]. Nonequili-

brium transient behavior has also been studied experimentally for sheared dispersions,

where it has been shown that multiple mechanisms play a role in suspension stress and

viscosity—e.g., hydrodynamic, interparticle, and Brownian forces—and give rise to dis-

tinct relaxation processes. For example Mackay and Kaffashi (1995) and Kaffashi et al.
(1997) studied the decay of stress immediately after the cessation of imposed strain-rate

on a sheared suspension; they found that the hydrodynamic stress decays instantaneously,

as it must—the hydrodynamic stress is proportional to the imposed strain-rate, and thus

must vanish in the absence of flow. Watanabe et al. (1996b) and Watanabe et al. (1996a)
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analyzed stress development and relaxation in sudden startup and cessation of shearing

flow and found both short- and long-time relaxation modes. These studies show that the

macroscopic stress relaxes via distinct transport processes, but the microstructural evolu-

tion that accompanies this relaxation is not as thoroughly studied.

Although at long times after flow has been initiated a colloidal dispersion behaves as a

viscous fluid, at early times during the startup of the flow an “overshoot” in the material

stress or viscosity may be observed [Foss (1999)], mirroring the microstructural rear-

rangements responsible for the transition from elastic to viscous behavior. When the flow

is shut off, one would expect the elastic behavior to manifest as creep recovery: Removal

of the force should allow the microstructure to return to a previous state.

We explore these connections here by studying dispersion behavior during startup and

cessation of a strong flow imposed by forcing a single particle through a suspension.

While the problem of steady-state microrheology is well-studied, the transition from

equilibrium (frame a in Fig. 1) to steady state (frame b) and the relaxation back to equi-

librium when forcing is shut off (frame c) is not. To focus on structural aspects of the

flow, we shall neglect hydrodynamic interactions (Stokes drag on a particle and the

single-particle stresslet are still present, but all higher-order hydrodynamic effects are

taken to be negligible), an approximation relevant in many systems, such as dispersions

of particles with large electrostatic repulsion lengths or steric repulsion due to, e.g., poly-

mer hairs grafted to the particles’ surfaces. Whether one studies stress or velocity fluctua-

tions in a dispersion, the central physical process is the development and subsequent

relaxation of the deformed shape of the microstructure. In microrheology, the force/ve-

locity relationship is analogous to the stress/strain-rate relationship in macrorheology.

We thus expect both approaches to yield the same qualitative information about structural

evolution and relaxation.

The remainder of this paper is set out as follows: A theoretical framework is intro-

duced in Sec. II in which the time-dependent evolution of the microstructure and its con-

nection to the time-dependent viscosity is developed, and the distinction between

“constant-force” (CF) and “constant-velocity” (CV) microrheology is reviewed. Next,

the transient microstructure is solved analytically using a combination of asymptotic

analysis (Secs. III and IV) and numerical methods (Sec. V). In Sec. VI, the results for the

transient viscosity measured via Brownian dynamics (BD) simulation are given, for both

CF and CV regimes. Here, it is shown that the two modes drive qualitatively different

startup responses of the microstructure: A stress overshoot is seen in the CV regime. The

viscosity at long times after startup is compared to the steady-state theory predictions of

FIG. 1. Contour plot of microstructure around the probe, in the plane passing through the center of the probe.

Red and yellow indicate strong and moderate probability accumulation, respectively; dark blue and light blue

indicate strong and moderate depletion, respectively. Black is excluded volume around probe. (a) Prior to

startup of the flow, the microstructure is at equilibrium. (b) Long after flow startup, the steady-state structure

forms; here, for Pe¼ 5, a probability accumulation layer forms on the upstream face of the probe, and a deple-

tion wake trails it. (c) Long after flow cessation, the Brownian motion of the bath particles restores the equilib-

rium microstructure.
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Squires and Brady (2005) and to the dynamic simulation of steady-state microrheology

of Carpen and Brady (2005) with good agreement. Next, in Sec. V II, it is shown that the

elastic energy stored in the deformed microstructure can be partially recovered upon re-

moval of the external force, and a connection is made between the magnitude of this

creep recovery and the osmotic compressibility—indicating that the stress may be under-

stood as free-energy storage in the deformed microstructure. An analysis of relaxation

modes reveals that pair interactions dominate the relaxation, even for very concentrated

suspensions, and the dilute theory is shown to successfully predict behavior up to high

volume fractions. Plots of the deformed microstructure captured at key times throughout

the evolution of the stress are presented, and it is shown that nearly all stress formation

and relaxation occur with the formation and relaxation of a boundary layer—and the ma-

jority of structural rearrangement occurs with very little change in stress. The work is

also compared to analogous results for sheared suspensions undergoing startup and cessa-

tion [Foss (1999)] in Sec. VIII. The investigation is concluded with a discussion of

results in Sec. IX.

II. THEORETICAL FRAMEWORK

A. Microrheology: Model system and background

The model system comprises a dispersion of neutrally buoyant colloidal particles of

size b immersed in a Newtonian solvent of viscosity g and density q. A Brownian probe

particle of size a is driven by an external force through the suspension. The relative

strength of fluid inertia to viscous shear defines a Reynolds number, Re ¼ qUa=g, where

U is the characteristic probe velocity. Because the probe and bath particles are small,

Re� 1; on the particle time scale, inertia can therefore be neglected and the fluid

mechanics are governed by Stokes’ equations. The number density of probes na relative

to the number density of bath particles nb is small: na=nb � 1. As a probe moves through

the bath, it drives the suspension from equilibrium; simultaneously, the Brownian motion

of the bath particles acts to recover their equilibrium configuration, giving rise to an

entropic restoring force of order kT/b, where kT is the thermal energy of the bath. The

degree to which the suspension is driven from equilibrium, and hence its effect on probe

motion, is determined by the strength of external probe forcing Fext compared to thermal

restoring force kT/b, defining a P�eclet number: Pe ¼ Fext=ðkT=bÞ. This interplay between

probe motion and microstructural response gives rise to changes in probe velocity, which

can be used to interrogate suspension properties [Squires and Brady (2005); Meyer et al.
(2006); Khair and Brady (2006); Wilson et al. (2009); Zia and Brady (2010, 2012)].

In general, the particles interact through hydrodynamic and interparticle forces which

may be both short- and long-ranged; the simplest model for the interactive force, which

shall be adopted here, is the hard-sphere potential. Thusly defined, the colloids exert no

force on each other until their surfaces touch, i.e., when their separation r¼ aþ b. At

contact, an infinite potential V(r) prevents their overlap:

VðrÞ ¼ 1; r < aþ b;
0; r > aþ b:

�
(1)

The radii a and b at which the particles exert the hard-sphere force may or may not

be the same as their physical or hydrodynamic radii, ah and bh, where the no-slip bound-

ary condition is met. Various physical conditions of the colloid or solvent can extend

the effective size of the particle beyond the hydrodynamic radius, e.g., steric repulsion

or an ionic screening layer. The particles then repel each other at their extended or
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“thermodynamic” radii, a and b (see Fig. 2). This approach forms the foundation of the

excluded annulus model of Morris and Brady (1996), in which the ratio of the two radii

(ka ¼ a=ah and kb ¼ b=bh) can be modulated to account for the relative importance of

hydrodynamic-to-interparticle forces. When ka; kb � Oð1Þ, the particles are able to

approach each other closely enough to experience (long-range) hydrodynamic interac-

tions. For ka; kb ! 1, lubrication interactions also become important. In the limit

ka; kb � 1, strong interparticle repulsion keeps the particles sufficiently separated that

hydrodynamic interactions are negligibly weak. Although for this study attention is

focused on the limit of no hydrodynamic interactions, ka; kb !1, the model captures

the essential features of dispersive and dissipative processes while allowing clarity in

the exposition of the behavior.

As the probe particle moves through the suspension, it must push neighboring particles

out of its way; at steady state, a buildup of background particle concentration forms in

front of the advancing probe and a deficit or wake trails it. Brownian diffusion of the bath

particles acts to restore isotropy, but as Pe is increased, advection wins the competition

and the microstructural deformation becomes highly anisotropic. Figure 3 gives an illus-

tration of the steady-state deformed microstructure at several values of the P�eclet num-

ber, where Pe increases from left to right in the frames. The microstructure hinders the

probe, slowing its motion. Squires and Brady (2005) and Khair and Brady (2006) inter-

preted the mean-speed reduction as a viscous drag of the bath and defined an effective

viscosity gef f via application of Stokes’ drag law to the average velocity hUi of the probe

Fext ¼ 6pgef f a hUi: (2)

The effective steady viscosity is then given by

gef f

g
¼ Fext

6pgahUi ; (3)

where hUi ¼ �hUi � Fext=Fext. The effective viscosity may be written as

FIG. 2. Pair interaction for probe and bath particle.

462 R. N. ZIA AND J. F. BRADY

Downloaded 07 Mar 2013 to 131.215.71.79. Redistribution subject to SOR license or copyright; see http://www.journalofrheology.org/masthead



gef f

g
¼ 1þ gmicro

g
; (4)

thus defining the microviscosity, gmicro=g, as the viscous drag of the particle microstruc-

ture—above and beyond the solvent viscosity. In general it includes hydrodynamic, inter-

particle, and Brownian contributions: gmicro ¼ gmicro;H þ gmicro;P þ gmicro;B.

In the limit of no hydrodynamic interactions (ka; kb � 1), the microviscosity is the av-

erage hindrance of the microstructure due to collisions between the probe and the back-

ground bath particles. For a hard-sphere potential, disturbances to probe velocity due to

interparticle forces occur only at contact between probe and bath particle; the contribu-

tion to probe velocity due to collisions with the bath particles, hUPi, is thus given by

[Squires and Brady (2005); Khair and Brady (2006)]

hUPi ¼ � Fext

6pga

3/b

4p
Pe�1

ð
ngðrÞdX; (5)

where g(r) is the probe-bath pair-distribution function and dX is the element of solid

angle. Here, /b ¼ 4pb3nb=3 is the volume fraction of bath particles. Combining Eqs. (2),

(4), and (5) gives the microviscosity due to hard-sphere collisions, in the limit of no

hydrodynamic interactions between particles. Following Squires and Brady (2005), the

expression for the microviscosity without hydrodynamic interactions can be written with-

out approximation in the time-dependent form

gmicroðt; PeÞ
g

¼ � 3

4p
Pe�1 1þ a

b

� �2

/bû �
ð

r¼1

n gðr; t; PeÞÞdX: (6)

Here, the microstructure and hence the viscosity are evolving in time t, and û is the unit

vector antiparallel to the line of the externally applied force. Lengths have been made

dimensionless as r � ðaþ bÞ. The probe-bath pair-distribution function g(r, t; Pe) is now

a function of time. In order to determine how the viscosity evolves from equilibrium to

steady state, the time-dependent Smoluchowski equation must be solved in order to obtain

g(r, t; Pe).

To understand the evolution and relaxation of the stress in the dispersion, the impor-

tant quantity is the reduction in mean probe velocity, hUPi, due to collisions with the

other background particles in the dispersion. This is what is determined in both the theory

and in Brownian dynamics simulation in the following sections and is what one would

measure in an experiment. From the reduction in the speed, one can define the effective

FIG. 3. Theoretical predictions for the deformed microstructure around a moving probe particle in the absence

of hydrodynamic interactions at the pair level. The test particle is moving to the right and there is a build-up of

background particle density in front (red) of the probe and a deficit (dark blue) in the trailing wake [Squires and

Brady (2005)].
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viscosity, Eq. (3); the specific nomenclature “microviscosity,” gmicro, corresponds to the

particle contribution to the effective viscosity.

B. Transient microstructure

The probability distribution of the bath particles is governed by a Smoluchowski equa-

tion, which in the dilute-pair limit is given by @g=@tþr � j ¼ 0, where j is the probabil-

ity flux of a particle relative to the probe. Particles move due to advection with the mean

flow and due to Brownian diffusion, giving a total flux j ¼ Ug� Dr � rg, where we have

defined the relative Brownian diffusivity and the relative velocity between the probe and

a bath particle, Dr ¼ DrI � ðDa þ DbÞI and U � Ub � Ua. Here, I is the identity tensor.

For a suspension of hard spheres in the absence of hydrodynamic interactions, the pair-

Smoluchwoski equation becomes

@g

@t
þ U � rg ¼ Drr2g: (7)

The strength of the external forcing compared to the restoring entropic force defines the

P�eclet number

Pe ¼ U0ðaþ bÞ
Dr

; (8)

where the length scale is set by r � ðaþ bÞ and the characteristic velocity

U0 ¼ Fext=6pg a is set by the Stokes velocity of an isolated probe. Thus, the evolution of

the microstructure is given by

@g

@t
þ Pe û � rg ¼ r2g; (9)

where all quantities are dimensionless, and time has been scaled diffusively,

t � ðaþ bÞ2=Dr. As noted above, û is the unit vector antiparallel to probe forcing,

because in a frame of reference moving with the probe, the relative velocity of the bath is

opposite the direction of the applied external force.

Because changes in the microstructure are of interest, it is useful to consider the

microstructural perturbation f defined by gðr; t; PeÞ ¼ 1þ f ðr; t; PeÞ. The hard spheres

permit no flux at contact, and there is no long-range order in the suspension. For flow

startup, the sudden onset of forcing appears as an advective term at t¼ 0 in the no-flux

condition. The governing equations for the startup regime are

@f

@t
þ Pe û � rf ¼ r2f ;

n � rf ¼ Pe û � n ðf þ 1ÞHðtÞ at r ¼ 1;

f � 0 as r !1;
f ðr; tÞ ¼ 0 at t ¼ 0:

(10)

Here, H(t) is the Heaviside function which turns on the flow, and the microstructure is ini-

tially undisturbed. The P�eclet number is set by the velocity just after the flow is turned on.

When the forcing is removed, the advective term vanishes, giving the governing equa-

tions after flow cessation as
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@f

@t
¼ r2f ;

n � rf ¼ 0 at r ¼ 1;

f � 0 as r !1;
f ðr; tÞ ¼ f SSðr; PeÞ at t ¼ 0:

(11)

The diffusive relaxation is forced by the initially deformed microstructure—the steady-

state microstructure f SSðr; PeÞ, prior to removal of the external force. The P�eclet number

is set by the value of the velocity just prior to shutoff of the flow.

C. Constant external force versus constant external velocity

Active microrheology experiments are carried out by two main approaches: Driving

the probe with a constant external force—e.g., with magnetic tweezers [Habdas et al.
(2004)]—or holding the probe fixed in an optical trap and moving the bath past it at a

constant velocity—e.g., with laser tweezers [Meyer et al. (2006)].1 The constant-external

force (CF) case corresponds to a “mobility” formulation of the hydrodynamic problem—

the force is prescribed, the resultant velocity fluctuates, and as a result, the probe experi-

ences a collision-induced diffusive spread of its trajectory [Zia and Brady (2010)]. In the

constant-imposed velocity (CV) case, the velocity is fixed while the force fluctuates—a

“resistance” formulation. The difference leads to important dynamical consequences for

probe motion and microstructural evolution. Since probe velocity can fluctuate in CF

mode, the probe can adjust its speed as it enters a region of higher density, whereas in

CV mode, the probe’s fixed velocity means it must “bulldoze” through the suspension

regardless of fluctuations in local density. The result is a more dense accumulation of par-

ticles in the CV boundary layer and a higher effective viscosity; Squires and Brady

(2005) showed that the viscosity in CV mode should be twice the CF-mode viscosity for

dilute dispersions. This factor of 2 emerges naturally from the scaling of the diffusivity;

recall from Eq. (8) that the P�eclet number is defined as Pe ¼ Uðaþ bÞ=Dr, where Dr is

the appropriate diffusive scaling. In CF mode, the proper diffusive scaling is the relative

diffusivity DF between a pair of particles: DF ¼ Da þ Db ¼ ðkT=6pgÞð1=aþ 1=bÞ,
where Da ¼ kT=6pga and Db ¼ kT=6pgb are the isolated diffusivities of a probe and a

bath particle, respectively, and for brevity, the subscript h has been dropped from the

radii a and b. But in CV mode, since the probe cannot diffuse, the proper diffusive scal-

ing DU is that of the bath particles, as only they diffuse: DU ¼ Db ¼ kT=6pgb. For a

probe-to-bath-particle size ratio a/b¼ 1, we have that DF ¼ 2DU , with the inverse ratio

for the effective viscosity (in the limit of no hydrodynamic interactions). Carpen and

Brady (2005) evaluated this prediction via Brownian dynamics simulation of steady-state

microrheology and found agreement between simulation and theory for all bath-particle

volume fractions /b; the result is not restricted to dilute baths, although there is a slight

quantitative difference at higher concentrations. In this study, we also investigate by

dynamic simulation the long-time startup behavior in transient microrheology of the two

modes. Our results are compared in later sections to the steady-state values reported by

Squires and Brady and Carpen and Brady.

1The idea of a constant force or a constant velocity is an approximation, the accuracy of which is dictated by the

uniformity of the applied field or the “stiffness” of the optical trap (which is controlled via adjustments of laser

power). Such approximations can be made quite accurate [Habdas et al. (2004); Meyer et al. (2006)].
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III. ANALYTICAL SOLUTION: FLOW STARTUP

In this section, the analytical solution for the constant-force (CF) mode of transient

microrheology is obtained in the limits of weak and strong external forcing. In the startup

regime, Eq. (10) are solved with the P�eclet number defined for the CF mode in Sec. II C.

Constant-velocity (CV) forcing results follow, by simply replacing DF with DU. All ana-

lytical results are for dilute systems, /b � 1.

A. Low-Pe limit

In steady (nonlinear) microrheology, the perturbation to the microstructure due to weak

probe forcing is f ðr; PeÞ ¼ �Pe û � n hðrÞ, where r is the separation between the probe and

a bath particle, h � 1=r2, and for the steady case, h is independent of time [Squires and

Brady (2005)]. Here, n is the unit surface normal pointing from the probe to the bath par-

ticles. The time-dependent structure has the form f ðr; t; PeÞ ¼ �Pe û � n eiathðr; tÞ, where

a ¼ xðaþ bÞ2=Dr is the dimensionless frequency [Khair and Brady (2005)]. It is conven-

ient to analyze the evolution of the microstructure in frequency space. Following the

approach of Brady (1994) and Khair and Brady (2005), we insert the proposed form of the

solution into Eq. (10) and take the Laplace transform with respect to time to give

1

r2

d

dr
r2 d ~h

dr

� �
� 2

r2
~h � ia ~h ¼ 0;

d ~h

dr
þ 1

2

ffiffiffi
p
2

r
1

ia
� pdðaÞ

� 	
¼ 0 at r ¼ 1;

~h � 0 as r !1:

(12)

Here, a is the variable transforming time to frequency space, the tilde~ indicates a trans-

formed quantity, and i is the imaginary unit. With the substitution of variable z ¼ rðiaÞ1=2
,

Eq. (12) is the modified spherical Bessel equation with solution [Brady (1994)]

~hðr; z0Þ ¼
2

r2
exp½z0ð1� rÞ� 1þ z0r=2

1þ z0 þ z2
0=2

� 	
pdð�iz2

0Þ þ
1

z2
0

� �
; (13)

where z0 ¼ 2ðiaÞ1=2
. To compute the frequency-space microviscosity, the microstructure

at contact (r¼ 1) is required:

gmicroðtÞ
g

¼ �4L�1 2
1þ

ffiffi
s
p
=2

1þ ffiffi
s
p þ s=2

� 	
pdðisÞ þ 1

s

� �
; (14)

when s ¼ z2
0. The inverse transform in Eq. (14) can be obtained numerically in MATHEMATICA

[Valko and Abate (2002)] and the transient microviscosity is plotted in Fig. 4. The micro-

viscosity increases in time very rapidly after the onset of probe forcing as

gmicroðtÞ
g

� t1=2 as t! 0; (15)

which follows from the limit of Eq. (14) as s!1. As t!1, the viscosity asymptotes

algebraically to a steady value as gmicro=g � 2� t�3=2, as is found in the zero-frequency

limit for small-amplitude, linear oscillatory motion [Khair and Brady (2005)], and the

weakly nonlinear disturbance of diffusion in suspensions [Brady (1994)]. The long-time
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limit is compared in Table I to the small-Pe steady-state values computed by Squires and

Brady (2005); the two agree.

B. High-Pe limit

For strong probe forcing (Pe� 1), the steady-state shape of the microstructure in

front of the probe is deformed into two distinct regions: An outer region in which advec-

tion dominates diffusion and the microstructure is undisturbed; and an inner region, a

1/Pe-thin boundary layer that forms on the upstream face of the probe where diffusion

balances unsteady advection because the relative flux at contact is zero. Upon sudden

startup, a diffusive step of the probe is executed first; the boundary layer then begins to

form on the time scale of the flow, t � a=U � sD=Pe, where the time scale for Brownian

diffusion is sD ¼ ðaþ bÞ2=Dr. The first emergence of the boundary layer is thus nearly

instantaneous after the first step as Pe!1. Although complete evolution of the bound-

ary layer may take a several diffusive time steps, its initial appearance sets the mechanics

of structural evolution. Here, we shall proceed with the transient analysis by assuming

the presence of a boundary layer at all times.

Inside the boundary layer, a coordinate rescaling R ¼ ðr � 1ÞPe � Oð1Þ preserves the

diffusive term, properly reflecting the physics of the inner region and allowing satisfac-

tion of the no-flux condition at contact. The appropriate scaling for time is the character-

istic diffusive time, but since probe diffusion takes place inside the boundary layer of

FIG. 4. Startup regime, constant external force: Solid grey and black lines are analytical solutions for Pe� 1

[Eq. (14)] and Pe� 1 [Eq. (18)], respectively. Broken lines represent numerical solution of Eq. (26). The initial

increase in the viscosity is steep and appears to be independent of Pe. As t=ððaþ bÞ2=DFÞ ! 1, the micro-

structure reaches steady state and the viscosity asymptotes to its steady value.

TABLE I. Comparison of the transient microviscosity at long times after startup obtained in this study [numeri-

cal solution of Eq. (26)], to the steady-state value obtained from solving the steady microrheology problem

[Squires and Brady (2005); Khair and Brady (2006); Zia and Brady (2010)].

Pe gmicro
SS =g/b gmicroðt!1Þ=g/b

1 1.88 1.9

5 1.48 1.48

10 1.32 1.29

30 1.14 1.05

50 1.10 1.00
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thickness d � ðaþ bÞ=Pe, time is scaled as s ¼ t=ðd2=DrÞ ¼ t=Pe2. To proceed formally

with the boundary-layer solution, a perturbation expansion of f(r, t; Pe) in Pe is per-

formed following the steady-state analysis of Khair and Brady (2006); in the steady case,

Khair and Brady solve the first and second order perturbation to the microstructure, yield-

ing a coupled pair of ordinary differential equations. In the present time-dependent case,

the first two orders in perturbation yield two coupled partial differential equations

describing the spatiotemporal evolution. Alternatively, in a more informal approach, one

may argue physically that one need to retain only the leading order in diffusive, advec-

tive, and temporal behavior. The two approaches for obtaining the microstructure agree,

and the latter technique is presented here. Retaining the leading order terms, one may dis-

card terms of order Pe�2 and smaller, which then gives

@f

@s
þ @2f

@R2
þ ð2Pe�1 � cos hÞ @f

@R
� Pe�1 sin h

@f

@h
¼ 0; (16)

for the microstructure in the upstream region, with the corresponding restriction

cos h 	 0; the polar angle h is as defined in Fig. 2. All quantities are dimensionless. As

Pe!1, radial gradients are much stronger than angular gradients in the deformed

microstructure and, to first approximation, the latter may be neglected. For large Pe, the

resulting governing equations become, after taking a Laplace transform,

d2 ~f

dR2
þ ½2Pe�1 � cos h� d

~f

dR
� s ~f ¼ 0;

d~f

dR
� cos h ~f þ 1

s

� �
¼ 0 at R ¼ 0;

~f � 0 as R!1:

(17)

The OðPe�1Þ term must be retained in order to satisfy the boundary condition as R!1
[Brady and Morris (1997)]. This initial value problem has an exact solution; upon invert-

ing, one obtains for the microstructural disturbance at contact

f 1; l; sð Þ ¼ 1

4
Pel� 2ð ÞErf

ffiffi
t
p
ð2� PelÞ

2Pe

� �
þ Pelþ 2ð Þ

�


 exp
2tl
Pe

� 	
Erfc

ffiffi
t
p
ð2þ PelÞ

2Pe

� �
� 1

� �	
; (18)

where for compactness, we have defined l � cos h and s � t=Pe2. This expression is

then inserted into Eq. (6) and integrated numerically to obtain the transient microviscos-

ity. As seen in Fig. 4, the microviscosity increases very rapidly after the onset of forcing.

The early-time behavior can be seen more clearly in the log-log plot in Fig. 5: The micro-

viscosity initially grows with the square root of time. Importantly, the early-time behav-

ior of the transient microviscosity is the same regardless of the strength of external

forcing. This is because the first step executed by the probe is diffusive and scales as

�
ffiffiffiffiffi
Dt
p

, which is larger than the OðDtÞ-size advective step at short times. Thus, the very

short-time (infinite-frequency) viscosity corresponds to the short-time self-diffusive

behavior of the probe. At intermediate times, the exponential and constant terms domi-

nate, and the microviscosity asymptotes to a time-independent steady value as �1� e�t.

The long-time microviscosity is compared in Table I to the high-Pe steady-state values

computed by Squires and Brady (2005); the two agree.
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IV. ANALYTICAL SOLUTION: FLOW CESSATION

In this section, the microstructural evolution after force cessation is obtained in two

limits: The relaxation of a weakly deformed and a strongly deformed microstructure.

Equation (11) are solved for Pe� 1 and Pe� 1, respectively, where the P�eclet number

corresponds to the pre-cessation value. As with the startup regime considered above, the

CF mode is studied, using the appropriate P�eclet number (cf. Sec. II C).

A. Low-Pe limit

In the limit Pe� 1, the steady-state linear response of the microstructure is given by

fSSðr; PeÞ ¼ �Pe cos h=2r2 [Squires and Brady (2005)]. When the probe force is shut off,

this initial dipolar structure sets the subsequent relaxation behavior, which is governed by

Eq. (11), whose Laplace transform reads

r2 ~f � s~f ¼ fSSðr; PeÞ;
d~f

dr
¼ 0 at r ¼ 1;

~f � 0 as r !1;

(19)

where time is transformed to the frequency variable s, and the tilde � indicates a trans-

formed quantity. The particular solution is given by ~f
P ¼ �fSSðr; PeÞ=s. The corre-

sponding homogenous equation is a Helmholtz equation; a solution by separation of

variables into angular and radial coordinate is straightforward, where the angular solu-

tions are Legendre polynomials Pnðcos hÞ. The radial differential equation is Bessel’s

equation; its solutions are the modified spherical Bessel functions of the third kind,

hnð
ffiffi
s
p

rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=2

ffiffi
s
p

r
p

Knþ1=2ð
ffiffi
s
p

rÞ [Abramowitz and Stegun (1964)]. The boundary con-

dition at contact eliminates all Legendre modes except the first, giving the perturbed

microstructure at contact

FIG. 5. Startup regime, constant external force, at early times after startup [numerical solution of Eq. (26)].

Microviscosity grows as t1=2 regardless of Pe.
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~f ð1; h; sÞ ¼ 1

2
Pe

1

2þ 2
ffiffi
s
p
þ s

� �
cos h: (20)

The microstructure can be inverted numerically to obtain the microviscosity:

gmicroðtÞ
g

¼ 2L�1 1

2þ 2
ffiffi
s
p þ s

� 	
: (21)

The result is plotted in Fig. 6. At least two relaxation modes are seen: An initially rapid

decay, followed by a slower, long-time decay.

B. High-Pe limit

Prior to shutoff of strong probe forcing, the well-defined boundary layer sets the dy-

namics of probe motion and of the microviscosity. The appropriate time scale is now dif-

fusive in the boundary layer, s � t=Pe2. A radial coordinate rescaling R � Peðr � 1Þ (cf.

Sec. III B) preserves the diffusive term during relaxation. A perturbation expansion of the

deformed microstructure in inverse powers of Pe inside the boundary layer is appropriate:

f ðR; h; PeÞ ¼ Pe f0 þ f1 þ Pe�1f2 þ � � �. To leading order in Pe and with this rescaling in

R, the dimensionless governing equations become, upon taking a Laplace transform,

d2 ~f 0

dR2
� s ~f 0 ¼ f SSðR; PeÞ;

d~f 0

dR
¼ 0 at R ¼ 0;

~f 0 � 0 as R!1;

(22)

where f SSðR; Pe!1Þ ¼ �Pe cos h eRcosh is the steady-state microstructure [Squires and

Brady (2005)] prior to flow shutoff and cos h 	 0 (cf. Fig. 2). The solution can be

inverted analytically and at contact is given by

FIG. 6. Flow cessation: The solid grey and black lines are the analytical solution for Pe� 1 [Eq. (21)] and

Pe� 1 [Eq. (24)], respectively. Broken lines are numerical solutions of Eq. (27). Viscosity drops rapidly from

its steady-state value. The rate at which the viscosity and stress relax increases with increasing Pe. The structure

continues to relax more slowly at long times.
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f0ð1; h; sÞ ¼ �f SS½expðs cos2 hÞErfcð
ffiffiffi
s
p

cos hÞ�: (23)

Insertion into Eq. (6) gives for the microviscosity

gmicroðsÞ
g

¼ 1

s
es Erfcð

ffiffiffi
s
p
Þ þ 2

ffiffiffi
s
p

r
� 1

� 	
: (24)

The results are plotted in Fig. 6, showing an initially rapid decay of the stress at very

short times followed by a slower long-time decay, indicating at least two relaxation

modes. At early times, the stress decays with the square-root of time:

gmicroðsÞ
g

� 1

s1=2
; (25)

indicating that the initial period of structural relaxation is that of one-dimensional diffu-

sion in the thin, locally planar boundary layer (see Fig. 7). The majority of the stress

relaxation thus occurs as the result of boundary-layer diffusion. At longer times, the ex-

ponential character of the decay dominates; here, memory of the initial disturbance is lost

and, as equilibrium is approached, the probe’s relaxation is indistinguishable from the

behavior for small Pe obtained in Sec. IV A.

V. NUMERICAL SOLUTION FOR ARBITRARY Pe

To capture the full behavior of the transient microstructure over a range of Pe, a nu-

merical solution of the full Smoluchowski equations (10) and (11) is required. Using a

second-order finite difference scheme, radial and angular gradients are discretized onto a

grid in both space and time. In order to properly capture the spatial gradients both near

and far from particle contact, the radial coordinate is rescaled with the stretched coordi-

nate R¼Pe(r� 1); this rescaling captures near- and far-field behavior over a wide range

of Pe with an appropriate distribution of discretized grid points (discussed below).

Because the flow is axisymmetric about the line of external forcing, derivatives of g(r) in

FIG. 7. Flow cessation: Numerical solution of Eq. (27). Viscosity plotted on advective time scale, where

U¼Fext/6pga was the velocity of the probe prior to shutoff. All lines collapse together at long times, indicating

the loss of memory of the initial condition.
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the azimuthal angle are zero. Defining q � 1þ R=Pe, we have for the governing equa-

tions at startup

Pe�2 @f

@t
¼ @2f

@q2
þ Pe�1 2

q
@f

@q
þ Pe�2

q2 sin h
@

@h
sin h

@f

@h

� �
� cos h

@f

@q
þ Pe�1 sin h

q
@f

@h
;

@f

@q
¼ cos hðf þ 1Þ at q ¼ 0;

f ¼ 0 as q!1;
f ¼ 0 at t ¼ 0:

(26)

For flow cessation, the time-dependent diffusion equation (11) becomes

Pe�2 @f

@t
¼ @2f

@q2
þ Pe�1 2

q
@f

@q
þ Pe�2 1

q2 sin h
@

@h
sin h

@f

@h

� �
;

@f

@q
¼ 0 at q ¼ 0;

f ¼ 0 as q!1;
f ¼ f SSðq; h; PeÞ at t ¼ 0:

(27)

Once the boundary layer forms, the radial gradients in the microstructure become increas-

ingly confined to the boundary layer. As Pe continues to grow and the boundary layer

thins, a grid point concentration function that varies with Pe increases the density of grid

points close to contact yet retains sufficient resolution far from the probe to capture the

physics throughout the upstream domain [Bergenholtz et al. (2002)]. The difference coeffi-

cients and operators for both radial and angular directions are compactly arranged into first-

and second-order sparse matrices, and the discretized partial differential equation takes on

the form

M � f ¼ _f ; (28)

where f is the solution array for all grid points, _f � @f=@t, time is scaled on the boundary

layer thickness, and M is the super-matrix containing the coefficient and finite-difference

matrices that operate on the solution f. The solution for the homogeneous (i.e., time-inde-

pendent) pair-distribution microstructure f SSðr; PeÞ is obtained by solving Eq. (28) with

the right-hand side equal to zero, where the boundary condition at contact results in a

nontrivial solution. The homogeneous problem was solved utilizing MATLAB and a LAPACK

solver. To obtain the transient microstructure over the full range of Pe during startup and

cessation, we recognize that each row in Eq. (28) is a linear ordinary differential equation

in time. The method of lines is used to solve this system of initial value problems and is

implemented using the ODE45 solver of MATLAB.

A. Startup

Figure 4 gives a plot of the transient microviscosity for 0 	 t 	 2 for a probe-to-bath

size ratio of unity, for several values of Pe. The initial condition at t¼ 0 is the equilib-

rium microstructure, f¼ 0; time has been scaled diffusively. As can be seen in the figure,

the structure initially evolves at the same rate regardless of Pe.

At short times after startup, the transient microviscosity scales as gmicroðtÞ=g � t1=2 as

shown in the log-log plot given in Fig. 5—in agreement with the analytical solution (15).
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No matter what the P�eclet number diffusion always dominates at short times

(Dxdif f usion �
ffiffiffiffiffi
Dt
p

vs Dxadvection � Dt). The curves for various Pe start to separate as the

structure forms. The disturbance is communicated through the suspension by particle col-

lisions—at higher Pe, the probe moves farther in a given time and thus propagates the

disturbance more quickly. Force-thinning behavior observed in steady-state suspensions

is evident, as the long-time plateau decreases with increasing Pe.

At long times, the microviscosity asymptotes to a steady value. These values are com-

pared to the results for the steady-state microviscosity given by Squires and Brady (2005)

in Table I. As seen in the table, the agreement between the long-time behavior obtained

via our solution of Eq. (26), and that obtained via a steady-state analysis, is very good.

B. Relaxation of the microstructure: Cessation behavior

The decay in velocity after shutoff is plotted in Fig. 6 and, as was found in the analyti-

cal solution in Sec. IV, an initially rapid decay of the stress at very short times is followed

by a slower long-time decay, indicating at least two relaxation modes. The rate of decay

also varies with the initial condition: The higher the pre-cessation Pe, the faster the relaxa-

tion. While it seems counterintuitive that a more strongly deformed microstructural dis-

turbance would decay faster than a weakly deformed one, this behavior can be understood

by recalling that in order to relax the stress, the probe need only diffuse the length of the

boundary layer. That distance scales as Pe�1, so the higher the P�eclet number, the faster

the initial relaxation. Nearly all stress relaxation occurs during this process, owing to the

dependence of the bath-particle drag on the contact value of the microstructure [cf. Eq.

(6)]. At longer times, the Brownian diffusion of the bath particles continues and acts to

close the wake and restore isotropy, which occurs on a time scale set by how long it takes

a bath particle of size b to diffuse laterally into the wake of width a, s � a2=Db, driven by

the gradient in particle density across the wake. In this long-time limit, the majority of the

microstructural relaxation occurs with very little change in probe speed; the stress relaxa-

tion is exponential, �e�t, signaling the approach to equilibrium.

Were the probe moving alone through the solvent, the curves in Fig. 6 would drop

instantaneously to zero upon shutoff of the external force. But in the presence of a micro-

structure (of passive particles), the probe continues to move after the external force is

removed, as if a force still acted on it—or as if the probe has encoded information about

its motion into the microstructure, and this information persists for some time.

The temporal persistence, or storage, of the dispersion stress can be viewed as the du-

ration of the microstructural memory. In Fig. 7, the transient microviscosity has been

multiplied by the P�eclet number, and time re-scaled advectively. Comparison to the as-

ymptotic result (25) shows agreement between analytical and numerical solutions at short

advective times. At long times, the curves collapse for all Pe onto one curve—signaling

the loss of memory of the initial condition. The duration of microstructural memory

decreases with increasing Pe, indicating that the information about the probe’s motion is

stored entropically in the distorted microstructure. The more dominant the Brownian

motion, the longer the duration of the memory of the initial condition.

VI. BROWNIAN DYNAMICS SIMULATION

Up to now, we have studied the transient behavior of colloidal particles theoretically

by solving the pair Smoluchowski equation. To simplify our analysis, an assumption of

diluteness was made. But an alternative approach is to examine the detailed motion of

the individual particles by dynamic simulation; no assumption of diluteness is then
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required. Here, the dynamics are governed by the Langevin equation, a stochastic force

balance that includes Brownian, external, hydrodynamic, and other interparticle forces:

m � dU

dt
¼ FH þ Fext þ FB þ FP; (29)

where m is the mass (or moment of inertia) tensor and U is the particle velocity. On the

right-hand side are the forces that act on a particle, which include the hydrodynamic drag

FH, along with external, Brownian, and interparticle forces, Fext; FB, and FP, respec-

tively. For the excluded annulus model (cf. Fig. 2), the hydrodynamic drag is given by

FH ¼ �6pgaU and the external force Fext ¼ 0 for all particles except the probe. The

external force is prescribed, the Brownian force is given by

FB ¼ 0; FBð0ÞFBðtÞ ¼ 2kTð6pgaiÞIdðtÞ; (30)

and FP is the hard-sphere interactive force between particles (cf. Sec. II A). The overbar

denotes an average over times long compared to the solvent time scale, and the Brown-

ian impacts are instantaneously correlated, with dðtÞ the Dirac delta function. Particle

sizes are given by ai � a for the probe and ai � b for a bath particle. Because the par-

ticles are small, inertia can be neglected and the left-hand side of Eq. (29) is zero. The

velocity of the particle U ¼ ðFext þ FB þ FPÞ=6pg ai can then be integrated forward in

time over a step Dt to obtain a particle’s displacement. In dimensionless form, this

equation reads

DX ¼ �PeûDtþ DXB þ DXP; (31)

where û is the unit vector antiparallel to the direction of the external force, û � �Fext=Fext.

Time is made dimensionless on the diffusive time scale, sD � a2=Db, and lengths are

scaled with particle size, DX � ai. The Brownian displacement obeys the statistics

XB ¼ 0; XBð0ÞXBðtÞ ¼ 2DtI; (32)

giving a Brownian displacement at each time step that scales as DX �
ffiffiffiffiffiffiffi
2Dt
p

. The

dimensionless external force is given by Pe ¼ Fext=ðkT=bÞ. When Pe �1, time is re-

scaled advectively, sadv � sDPe�1, in order to resolve the larger displacements occur-

ring over a given time step. To allow a direct comparison between simulation and

theory, time is rescaled post-simulation to match the scaling set in the theory in

Sec. II C: sD � ðaþ bÞ2=Dr ¼ ðaþ bÞ2=DF. Similarly, displacements are rescaled to

match the theory: DX � ðaþ bÞ.
To begin the simulation, a probe of size a is placed among a randomly distributed bath

of particles of size b in the simulation cell. At each time step, every particle is given a

Brownian displacement of random direction, simulating a continuum Newtonian solvent of

viscosity g and density q with thermal energy kT. The probe particle is displaced at each

time step by a distance Pe in the direction of the external force; this force and its direction

remain constant until the force is shut off. When two particles contact one another, the

hard-sphere collision is treated via a “potential-free” algorithm [Heyes and Melrose

(1993); Foss and Brady (2000); Carpen and Brady (2005)]. The overlap between two par-

ticles is prevented by displacing and separating the pair along their line of centers until

they are no longer in contact. These hard-sphere collisional displacements DXP ¼ �DXPn

are directed along the line of centers n of the colliding pair and weighted inversely

474 R. N. ZIA AND J. F. BRADY

Downloaded 07 Mar 2013 to 131.215.71.79. Redistribution subject to SOR license or copyright; see http://www.journalofrheology.org/masthead



according to the size of the colliding particle. For a complete description of Brownian dy-

namics of active microrheology, see Carpen and Brady (2005).

The stochastic nature of the Brownian force and hard-sphere collisions requires many

realizations of the startup and cessation flow in order for the probe to sample a sufficient

number of bath configurations. Thus, we measure the average displacement over each

time step Dti where i¼ 1, 2,… M and M is the number of time steps in a simulation. The

corresponding displacement over the ith time step, Dti, is DXiðDtiÞ and is then averaged

across many simulations

hDXðDtiÞi ¼ �PehûðDtiÞiDtþ hDXPðDtiÞi; (33)

where the Brownian displacement is zero on average across realizations, and the angle

brackets h�i signify an average across multiple simulations. The probe velocity over

any given time step is the displacement divided by the length of the time step; the av-

erage total velocity and the hard-sphere velocity are given by hUii ¼ hDXii=Dti and

hUP
i i ¼ hDXP

i i=Dti, respectively:

hUðDtiÞi ¼ �PehûðDtiÞi þ hUPðDtiÞi: (34)

Equation (34) shows that the mean speed hUi of the probe is the speed it would have if

traveling alone in a solvent plus a reduction in its speed hUPi due to the hindrance of the

other particles. As before (cf. Sec. II A), we interpret the reduced mean speed as an effec-

tive viscosity of the dispersion. Recall the definition of the effective viscosity for CF

given by Eq. (3). In that equation, we now have hUi ¼ U0 þ hUPi and U0 ¼ Fext=6pga,

where the bath particles slow the probe’s mean speed, hUPi < 0. Thus in the CF case, the

mean speed of the probe provides a measure of the effective viscosity

gef f
F

g
¼ 1þ hUPi

Fext=6pg a

� 	�1

(35)

and the reduction in mean speed gives a measure of the particle contribution to the vis-

cosity, gP
F,

gP
F

g
� � hUPi

Fext=6pg a
; CF: (36)

The subscript F indicates CF mode. Finally, in the case of a dilute bath in the CF case,

the interparticle contribution to the viscosity measured in simulation is identical to the

microviscosity defined by theory,

gP
F

g
¼ gmicro

g
; /b � 1: (37)

In the CV case, the probe velocity U is held fixed while the probe’s force fluctuates as

it encounters another particle: hFi ¼ 6pgef f a Uext. The corresponding expression for the

effective viscosity in the CV case may be written as

gef f

g
¼ hFi

6pg a Uext
: (38)
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Here, hFi ¼ F0 þ hFPi and F0 ¼ 6pg a Uext. Thus, we have that gef f=g ¼ 1þ hFPi=
6pg a Uext and

gP
U

g
¼ þ hFPi

6pg a Uext
; CV: (39)

The velocity hUPi and force hFPi are the quantities that are directly computed in simula-

tion and theory, and measured in experiment: In the CF case, one measures the reduction

in probe speed hUPi due to collisions with the background bath particles; and in the CV

case, the additional force hFPi required to maintain constant probe velocity as it interacts

with the another particle. Thus, the quantities gP
F and gP

U are the computationally and

experimentally measured analogues of the microviscosity gmicro defined in the (dilute)

theory. In subsequent sections, the theoretical prediction of gmicro is compared to the par-

ticle viscosity gP measured in simulation.

In the present study, an external force is suddenly applied to the probe starting at t¼ 0

and is sustained for a period of time sufficient to allow the microstructure to evolve to

steady state. The external force is then abruptly shut off, and the suspension allowed to

relax as the Brownian motion of the particles continues. A range of forcing strengths was

studied, with a focus on strong departures from equilibrium: Pe¼ 10, Pe¼ 30, and

Pe¼ 100. The bath-particle volume fraction was varied from dilute to concentrated:

/b ¼ 0:10; /b ¼ 0:35, and /b ¼ 0:45. An ensemble of 18 000 independent simulations

of this startup/cessation sequence was performed for each parameter combination; the

large number is needed because statistical data are obtained from the probe’s motion

only. The length-to-width size ratio of the (periodic) simulation cell was increased as the

P�eclet number increased, to assure that the probe would not re-enter its own wake. A lon-

ger cell allows the trailing wake behind the probe to fully recover an isotropic structure

via Brownian motion of the bath particles before the probe exits one periodic cell and

enters the next. The number of bath particles per simulation, at a given volume fraction

/b, was increased with cell length to allow the proper uniformity in the distribution of

particles. This number ranged from 300 to 600. To mirror the theoretical work described

above, the probe- to bath-particle size ratio a/b is set to unity. Both CF and CV modes

were studied, and the time-dependent particle viscosity for the entire startup and cessa-

tion regimes was then computed via Eq. (36) for CF and Eq. (39) for CV and plotted in

Fig. 8; the results are discussed below.

To gain insight into the relationship between transient viscosity and structure, the spa-

tial distribution of bath particles around the probe was recorded at key points in time—

“density snapshots” taken from three orthogonal slices of the simulation cell, each of

thickness a, passing through the probe center (Fig. 9). Each slice provides an instantane-

ous image of the microstructure as might be viewed via optical techniques in a physical

experiment, one view each from the three orthogonal directions in a frame of reference

moving with the probe. Two of the views are identical, due to the axisymmetry around

the probe: The first (and second) is a side-view of the simulation cell transverse to probe

forcing; the images shown are taken from this viewpoint. The third is a view looking

along the direction of probe forcing (and is not presented). The density measurement was

taken at eight selected times aimed toward understanding key features in the transient vis-

cosity curves.

A. Constant external force

In Sec. II C, two approaches in nonlinear microrheology were discussed: constant-

force microrheology and constant-velocity microrheology. In this section, a constant
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external force is applied to the probe with sudden onset at t¼ 0 at the beginning of the

simulation. As the probe begins to move, it deforms the surrounding particle arrange-

ment. The deformation of the microstructure evolves as the probe’s motion continues,

resulting in a change in the drag on the probe. Probe forcing is sustained until t¼ 3.0 and

then is instantaneously removed.

Equation (36) gives the particle viscosity from the measured hard-sphere velocity; it is

compared to the dilute-theory prediction for Pe� 1—the bottom three curves in Fig. 8

FIG. 9. Microstructural evolution for (a) CV, (b) CF, with startup (cessation) in first (second) row of each.

Pe¼ 30, /b ¼ 0:35. Times shown correspond to Fig. 8. [A closeup view of post-cessation viscosity curves

(t > 3) is given in Fig. 10.]

FIG. 8. Brownian dynamics: Transient microviscosity versus time for startup and cessation. Top three curves:

CV; bottom three curves: CF. Pe as shown; volume fraction of bath particles /b ¼ 0:35, a/b¼ 1. Forcing starts

at t¼ 0 and is shut off at t¼ 3. Corresponding density snapshots for selected times are shown in Fig. 9. Details

of post-cessation curves shown in Fig. 10.
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(dark blue, red, and dark green traces). In order to connect the evolving stress to changes

in structure, density snapshots for Pe¼ 30, /b ¼ 0:35 are shown in Fig. 9(b)—where the

first four frames correspond to the startup of flow, and the second four frames correspond

to relaxation after the force is shut off. The time at which each snapshot is taken is inset

in each snapshot.

Before the flow is turned on, the microstructure is at equilibrium. Probe motion is

started and the viscosity rises sharply, as seen in Fig. 8. During this rapid ascent, the equi-

librium microstructure is disrupted; particles collide and propagate the force, and the

boundary-layer shape characteristic of high-Pe flows begins to emerge [t¼ 0.25 and

t¼ 1.0, respectively, in Fig. 9(b)]. The initial ascent scales as t1=2 where the first step

taken by the probe is diffusive. At intermediate times, t � 1, the boundary layer begins to

form on the time scale of the flow, ðaþ bÞ=U � sD=Pe. This boundary-layer formation

time sBL should decrease with the number of collisions, which scale with the volume frac-

tion of bath particles; the scaling thus predicts that sBL � sD=Pe /b. In Fig. 8, the 1/Pe-

dependence of the early climb to steady state is confirmed, as increasing values of Pe
shift the transition from short- to long-time behavior left to earlier times.

At long times, t � 1:0, the probe has moved its size and its mean speed has plateaued,

signifying the approach to steady state. The force(shear)-thinning behavior observed in

steady-state suspensions is also evident here, as the long-time plateau decreases with

increasing Pe.

The viscosity appears to reach approximately 90% of its asymptotic value within one

diffusive time, and an asymptotic value by t¼ 3.0, for both modes. However, the density

plots in Fig. 9(b) indicate that the wake is still evolving at t¼ 3.0. To confirm whether

the viscosity had reached steady state at t¼ 3.0, additional simulations for both CV and

CF were performed for a startup duration of ten diffusive times.2 The majority of stress

evolution again occurred within one diffusive time; this was followed by a much slower

growth toward the (zero-slope) plateau viscosity by t¼ 8.0 and t¼ 4.0 for the CV and CF

cases, respectively. The time for formation of the upstream boundary layer at contact

coincides with attainment of �90% of the steady-state viscosity; while the downstream

wake continues to evolve for a much longer time, it produces little change in the stress.

The physical mechanisms underlying the multiple relaxation modes, and how they deter-

mine the approach to steady state, are explored further in Sec. VI C.

The dilute theory and the Brownian dynamics measurements for concentrated baths

agree at high Pe, as shown in Fig. 8. A comparison also shows that the long-time value of

the viscosity depends on concentration: The dilute suspension is less viscous. But impor-

tantly, the time to reach steady state appears to be independent of volume fraction. We

expect the theory prediction (18) to hold for all volume fractions (not too close to maxi-

mum packing.) Insensitivity to volume fraction of the time to steady state indicates that

pair interactions dominate stress formation. Thus, the simple two-particle theory captures

the physics relevant to stress formation and relaxation, regardless of concentration, as

must be so, because the boundary layer sets the contact value, which is a two-particle

interaction.

The external force is turned off at t¼ 3.0 and relaxation continues via Brownian

motion of the particles. The post-cessation viscosity is shown in Fig. 10, where multiple

relaxation modes can be seen. First, a precipitous drop in the stress occurs immediately

after shutoff at t¼ 3.0; as seen in the figure, more than 90% of the stress relaxes over a

2Due to heavy computational expense, longer duration startup simulations were performed Pe¼ 30 only. The

data are plotted in Fig. 15 given in the Appendix.
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very short time, confirming the theory results reported in Sec. V. As the Brownian motion

of the particles continues, the microstructure undergoes extensive rearrangement as it

relaxes to equilibrium [density snapshots t¼ 3.1, t¼ 3.25, and t¼ 3.45 in Fig. 9(b)], with

very little change in the stress.

B. Constant external velocity

Instead of applying a constant external force to the probe, which allows its velocity to

fluctuate, one may instead constrain the probe to move at a constant velocity through the

bath. The difference in the two forcing modes has interesting dynamical consequences.

In CV mode, the probe cannot adjust its speed but must press on through the bath—it

cannot fluctuate to allow particles to clear out of its path and, in consequence, one

expects the probe will build up a larger accumulation of particles on its upstream face

and leave a more strongly depleted or longer wake. (In contrast, a CF probe will adjust

its velocity if it encounters regions of higher or lower density.) The theory predicts that a

higher boundary-layer density will lead to higher drag [cf. Eq. (6)]. In the dilute limit,

this increase is expected to be a factor of 2 for a size ratio of unity (cf. Sec. II C).

The particle viscosity is determined from the hard-sphere velocity using Eq. (39). The

results are given by the top three curves (cyan, orange, and light green traces) in Fig. 8

for a range of Pe and for a volume fraction of bath particles /b ¼ 0:35. An important

qualitative difference for the CV mode emerges in the startup regime. As seen in the fig-

ure, the microviscosity is nonmonotonic in time. The overshoot is evident for all Pe but

becomes more pronounced as Pe increases. The microstructural origin of this behavior

can be seen in the density snapshots in Fig. 9(a). The first snapshots (t¼ 0.25) for the CV

and CF modes are indistinguishable. However, the next snapshots at t¼ 1.0 show impor-

tant differences: A longer wake and an unbroken ring of nearest neighbors downstream

in the CV microstructure. This residual “cage” around the probe effectively increases its

size and hence the drag. As the cage breaks open (t¼ 2.0), the drag in Fig. 8 settles to its

steady value. While this behavior is clearly evident for CV forcing, it is not entirely

absent in the CF case as seen by the slight overshoot in the viscosity for Pe¼ 100 (dark-

FIG. 10. Brownian dynamics: Transient microviscosity versus time for post-cessation. Force mode (CV and

CF) and Pe as shown; volume fraction of bath particles /b ¼ 0:35, a/b¼ 1. Forcing is shut off at t¼ 3. Dotted-

line arrows point to CV curves; solid arrows point toward CF curves.
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green trace). In the corresponding CF density snapshots, a weak downstream residual

structure appears to be shed—the downstream-portion of the ring.

At long times after startup, two key predictions of the theory are confirmed: First, the

steady-state value of the CV viscosity is approximately double that for the CF case and

second, the suspension force (shear) thins with increasing Pe. The simulation results are

in excellent agreement with our theoretical predictions (Secs. III B and V A) and with the

steady-state, dilute-theory prediction by Squires and Brady that gmicro
U ¼ 2gmicro

F . That the

concentrated simulation results agree so well with our dilute theory gives support to the

simple pair-level model. The data also compare well with the steady-state results of

Carpen and Brady (2005), who conducted Brownian dynamics simulations at steady state

and compared the steady values of gP
F and gP

U. Interestingly, a slow, weak oscillation in

the microviscosity can be seen clearly in the CV curves in Fig. 8. In CV mode, although

the total probe velocity is fixed, the contribution to the velocity due to particle collisions

necessarily fluctuates; this fluctuation is more pronounced as the probe encounters bath

particles in the evolving transient structure. One can imagine a weak oscillation of the

probe within the forming wake which damps out at longer times as the structure reaches

steady state (as seen in Fig. 15 in the Appendix).

The microstructural features associated with the difference in viscosity can be seen in

the density snapshots of Fig. 9(a). The particle accumulation on the upstream face of the

probe is stronger and the trailing wake double in length compared to the corresponding

CF-mode plot [Fig. 9(b)]. This is consistent with the notion of the CV probe as a

“bulldozer” that pushes particles out of its way without slowing down. The consequence

is a higher viscous resistance (and stronger fluctuations, as discussed below). Comparison

of the long-time microstructures for CF versus CV (2:0 	 t 	 3:0) shows that differences

in microstructure persist at steady state, even when the balance between advection and

diffusion is fully established. The constraint that the probe move at constant velocity

leads to stronger upstream accumulation—and more pronounced anisotropy, viz., the

increased length of the detached boundary layer. Because particle density must be con-

served, a correspondingly longer depletion wake follows the probe.

The fluctuations of the particle viscosity are stronger in CV mode than in CF mode, as

seen by the width of the traces in Fig. 8. Physically, the higher CV fluctuations result from

the higher concentration of particles in its boundary layer which give rise to more frequent

strong collisions. This difference also emerges naturally from the difference in diffusive

scaling between the two modes. In fact, Squires and Brady (2005) estimated the velocity

fluctuations for both cases, resulting in a predicted ratio for CV to CF of 2. A coarse mea-

surement of the width of the traces in Fig. 8 shows agreement with this prediction.

The flow is shut off at t¼ 3.0, and as in the CF case, a very rapid drop in the stress is

followed by a slower long-time decay (a closeup view of post-cessation viscosity curves

is given in Fig. 10). The rate of stress relaxation depends on the pre-cessation value of

Pe: The stress drops markedly faster for higher Pe than for lower Pe. For higher Pe, the

boundary layer is thinner; the higher the P�eclet number, the shorter the distance that must

be traversed by the bath particles in order to relieve the stress. While the mechanism for

relaxation, Brownian motion, is the same in the CV as in the CF case, for CV the probe’s

velocity is constrained to be identically zero at shutoff and only the bath particles diffuse.

It is the relative diffusivity that sets the boundary-layer relaxation time scale. In the CV

case, only the Brownian motion of the bath particles contributes to relaxation, and

DU ¼
kT

6pgb
; CV; (40)
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and sets the time to relax the boundary layer. In the CF case, diffusivity is doubled (for

a¼ b),

DF ¼
kT

6pg
1

a
þ 1

b

� �
; CF; (41)

as the probe can also diffuse and relax the boundary layer. In consequence, stress relaxa-

tion is slower in the CV case. The freedom of the probe to fluctuate in the CF case not

only reduces steady-state drag but also allows a faster stress relaxation and smaller fluctu-

ations about the mean.

But the relaxation of the structure at long times is quite similar for the two cases. It

can be seen in Fig. 9 that although the CV wake is twice the length of the CF wake, and

the CV anisotropy is more pronounced, in both cases the equilibrium structure is nearly

fully restored over one Brownian time—a much shorter time for relaxation than the evo-

lution to steady state. This is discussed further in Sec. VI C.

Over long times, the wake closes and isotropy is restored. The relaxation mechanism

that sets the time scale for wake closure is that of the bath particles diffusing laterally

into the wake. The strong gradient in bath-particle density across the wake assures a high

probability that the first Brownian step taken by particles nearby are in the direction of

wake closure. This is seen clearly in the figure as the wake narrows in each progressive

snapshot. The length of the wake does not change the lateral migration into it, but the

more pronounced microstructural anisotropy in CV mode requires longer times for par-

ticles to distribute randomly around the probe.

It is natural to ask if the stress and structural evolution of the two modes can be made

identical by a simple re-scaling of time; this is explored next by a detailed comparison of

CV and CF simulation results.

C. Structural evolution and relaxation time scales

As noted above, the stress reaches 90% of its plateau value within one diffusive time

for both CV and CF modes (cf. Fig. 8). The majority of the stress forms early in the evo-

lution of the structure; while configurational changes continue for long times, the stress

increases very little. This can be understood by recognizing that there are two primary

relaxation modes: Diffusion within the boundary layer and diffusion in the wake.

Boundary-layer formation time was discussed above; here we shall explore the subse-

quent differences in stress and structural evolution for CF versus CV modes, from the

viewpoint of the relaxation time scales set by the respective diffusivities. The dilute

theory predicts that differences in steady-state behavior arise due to the halving of the

CV self-diffusivity. To understand what role this difference plays in the rate of approach

to (and decay from) steady state, let us compare the CV microstructure at a given time t
to the CF microstructure at 2t during startup and determine if a shift in time scales can

make the CV and CF structural evolution quantitatively identical.

In Fig. 11, density snapshots are shown for both modes, side by side, for a startup du-

ration of ten diffusive times, for Pe¼ 30 and /b¼ 0.35. In the second snapshot for CV

mode, at t¼ 1.0, the CV wake length roughly matches that for CF at t¼ 2.0—except for

one distinct difference: The trailing nearest-neighbor ring in the CV density, which we

associate with the viscosity-overshoot behavior. At longer times, the nearest-neighbor

ring in the CV structure vanishes; although the wake lengths still differ, the structural

shapes for CV at t¼ 2.0 and CF at t¼ 4.0 are similar. We expect also that the difference

in structural relaxation time scale will lead to an earlier attainment of steady state for the

CF bath. It can be seen that the CF microstructure reaches steady state by 4:0 < t < 6:0,
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whereas it appears to just reach steady state for CV at t¼ 10.0, indicating that the time to

form the wake for CV is approximately double that for CF.

The wake length is set by the imbalance between advection and diffusion: As the

probe moves through the bath, it clears a path, leaving a depleted region behind it which

is eventually healed by the Brownian motion of the bath particles. The length, lw, after

which the bath has fully regained isotropy is set by the speed U at which the probe dis-

turbs it and the time sD taken for bath particles to recover: lw � sDU. For fixed Pe,

lw � Pe Db sD; (42)

for both modes. But if we prescribe equal numerical values of Pe, the reduced diffusivity

in CV gives a larger effective Pe; thus

lCV
w ¼ 1þ b

a

� �
lCF
w : (43)

Visual inspection of the wake at t¼ 10.0 confirms this estimate, where a/b¼ 1. At steady

state, the length of the CV wake is approximately double that for CF.

The time to establish the wake is also set by the imbalance between advective and diffu-

sive time scales. The probe can move its size in one advective time, sadv � a=U � Pe�1a;

after one diffusive time, it can move Pe times its size. One then expects that the depletion

FIG. 11. Evolution of the microstructure during ten diffusive times for both forcing modes for Pe¼ 30 and

/b¼ 0.35. CV is shown in left column; CF in right column. Dimensionless time is shown in each frame; both

CV and CF time are scaled as in previous figures.
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wake behind the probe should be established in one diffusive time. But according to

the density plots, it takes several diffusive time steps for the depletion region behind the

probe to stop evolving and attain a steady configuration. Over the first diffusive time,

the probe leaves a strongly depleted wake of length a. With each successive diffusive time,

the probe creates another depleted region of size a immediately behind it; a gradient in

depletion pointing upstream shows that advection is won nearby the probe while diffusion

is won by the bath particles downstream. In essence, to create the full wake, the depleted

region must diffuse downstream. The time required scales as the wake length divided by

the diffusive velocity of the bath particles,

sw �
lwffiffiffiffiffiffiffiffiffiffiffiffiffi

Db=sD

p ¼ Pe sD: (44)

Although O(Pe) diffusive times are required to fully form the wake, relaxation and

closure occurs within a single diffusive time. This is because during startup, the probe

must encounter many other particles in order to achieve a steady balance between advec-

tion and diffusion. But during relaxation, many particles need to execute only a single

diffusive step to relax. One then expects hysteresis in repeated on/off cycles of the force.

The difference in CV versus CF relative diffusivity then gives the prediction that

sCV
w ¼ 2 sCF

w : (45)

Overall, a rescaling of time gives approximately equal wake lengths and formation times

for the two cases. The remaining difference between the two modes that cannot be scaled

out is the overshoot behavior during startup—but this is a difference that vanishes at long

times after startup.

For the stress relaxation behavior, recall from Eqs. (36) and (39) that the viscosity in the

simulation is determined by dividing the particle velocity hUPi for CF and the particle

force hFPi for CV by the P�eclet number. Scaling the CV viscosity by a factor of 2 then

FIG. 12. Effect of concentration on relaxation behavior: Brownian dynamics simulation of concentrated bath

(colored traces) compared to dilute theory (solid black curve). Both CF and CV viscosity plotted versus time

made dimensionless on the CF diffusivity. CV traces divided by the diffusive scale-factor of 2 to illustrate decay

from same initial value.
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gives the same effective P�eclet number for the two cases, and it can be seen that the corre-

sponding CV and CF traces for the values of Pe shown in Fig. 12 agree (the CF tracers

become noisier at long times as the probe is allowed to fluctuate as well as the bath par-

ticles). The dilute theory relaxation prediction (24) is plotted alongside the concentrated

simulation results in the same figure. The decay rates are identical—that is, the rate of

relaxation of the microstructure and the stress are independent of the volume fraction. This

notable result demonstrates that the simple two-particle theory is an accurate model for

concentrated systems. From a practical point of view, it is useful, e.g., to set the cutoff time

at which steady state measurements can be taken in experiments. From a more fundamental

point of view, it reveals that structural evolution is a primarily pair phenomenon.

VII. CREEP RECOVERY BEHAVIOR

Elastic behavior in suspensions arises due to the presence of a deformed particle

microstructure. Particles accumulate (and deplete) in space because they hinder one

another’s movement along a flow line; when flow is stopped, the compressed structure

relaxes over time if Brownian motion or interparticle forces are present. In the current

study, the Brownian force is the driving force: Statistically, two particles that are pushed

together and then released will be driven apart by Brownian motion—the gradient in their

distribution gives rise to an entropic force that acts to make uniform their spatial distribu-

tion. Similarly, in a suspension of particles, applying a load to a set of particles deforms

their distribution, restricting the number of available configuration states of the particles.

The reduction in entropy exacts a free-energy penalty; this free-energy (density) is stored

in the particle configuration and results in an increase in suspension stress. Removal of

the external load allows the particles to regain a uniform distribution, which releases the

stored free energy and reduces the stress. Some of this energy release is elastically recov-

erable as the suspension “springs” back, while some of the energy is dissipated viscously

into the solvent. In contrast, a single particle in pure fluid dissipates all of its energy on

FIG. 13. Displacement of the probe during startup and cessation: Brownian dynamics simulation, constant

external force. Displacement (colored solid lines) and viscosity (colored traces) as a function of time. Black line

segments indicate change in displacement slope from intermediate to late times during startup. Data are for Pe
as shown and volume fraction of bath particles /b ¼ 0:35. Forcing starts at t¼ 0 and is shut off at t¼ 3.0.
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any time scale longer than its momentum relaxation time. Stress in a hard-sphere disper-

sion therefore gives some measure of its ability to temporarily store free energy.

To explore this behavior, the absolute position of the probe was monitored during sim-

ulation at CF. It is plotted in Fig. 13 alongside the constant force particle viscosity as a

function of time for Pe¼ 10, Pe¼ 30, and Pe¼ 100 and /b ¼ 0:35. During startup

(0 	 t 	 3:0), two distinct slopes can be seen (denoted by the short black line segments).

The initially higher speed of the probe slows during the first diffusive step taken by the

probe, as the microstructure begins to deform. The long-time slope is smaller and con-

stant as the microstructure approaches steady-state. The reduction in the rate of probe dis-

placement signals the increase in drag, also shown in the plot. This can be thought of as a

time-dependent force-thickening of the suspension. Recall that when hydrodynamic inter-

actions are present in a dispersion, lubrication interactions between the probe and bath

particles produce doublets and clusters that lead to shear(force)-thickening [Bergenholtz

et al. (2002)]. Their larger effective size reduces the average material velocity at the

given imposed force, i.e., increases the viscosity. Here, in the absence of hydrodynamic

interactions, the effective size of the probe changes from an initially isolated particle to a

doublets or multiplets, as the structure deforms around it. Shear (force) thickening is pri-

marily the result of particle cluster formation and these form temporarily even in the ab-

sence of hydrodynamic interactions.

Upon removal of the external force (t¼ 3.0), the probe travels backward, as seen in

Fig. 13. The suspension “remembers” configurations from the past for a finite period of

time; removal of the force allows the probe to return to a previous position, an important

manifestation of nonlinear elasticity—memory—in colloidal dispersions.

We recall from Fig. 10 that the majority of the stress in the suspension relaxes very

quickly upon shutoff; it was shown that the mechanism for this relaxation was the motion

of the probe in the boundary layer. For Pe¼ 30, the back-travel should be approximately

the boundary-layer thickness d � ðaþ bÞ=Pe � 0:033ðaþ bÞ. A coarse measurement of

the “slope” of the back-travel region in Fig. 13 indicates that the initial back-travel dis-

tance (from point 4 to point 5 in the figure) is approximately 0.03(aþ b), at which point

much of the stress has relaxed. As the microstructure continues to relax, the majority of

the probe back travel, Dx � 0:154ðaþ bÞ, occurs by t¼ 0.15 after shutoff (point 6). The

corresponding density plots are inset in the figure. The stress relaxation, travel distance,

boundary-layer thickness, and density plots agree. The initial back-travel shows that

much of the stress relaxation is due to the separation of the probe from the boundary

layer. The remaining back travel is driven by the diffusion of bath particles as they

recover isotropic distribution and entropically entrain the probe during relaxation.

The probe experiences this entropic “spring” force as a real force, which can be com-

puted as F ¼ R � U, where the back-travel velocity U can be estimated graphically from

measurements of probe displacement in the figure as U � Dx=Dt. At short times after

shutoff,

F � kT

b

Dx

Dt
� 5:41

kT

b
; (46)

giving the back-travel of the probe that occurs by the time most stress relaxation has

taken place (point 6). The entropic force can also be estimated theoretically as

F � kTr log g. At infinite dilution, in the limit of strong forcing, this becomes

F � kT

b
; (47)
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for a size ratio of unity, where we have used the value of gð1;Pe!1Þ from dilute

theory [Squires and Brady (2005)]. The simulation results for the concentrated bath (46)

and the dilute theory prediction above thus agree qualitatively, as they must. The dilute

theory prediction (47) was also compared to simulation results with Pe¼ 30 but with vol-

ume fraction of bath particles /b ¼ 0:1; here F � 1:49kT=b. The restoring force acting

on the probe in the more concentrated bath is higher as the osmotic force scales with the

number of particles nearby.

One can also view the restoring force as a measure of the osmotic compressibility of

the bath, F=ðkT=bÞ � P=nkT. The Carnahan-Starling equation of state expresses the os-

motic compressibility Z ¼ P=nkT in terms of the volume fraction of particles as

Z ¼ P
nkT
¼ 1þ /b þ /2

b � /3
b

ð1� /bÞ3
; (48)

which predicts Zð/b ¼ 0:10Þ ¼ 1:52 and Zð/b ¼ 0:35Þ ¼ 5:21, in close agreement with

the entropic spring force estimated above. Here, the probe is a passive particle being car-

ried along during the relaxation of the dispersion and provides a direct measure of osmotic

compressibility. (Note that since the probe and bath particles have the same size (a¼ b),

once the force is removed, the probe becomes indistinguishable from a bath particle.)

VIII. COMPARISON TO MACRORHEOLOGY

We have suggested that the force/velocity relationship in microrheology is analogous

to the stress/strain-rate relationship in macrorheology and that both approaches should

yield the same qualitative information about structural evolution and relaxation. In order

to test this assertion, we compare here the findings of the present study with the findings

of previous macrorheology studies.

Transient suspension behavior was studied by dynamic simulation by Foss (1999),

where Brownian and Stokesian dynamics were used to study the startup and cessation

behavior of suspensions undergoing shear flow. At early times after the onset of shear

FIG. 14. Comparison of long-time (steady-state) pair-contribution to the particle viscosity for microrheology

via Brownian dynamics in concentrated suspensions and via dilute theory, versus macrorheology via the dilute

theory of Bergenholtz et al. (2002).
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flow, Foss also finds that the viscosity grows as t1=2 (in the absence of hydrodynamic

interactions). He also observed similar overshoot behavior in the startup regime, which

increases in amplitude as Pe increased. At long times, he reported the same shear-

thinning behavior as steady state was reached. Each of these three fundamental behaviors

was recovered here via nonlinear microrheology.

After shutoff, both micro- and macrorheology reveal qualitatively identical behavior:

Relaxation occurs over at least two time scales. The first is the steep relaxation in stress due

to diffusion in the boundary layer, which occurs in a time set by the boundary-layer thick-

ness t � Oðd2=DÞ. Both studies also find that this is followed by a longer-range relaxation

of the structure, which takes a time of order �ða2=DÞ required for particles to travel

their size.

To compare micro- to macrorheology at steady state, results for a sheared, dilute sus-

pension as obtained by theory [Bergenholtz et al. (2002)] are shown alongside the results

of the present study in Fig. 14, where the pair-level particle contribution to the steady-

state shear viscosity is shown by the dashed lines. The steady-state values obtained via

microrheology in a concentrated bath are slightly higher than the corresponding dilute

results; results for the dilute microrheology theory is also shown and are in excellent

agreement with the macrorheology theory.

IX. CONCLUSIONS

The formation and relaxation of nonequilibrium stress in colloidal dispersions was stud-

ied using the framework of nonlinear microrheology. In this approach, a dilute dispersion

of hard-sphere colloids is driven far from equilibrium by the motion of an externally forced

Brownian probe particle. In order to explore time-dependent behavior of the structure and

stress, the velocity and displacement of the probe were monitored during startup of the

flow for several diffusive time steps. Forcing was then abruptly removed, and monitoring

of probe displacement and velocity were continued after shutoff as the suspension relaxed.

During the startup of the flow, the microstructure evolves initially as a one-dimensional

diffusive monopole in time, and the viscosity grows as t1=2. Importantly, the early-time

behavior of the transient microviscosity is the same regardless of the strength of probe forc-

ing. This is because the first collision results from a diffusive step that scales as �
ffiffiffiffiffi
Dt
p

,

which at short times is larger than an advective step that scales as �Dt. Thus, the first

change in the viscosity propagates diffusively, in keeping with the connection between the

short-time self-diffusivity and the infinite-frequency (zero shear-rate) viscosity. As the

probe encounters more particles, it slows down and the drag on the probe asymptotes to a

long-time steady value. The force-thinning characteristic of hard-sphere suspensions at

steady state was recovered at long times. These values also agreed with the steady-state

values reported by Squires and Brady (2005), Khair and Brady (2006), and Carpen and

Brady (2005). Analytical and numerical results and Brownian dynamics simulation meas-

urements were in good agreement—a somewhat surprising result, given that the simulation

baths were far from dilute. This indicates that pair interactions dominate the development

of both structure and stress and that the simple dilute theory proposed gives a strong model

even for concentrated suspensions.

After the forcing is removed, the motion of the probe and suspension do not cease

instantaneously. The suspension relaxation occurs over at least two time scales: First, an

initially rapid decay in stress that accompanies diffusive relaxation of the boundary layer.

The rate of initial decay sBL � d2=D, where d � Pe�1, and thus is set by the pre-cessation

P�eclet number. Stronger departures from equilibrium recover faster. While this behavior is

found for both constant-force and constant-velocity forcing modes and the underlying
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mechanism is the same for the two cases, the time scales differ quantitatively. For the for-

mer, both the probe and the bath particles can diffuse and relax through the boundary layer

to relieve stress; whereas in the latter case, only the bath particles can diffuse, halving the

initial relaxation rate for equally sized probe and bath particles and resulting in a slower

stress relaxation. In either case, the stress relaxation time depends on the boundary-layer

thickness, which it must, because the primary contribution to hard-sphere suspension stress

is that due to direct particle interactions. Importantly, the dilute theory captures the physics

of the relaxation process: The pair-level equation obtained for the relaxation of the viscos-

ity was in agreement with the concentrated suspension in the simulations (cf. Fig. 12)—

the relaxation rate of the boundary layer is evidently independent of volume fraction.

These results are consistent with similar findings by Foss (1999). In contrast to the stress,

the majority of the structural relaxation occurs on a longer time scale, where wake closure

occurs by gradient-driven diffusion of bath particles laterally across the wake.

A comparison was made between CF and CV regimes. Brownian dynamics simula-

tions confirm the steady-state prediction by Squires and Brady that gmicro
U � 2gmicro

F .

Brownian dynamics simulation of steady-state microrheology by Carpen and Brady

(2005) found similar values for the viscosity as the long-time startup results in this study.

Physically, in CV mode, the probe velocity (and path) cannot fluctuate, which results in a

larger accumulation of bath particles in the boundary layer and thus a stronger resistance

to probe motion. The time to reach steady state in CV mode is also longer because the

time required to sample all configurations of the microstructure is longer, due to the need

to encounter many different spikes and dips in density, which is reflected in the halving

of the diffusive time scale. An overshoot in the stress in the CV case becomes more pro-

nounced as Pe increases. The underlying mechanism for this behavior was found by com-

paring images of the evolving microstructural density. The cage of nearest-neighbor bath

particles around the probe remains intact in the downstream region for several diffusive

time steps. This residual cage around the probe effectively increases its size and hence

the drag. As the cage breaks open, the drag settles to its steady value. This overshoot

behavior is closely connected to the cluster formation that is the underlying mechanism

for shear-thickening in suspensions [Bergenholtz et al. (2002)].

Additional differences between the two modes include a longer wake in the CV mode,

a denser boundary layer, and a halving of the initial stress relaxation rate after shutoff.

But it was also shown that re-scaling of time and length with the appropriate relative dif-

fusivity removes these differences.

Creep recovery after shutoff provides insight into the connection between stress, free-

energy storage, and entropic memory. During startup and at steady state, the probe’s

motion compresses the particle distribution, restricting its entropy; the free-energy

change required to do so is released by the microstructure as it relaxes and regains access

to more configuration states. As seen when the force is abruptly removed, not all of the

strain can be recovered; in the case of Pe¼ 30, the entropic spring force was approxi-

mately 5kT/b or one-sixth the applied force. The remaining energy is dissipated viscously

to the solvent by the probe and the bath particles. The storage is entropic in origin (not

enthalpic), and this is the origin of nonequilibrium suspension stress.

While the amount of energy density stored in the structure increases with increasing Pe,

the duration of this storage decreases with increasing Pe. The two phenomena have a com-

mon origin: Memory decay occurs via Brownian motion; at high Pe, Brownian motion is

too weak to dissipate probe energy, and storage is high; but upon shutoff, only a small

region must relax and the stored energy is dissipated quickly. But when Pe is small,

Brownian motion easily dissipates the energy of steady probe motion, and storage is low;

yet upon shutoff, a comparatively large region (more particles) must relax. A more
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revealing way to view this connection between magnitude and duration of stress is to

examine the ratio of recovered to input energy. For Pe¼ 10, Pe¼ 30, and Pe¼ 100, this

ratio is approximately 30%, 18%, and 7%, respectively for a volume fraction of

/b ¼ 0:35. Thus, as Pe increases, a decreasing fraction of input energy can be stored in the

distorted particle configuration, and the duration for which this storage persists is shorter.

The connection between the entropic force and the osmotic compressibility supports

this view of the stress as energy storage. An interesting question that arises here is

whether the entropic spring force [cf. Eq. (46)] can be derived from first principles; at

steady state, the statically distorted microstructure generates this entropic force suggest-

ing that Fentropic � kTr log g, where g is the nonequilibrium pair-distribution function.

The comparison between transient nonlinear macrorheology and microrheology shows

that in both cases, the early stress evolution scales with the square root of time and shows

the same shear (force) thinning over a range of Pe [Foss (1999)]. In both micro- and mac-

rorheology, the long-time relaxation behavior collapses onto a single curve, indicating

that memory of the initial condition is lost.

Several questions remain. The effect of hydrodynamic interactions was not studied in

this investigation. When hydrodynamic interactions are important, shear thickening

occurs for large Pe at steady state. Because hydrodynamic interactions introduce an addi-

tional dissipative mechanism, the early scaling of the microviscosity will change. Lubri-

cation forces drive the relative mobility between a pair of particles to zero which leads to

a plateau at low frequency—the high shear/flow-rate viscosity. Upon shutoff of the force,

the hydrodynamic contribution to the stress will decay instantaneously.

The mechanisms that underlie the constant-force versus constant-velocity probe

regimes should be studied with a view toward the force fluctuations that arise during CV

motion. While the velocity-velocity autocorrelation gives insight into diffusivity, what

can we learn from force-force correlation—for example, about the viscosity? The force-

velocity cross-correlation, hUFi, can be viewed as a measure of work done on the system;

since this total energy must be either stored or dissipated, it would make sense to view

hFFi and hUUi in terms of (nonequilibrium) fluctuation and dissipation. And while the

size ratio a/b was taken to be unity for this study, it would be interesting to explore the

parameter space of variable size ratio and understand its contribution to relaxation time

scales. A qualitative change is not expected, except perhaps when hydrodynamic interac-

tions are important.

Finally, we turn to the idea that probe motion is a window through which we can view

the connection between fluctuation and dissipation. What can nonequilibrium fluctuation

and dissipation tell us more fundamentally about energy and motion? Stress relaxation

away from equilibrium depends strongly on the probe’s ability to fluctuate. Although

power input by the probe must all be dissipated, it takes time to do so. Energy is stored

temporarily as increased suspension stress. In our recent work [Zia and Brady (2012)], it

was shown that the stress is given by the balance between nonequilibrium fluctuations

and viscous relaxation in nonlinear microrheology. The strength of advective forces rela-

tive to diffusive forces—the P�eclet number—is equivalently a ratio of diffusive to advec-

tive time scales. It sets the time scale over which the microstructural disturbance persists;

Pe is thus a memory parameter in nonlinear flows—it indicates how long the microstruc-

ture “remembers” the disturbance caused by the probe’s motion.
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APPENDIX: LONG-TIME BEHAVIOR DURING STARTUP

To confirm whether the viscosity had reached steady state at t¼ 3.0, additional simula-

tions for both CV and CF were performed for a startup duration of ten diffusive times.

Due to heavy computational expense, longer duration startup simulations for only

Pe¼ 30 were performed. The data are plotted in Fig. 15. The majority of stress evolution

occurs within one diffusive time; this is followed by a much slower growth toward the

(zero-slope) plateau viscosity by t¼ 8.0 and t¼ 4.0 for the CV and CF cases, respec-

tively. As can be seen in the figure, the viscosity has reached steady state at the time of

shutoff, t¼ 10.
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