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Multidimensional measures of response and fluctuations in stochastic dynamical systems
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A class of experiments is proposed which involve multiple measurements combined with multiple perturbations
of a nonlinear classical complex system. A family of multipoint n + m − 1 dimensional measures R(n,m) that
provide complementary information on complex systems is obtained by combining m nonlinear stimuli and n

measurements. They represent the combined effect of causal response and noncausal spontaneous fluctuations.
The proposed signals can be measured either in the frequency domain or in the time domain. Generalized
fluctuation-dissipation relations which hold in the nonlinear regime restrict the number of independent techniques.
Two-dimensional correlation plots derived from such measurements can reveal various types of couplings among
collective modes.
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I. INTRODUCTION

Study of dynamical phenomena in nonlinearly coupled
systems is of paramount importance in many branches of
physics [1,2]. In many cases, analysis of dynamical behavior
is often complicated by the presence of fluctuations caused
by interactions with a noisy environment or by inherent
stochasticity of the system of interest. Dynamics of such
systems can be characterized by calculating or measuring
averages of some dynamical quantities over different realiza-
tions of these fluctuating systems. Such averaged quantities,
in which time enters as a parameter, are invariant objects
and thus serve as time-dependent measures of fluctuating
dynamical systems. One such measure is produced by n-point
correlation functions, obtained by performing n measurements
of a variable A(t) at times τ1,..., τn and constructing the n-point
average 〈A(τn) . . . ,A(τ1)〉. More generally one can measure
cross correlations of different quantities Aj at different times,
yet to simplify the notation we consider a single quantity
A, while the extension is straightforward. In a stationary
system, these quantities depend on n − 1 time intervals and
thus constitute an n − 1 dimensional characteristic of the
system [3–8].

Another way to investigate the properties of a dynamical
system is studying how it responds to controlled external
perturbations [9–11]. By subjecting a system to n − 1 im-
pulsive perturbations at times τ1, . . . ,τn−1 one can record
some property B(τn) of the system as a function of the
various time delays. The expectation value of B(τn) can be
calculated within the scopes of response theory [11], which
brings in another type of (n − 1) dimensional characteris-
tic given by the (n − 1)th-order response function [12–18]
(−1)n〈{ · · · {B(τn),A(τn−1)} . . . ,A(τ1)}〉, where {. . . , . . .} are
the Poisson brackets and A is the physical quantity through
which external perturbation interacts with the system, H ′(t) =
E(t)A. In case of perturbations by impulsive electric fields, A
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could be the dipole moment. Nonlinear (n − 1)th-order optical
response functions can be measured directly in multidimen-
sional time domain spectroscopic experiments. The response
function corresponding to n = 2, i.e., the linear response
function, is related to the two-point correlation function via
the well-known fluctuation-dissipation theorem [19,20], and
thus does not carry additional information on the microscopic
dynamics of a system beyond what is already contained in the
two-point correlation function. A significant research effort
has been made in the past to seek for a relation between
the nonlinear response functions and multipoint correlation
functions, and to derive a generalized fluctuation-dissipation
theorem [21–30]. However, for n > 2, no simple relation
between the (n − 1)th-order nonlinear response function and
the n-point correlation function was found, implying that the
nonlinear response function provides additional information
to the n-point correlation function. Both n-point correlation
functions and (n − 1)th-order response functions depend on
(n − 1) time intervals and thus both can serve as complemen-
tary (n − 1) dimensional measures of fluctuating dynamical
systems.

In the present paper we show that a broader class of
dynamical (n − 1) dimensional measures can be introduced
by combining m impulsive, but weak, perturbations with
n − m measurements done on the system. Indeed, an n-
point correlation function corresponds to n consecutive mea-
surements of a dynamical quantity, while n-point response
functions represent (n − 1) perturbations followed by a single
measurement of some dynamical quantity. It is interesting to
explore a generalized class of experiments that consist of m

perturbations and (n − m) measurements.
We define a k-point correlation function in which k

measurements on a system at times τi are mixed with m

perturbations of the system at times τ ′
j :

〈A(τk) . . . ,A(τ1)〉k,m

=
∫

dτ ′
m

∫
dτ ′

m−1 . . .

∫
dτ ′

1R
(k,m)(τk, . . . ,τ1,τ

′
m, . . . ,τ ′

1)

×Em(τ ′
m) · · · E1(τ ′

1), (1.1)
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with k + m = n. The time variables τj and τ ′
i are ordered ac-

cording to the order in which perturbations and measurements
are applied. τ1 is the first measurement, τ ′

1 is the first pertur-
bation, etc. For instance, the time ordering for an experiment
that consists of one perturbation, one measurement, another
perturbation, and a second measurement is τ2 > τ ′

2 > τ1 > τ ′
1.

Note that the chronologically last time must be a τ , not τ ′,
otherwise R(k,m) vanishes, which is a signature of causality.
R(k,m) is the response of a k-point correlation function to
m impulsive perturbations. We note, however, that for fixed
k and m, one will have (k + m − 1)!/(k − 1)!m! different
realizations of time domain experiments with particular time
ordering of measurements and perturbations, each having its
own R(k,m). In this notation R(1,n−1) is an ordinary response
function, while R(n,0) is the ordinary n-point correlation
function. Similarly we can write frequency domain analogs
of these quantities:

〈Ã(ωk) . . . Ã(ω1)〉k,m

= 1

(2π )m

∫
dω′

m . . .

∫
dω′

1χ
(k,m)(ωk, . . . ,ω1,ω

′
m, . . . ,ω′

1)

× Ẽm(ω′
m) . . . Ẽ1(ω′

1), (1.2)

where χ (k,m) is a generalized susceptibility. Here the system
is subjected to m periodic perturbations and k Fourier compo-
nents of the response are measured. In the frequency domain,
time ordering is irrelevant, and thus a frequency domain
experiment that consists of m perturbations and k measure-
ments corresponds to a single quantity χ (k,m) that combines
contributions of all (k + m − 1)!/(k − 1)!m! realizations of
time ordered experiments. Time domain experiments thus
carry more detailed information since different sequences can
be separated. We discuss these details in the following sections.

For weak perturbations Ej (t) = εj δ(t − τ ′
j ) or Ej (t) =

εj e
ıω′

j t one can determine the respective R(k,m) and χ (k,m),
respectively, by differentiation:

R(k,m)(τk, . . . ,τ1,τ
′
m, . . . ,τ ′

1)= ∂m

∂ε1...εm

〈A(τk) . . . A(τ1)〉k,m,

χ (k,m)(ωk, . . . ,ω1,ω
′
m, . . . ,ω′

1)= ∂m

∂ε1...εm

〈Ã(ωk) . . . Ã(ω1)〉k,m,

which in practical applications may be obtained by finite
differences.

In the coming sections we discuss the introduced gener-
alized response functions (GRF) R(k,m) and susceptibilities
χ (k,m) in greater detail and analyze them within the scope
of classical mechanics in phase space. We concentrate our
discussion on systems initially at thermal equilibrium, al-
though other systems such as systems at steady state will
be an interesting future application. The paper is organized
as follows. In Sec. II we provide explicit expressions for
the general class of n-point time domain quantities R(k,m). In
Sec. III we show that for systems at thermal equilibrium there
exist n − 1 independent quantities R(k,m), with k + m = n.
In Sec. IV we discuss how R(k,m) can serve as new (n − 1)
dimensional characteristics of dynamical systems. Several
numerical examples are given in Sec. V. The considered
models are linearly coupled Morse oscillators, each coupled
to a thermal bath of harmonic oscillators, and nonlinearly

coupled harmonic oscillators each coupled to a thermal
harmonic bath. There we also consider an exactly solvable
model of uncoupled constant-energy harmonic oscillators to
simplify subsequent analysis of multidimensional signals of
systems at thermal equilibrium. We discuss frequency domain
experiments and derive explicit expressions of generalized
susceptibilities χ (k,m) in Sec. VI. We conclude with discussion
in Sec. VII.

II. MULTIPLE PERTURBATIONS AND MEASUREMENTS

To set the stage for our discussion, we first review nonlinear
response theory, and introduce notations and models. Response
theory evaluates the expectation value of a physical quantity
B after n perturbations done on the system initially at equilib-
rium. Let us consider application of this theory to the case when
pulses of light are used as external perturbations. Suppose we
have a classical system with the Hamiltonian H (x,p), which
we perturb by an external electric field E(t) consisting of
a sequence of n pulses E(t) = ∑

Ej (t), interacting with the
system via the dipole coupling Hint = −E(t)V , where V is the
system’s dipole moment. Vectors x and p denote, respectively,
a set of N coordinates and their N conjugate momenta of the
N -dimensional system of interest. We assume that the dipole
moment V (t) = V (x(t),p(t)) is a function of the system’s
coordinates x and momenta p, and implicitly depends on time
through x(t) and p(t).

The expectation value of B ≡ V at time t can be evaluated
via exact expression [31]:

〈V (t)〉 =
〈
T V (t) exp

[
−

∫ t

−∞
dτE(τ )V−(τ )

]〉
, (2.1)

where 〈A〉 = Tr[Aρeq] denotes averaging with respect to the
initial equilibrium distribution density ρeq = ρeq(x,p), and
the tracing operation Tr[...] ≡ (1/2πh̄)N

∫
dxdp... is over the

(x,p) phase space. The “-” subscript denotes a special type of
differential operator, which represents a Poisson bracket [32]:

V−A ≡ {V,A} = ∂V

∂x
∂A

∂p
− ∂A

∂x
∂V

∂p
. (2.2)

T is a time ordering operation. Although position and
momentum canonical coordinates (x,p) are used in the present
analysis, it should be noted, however, that both the trace oper-
ation and the Poisson bracket are invariant under the canonical
transformation of phase space coordinates (x,p) → (q′,p′).
The latter allows one in some cases to chose a convenient set
of canonical coordinates (q′,p′) for these operations (such as
action-angle coordinates for systems with periodic dynamics,
which we use in Sec. V to analyze one of the models).
Different nonlinear contributions of the incoming electric field
are obtained by expanding the exponent in the right-hand side
of Eq. (2.1) in powers of E(τ ). The nth-order contribution
reads

〈V (n)(τn+1)〉 =
∫ τn+1

−∞
dτn

∫ τn

−∞
dτn−1 . . .

∫ τ2

−∞
dτ1

×E(τn) . . . E(τ1)R(n)(τn+1, . . . ,τ1), (2.3)
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where

R(n)(τn+1, . . . ,τ1)

= (−1)n〈V (τn+1)V−(τn)...V−(τ1)〉
= (−1)n

∫
dxdp

(2πh̄)N
V (τn+1){V (τn), . . . {V (τ1),ρ(x,p)} . . .}

(2.4)

is the nth-order nonlinear response function.
Alternatively, the expression for the nth-order response

function can be obtained nonperturbatively [31] from Eq. (2.1)
by subjecting the system to n impulsive delta pulses
E(t) = ∑n

i=1 εiδ(t − τi), which reduces Eq. (2.1) to

〈V (τn+1)〉 = 〈V (τn)e−εnV−(τn) . . . e−ε1V−(τ1)〉 (2.5)

and Eq. (2.3) to

〈V (n)(τn+1)〉 = εnεn−1 . . . ε1R
(n)(τn+1, . . . ,τ1). (2.6)

Equation (2.5) serves as a generating function for the response
function. From Eqs. (2.5) and (2.6) one can easily find that

R(n)(τn+1, . . . ,τ1) ≡ ∂n

∂εn . . . ∂ε1
〈V (τn+1)〉|εn=ε1=0

= (−1)n〈V (τn+1)V−(τn) . . . V−(τ1)〉. (2.7)

While Eqs. (2.4) and (2.7) are equivalent, Eq. (2.5), that is used
in the derivation of Eq. (2.7), has a clearer physical meaning;
i.e., it means that the response function can be calculated by
imposing n weak impulsive perturbations on the system and
performing a measurement of V at some time τn+1 after the last
perturbation. The mathematical operation that corresponds to a
perturbation is V− defined in Eq. (2.2). Although the exact form
of the perturbation operator is exp[−εiV−], it always appears in
the expression of the response function Eq. (2.7) together with
the derivative ∂/∂εi exp[−εiV−]|εi=0 = −V−; we therefore
refer to both operators exp[−εiV−] and V− as perturbation
operators; i.e., the V− operator represents infinitely small
perturbation.

To simplify further discussions, we introduce a subscript
notation for the ordinary product:

V+A ≡ V A. (2.8)

In this notation, the n-point correlation function reads

〈V+(τn)V+(τn−1) . . . V+(τ1)〉, (2.9)

and the (n − 1)th-order response function becomes

(−1)n−1〈V+(τn)V−(τn−1) . . . V−(τ1)〉. (2.10)

The structural similarity of the expressions in Eqs. (2.9) and
(2.10) suggests that we can define a broader class of correlation
functions, in which m perturbations V− are mixed with k =
n − m measurements V+:

R
(k,m)
+,±...± ≡ (−1)m〈V+(τn)V±(τn−1) . . . V±(τ1)〉. (2.11)

The only requirement is that chronologically the last operation
should be V+, and not V−, since the trace Tr[V−B] =
Tr[{V,B}] vanishes, which is also a signature of causality;
i.e., there is no reason to make a perturbation if it will not
be followed by a measurement. Keeping track of the possible
time ordering of V+(τi) and V−(τ ′

j ), the total number of the

generalized response functions R
(k,m)
+,±...± in Eq. (2.11) will be

2n−1. Yet, not all of them are independent for systems initially
at thermal equilibrium. This will be shown in the following
section.

III. SYSTEMS AT THERMAL EQUILIBRIUM

A distinctive feature of the Boltzmann distribution density,
ρeq(x,p) = (1/Z) exp[−βH (x,p)], is its exponential form
with linear dependence on the system’s Hamiltonian in
its exponent. This allows us to simplify Poisson bracket
expressions containing the Boltzmann distribution function
using the chain rule:

{V (t),ρeq} = −β{V (t),H }ρeq = −β
dV (t)

dt
ρeq. (3.1)

For the linear response, this results in the well-known
fluctuation-dissipation relation between the two-point time
correlation function R++ = 〈V+(τ2)V+(τ1)〉 and the first-
order, linear response function R+− = −〈V+(τ2)V−(τ1)〉:

−〈V+(τ2)V−(τ1)〉 = −Tr[V (τ2){V (τ1),ρeq}]
= βTr[V (τ2)V̇ (τ1)ρeq]

= β
d

dτ1
〈V+(τ2)V+(τ1)〉. (3.2)

Making use of Eq. (3.1) we can write down explicit
expressions of several lowest-order generalized response
functions from Eq. (2.11). For third-order quantities n = 3
we have

R+++(τ3,τ2,τ1) = 〈V (τ3)V (τ2)V (τ1)〉,
R++−(τ3,τ2,τ1) = −〈V (τ3)V (τ2)V−(τ1)〉

= β
d

dτ1
〈V (τ3)V (τ2)V (τ1)〉,

R+−+(τ3,τ2,τ1) = −〈V (τ3)V−(τ2)V (τ1)〉
= −〈V (τ3){V (τ2),V (τ1)}〉

+β
d

dτ2
〈V (τ3)V (τ2)V (τ1)〉,

R+−−(τ3,τ2,τ1) = 〈V (τ3)V−(τ2)V−(τ1)〉
= −β

d

dτ1
〈V (τ3){V (τ2),V (τ1)}〉

+β2 d2

dτ1dτ2
〈V (τ3)V (τ2)V (τ1)〉. (3.3)

From Eq. (3.3) one can see that the generalized response
functions are actually related to each other through

R++−(τ3,τ2,τ1) = β
d

dτ1
R+++(τ3,τ2,τ1),

(3.4)

R+−−(τ3,τ2,τ1) = β
d

dτ1
R+−+(τ3,τ2,τ1).

This implies that once R+++(τ3,τ2,τ1) and R+−+(τ3,τ2,τ1)
are determined, the other two correlation functions
R++−(τ3,τ2,τ1) and R+−−(τ3,τ2,τ1) can be found by differen-
tiation. Clearly, from Eq. (3.3) it follows that there is no way to
express R+−+ in terms of derivatives of R+++. It is well known
from the classical theory of nonlinear response functions that
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it is not possible to express a nonlinear classical response
function, R+−−, in terms of classical correlation functions
R+++ [33]. Therefore a pair of quantities, in which one is
either R+++ or R++− and the other one is either R+−+ or
R+−−, is sufficient to calculate all four three-point generalized
measures in Eq. (2.11), and thus contains all the (independent)
information that can be extracted from experiments that consist
of m perturbations and 3 − m measurements.

Equations (3.4) may also be viewed as generalized fluc-
tuation dissipation relations. We can also write them in the
frequency domain by introducing the quantity

S+,±,...,±(�n−1, . . . ,�1)

=
∫ ∞

0
dtn . . .

∫ ∞

0
dt1R+,±,...,±(tn, . . . ,t1)

× exp(i�1t1 + · · · ı�ntn), (3.5)

which is a Fourier transform of the time-ordered general-
ized response function R+,±,...,±(tn, . . . ,t1) = (−1)m〈V+(tn +
· · · + t1) . . . V±(t2 + t1)V±(t1)〉 over the time intervals
tj ≡ τj − τj−1 between the consecutive perturbations or mea-
surements. We then have

S+−(�1) = iβ�1S++(�1),

S++−(�2,�1) = iβ�1S+++(�2,�1), (3.6)

S+−−(�2,�1) = iβ�1S+−+(�2,�1).

Note that these Fourier transforms of time domain signals
are different from the frequency domain signals given by
susceptibilities. The connection will be made in Sec. VI.

A. The number of independent GRF

In the previous section we have seen that only one of the
two GRF R+,± and only two of the four measures R+,±,±
are independent. Before we make a generalization to the case
of arbitrary n, we consider one more case, n = 4, for clearer
illustration. There are 24−1 = 8 four-point measures R+,±,±,±;
these are listed in the Appendix. One can see that all these
expressions depend only on five distinct GRF:

〈V (τ4)V (τ3)V (τ2)V (τ1)〉, 〈V (τ4)V (τ3){V (τ2),V (τ1)}〉,
〈V (τ4)V (τ2){V (τ3),V (τ1)}〉, 〈V (τ4)V (τ1){V (τ3),V (τ2)}〉,
〈V (τ4){V (τ3),{V (τ2),V (τ1)}}〉. (3.7)

The second, the third, and the fourth correlation functions
in Eq. (3.7) differ only by time ordering and therefore their
Fourier transforms can be obtained from another one by
permutation of the corresponding frequencies, thus carrying
essentially the same information (see Appendix). In Sec. VI,
where we discuss frequency domain measurements, time
ordering becomes irrelevant, and a measurement of an ap-
propriate nonlinear susceptibility is sufficient to construct the
second, the third, and the fourth terms in Eq. (3.7) with
no additional information needed beyond the susceptibility.
Therefore, the number of independent correlation functions in
Eq. (3.7) reduces to only 3:

〈V (τ4)V (τ3)V (τ2)V (τ1)〉, 〈V (τ4)V (τ3){V (τ2),V (τ1)}〉,
〈V (τ4){V (τ3),{V (τ2),V (τ1)}}〉. (3.8)

We can now write down the Poisson bracket opera-
tion explicitly. The Poisson bracket of canonical variables
reads

{V (τ1),V (τ2)} = εijMjk(τ2,τ1)V ′
i (τ2)V ′

k(τ1), (3.9)

where V ′
j ≡ ∂V

∂xj
, x1 ≡ p, x2 ≡ x, εii ≡ 0,and ε12 = −ε21 = 1.

The quantity Mjk(τ2,τ1) = ∂xk(τ1)
∂xj (τ2) is the stability matrix defined

as the derivative of a small deviation δxk(τ1) at time τ1 with
respect to a small deviation δxk(τ2) at time τ2. A consecutive
action of several Poisson brackets can lead to higher-order
stability matrices M

(n)
jk (τ2,τ1) = ∂nxk (τ1)

∂xj1(τ2)...∂xjn(τ2) . The stability
matrix is a new dynamical quantity that is not contained in
correlation functions and describes the classical coherence
between the two (or more, for higher-order stability matrices)
nearby classical trajectories. Therefore, each Poisson bracket
operation in Eq. (3.8) introduces a new type of dynamical
variables, the stability matrix, into the expressions of multi-
point correlation functions. The expressions in Eq. (3.8) can
be rewritten in terms of stability matrices:

〈V (τ4)V (τ3)V (τ2)V (τ1)〉,
〈εijV (τ4)V (τ3)Mjk(τ2,τ1)V ′

k(τ2)V ′
i (τ1)〉,

[〈εij εabMbc(τ4,τ3)V ′
c (τ4)V ′

a(τ3)Mij (τ2,τ1)V ′
k(τ2)V ′

i (τ1)〉
−β〈εijV (τ4)V̇ (τ3)Mjk(τ2,τ1)V ′

k(τ2)V ′
i (τ1)〉], (3.10)

where summation over repeating indexes is implied. These
expressions contain zero, one, and two stability matrices,
respectively. It is the number of correlation functions with
a different number of stability matrices and their combi-
nations that determine the number of independent n-point
quantities R+,±,...,± for systems at thermal equilibrium. By
listing all possible combinations of stability matrices, i.e.,
all possible combinations of Poisson brackets in n-point
correlation functions R+,±,...,±, we can count the number of
independent n-point quantities R+,±,...,± [one, however, should
check that some combinations may be the same due to the rule
Tr(A{B,C}) = Tr({A,B}C)]. The results are given in Table I.
We note that the number of independent quantities is n − 1.
Each of these independent quantities potentially carries some
extra information on the underlying dynamics. In the following
section, we discuss what new information they can provide.

IV. THE ROLE OF PERTURBATIONS
IN CORRELATION FUNCTIONS

In the previous section we have seen that an impulsive per-
turbation introduces new type of dynamical variables, stability
derivatives, which thus should carry additional information
on the system’s dynamics. A generalized response function
R

(n)
+,±,...,± consists of an ensemble average of a product of

ordinary dynamical quantities V (τ ) or V ′
j (τ ) and stability

derivatives ∂xk(τ )/∂xj (0). The major difference between an
ordinary dynamical stochastic quantity x(τ ) and its stability
derivative ∂x(τ )/∂x(0) is that the former has some random
initial phase ϕ0 = random(0,2π ), while the latter has zero
initial phase ϕ0 = 0. Since any correlation function contains
averaging over the total random phase, it is this difference
that can provide new surviving components of correlation
functions beyond what is contained in ordinary correlation
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TABLE I. The number of independent n-point measures R
(n)
+,±,...,± in systems with

Boltzmann distribution.

n The number of all possible R
(n)
+,±,...,± The number of independent correlation functions

2 2 〈V V 〉 ⇒ 1

3 4
〈V V V 〉

〈V {V,V }〉
}

⇒ 2

4 8
〈V V V V 〉

〈V V {V,V }〉
〈V {V,{V,V }}〉

⎫⎬
⎭ ⇒ 3

5 16

〈V V V V V 〉
〈V V V {V,V }〉

〈V {V,V }{V,V }〉
〈{V,V }{V,{V,V }}〉

⎫⎪⎪⎬
⎪⎪⎭ ⇒ 4

6 32

〈V V V V V V 〉
〈V V V V {V,V }〉

〈V V {V,V }{V,V }〉
〈V {V,V }{V,{V,V }}〉

〈{V,{V,V }}{V,{V,V }}〉

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⇒ 5

functions. We can consider the following simple example.
Suppose that our observable of interest, V (t), is a harmonic
mode x(t) with frequency ω and some random initial phase ϕ0.
One wants to compare a regular product V+(t)V (0) ≡ x(t)x(0)
with a Poisson bracket expression V−(t)V (0) ≡ {x(t),x(0)} for
this system. Expressing x(t) = A cos(ωt + ϕ0), the product
x(t)x(0) and the Poisson bracket {x(t),x(0)} = ∂x(t)

∂x(0)
∂x(0)
∂p(0) −

∂x(t)
∂p(0)

∂x(0)
∂x(0) then read

x(t)x(0) = A2

2
cos(ωt) + A2

2
cos(ωt + 2φ0),

(4.1)

{x(t),x(0)} = − 1

ω
sin(ωt).

One can see that while the former expression con-
tains terms with random phases exp(±ı2ϕ0), the lat-
ter expression, the Poisson bracket, contains no such
terms. This implies that the overall phase of the product
V (tn)V (tn−1) · · · V (t)V (0) can be different from the overall
phase of V (tn)V (tn−1) · · · {V (t),V (0)} and thus can result in
a different number of nonvanishing terms in various general-
ized response functions R

(n)
+,±,...,± ≡ 〈V+(τn) · · · V−(τ1)〉. More

examples for other types of dynamical variable V (t) for a
two-oscillator system are given in Table II.

In weakly anharmonic systems the Poisson bracket opera-
tion removes some of the stochastic material phases, and thus
determines which terms in n-point correlation functions will
survive, i.e., what peaks will be present in multidimensional
spectra and what microscopic couplings will contribute to
their intensities. The latter can provide extra information on

the microscopic dynamics and thus the generalized response
functions R

(n)
+,±,...,± can serve as complementary (n − 1)

dimensional measures of stochastic dynamical systems. As
shown in the previous section, there should be n − 1 such
independent measures.

The same phase-cancelation approach is used in bispectral
and bicoherence stochastic analysis [34,35] (see also Sec. VI).
In bispectral analysis, one calculates expectation values of
three-point products E[Ṽ (ω1)Ṽ (ω2)Ṽ ∗(ω1 + ω2)] of Fourier
transforms of a fluctuating signal V (t), in which only the
terms with zero overall random phase survive, thus providing
information on wave interactions in quadratically nonlinear
systems. This approach is equivalent to constructing a three-
point measure R

(3)
+++. The additional insight provided by

the present approach is that, by subjecting a system to
perturbations, i.e., introducing Poisson brackets, we vary the
overall random phase, and thus change or filter the resulting
multidimensional spectra. Several numerical examples are
given in Sec. V.

V. NUMERICAL EXAMPLES

In this section we calculate different three-point mea-
sures R

(3)
+,±,±(t2 + t1,t1,0) and their Fourier transforms

S
(3)
+,±,±(�2,�1) for several model systems: linearly coupled

anharmonic oscillators and nonlinearly coupled harmonic
oscillators, which are in equilibrium with thermal bath.

Before we proceed to modeling systems at thermal equi-
librium, we provide analytical results for exactly solvable

TABLE II. Overall phases of two-point quantities for a two-oscillator system.

V (t) Phases of terms in V (t)V (0) Phases of terms in {V (t),V (0)}
Q2

1 0, ±2φ1, ±4φ1 0, ±2φ1

Q1 + Q2 0, ±2φ1, ±2φ2, ±(φ1 − φ2), ±(φ1 + φ2) 0
Q1Q2 ±2φ1, ±2φ2, ±2(φ1 − φ2), ±2(φ1 + φ2) 0, ±2φ1, ±2φ2

043818-5



MAKSYM KRYVOHUZ AND SHAUL MUKAMEL PHYSICAL REVIEW A 86, 043818 (2012)

microcanonical system, which will simplify further analysis
of spectra of systems at thermal equilibrium. Expressions for
GRF in a microcanonical ensemble can be easily obtained by
replacing β in Eq. (3.3) with −∂/∂E [36]:

R+++(τ3,τ2,τ1) = 〈V (τ3)V (τ2)V (τ1)〉,
R++−(τ3,τ2,τ1) = − ∂

∂E

d

dτ1
R+++(τ3,τ2,τ1),

R+−+(τ3,τ2,τ1) = −〈V (τ3){V (τ2),V (τ1)}〉
− ∂

∂E

d

dτ2
R+++(τ3,τ2,τ1),

R+−−(τ3,τ2,τ1) = − ∂

∂E

d

dτ1
R+−+(τ3,τ2,τ1). (5.1)

We consider a model of uncoupled harmonic oscillators Q1(t),
Q2(t) with frequencies ω1 = 10, ω2 = 4.2, respectively, and
an observable V (t) that is nonlinear in Q1 and Q2 given by

V = f1Q1 + f2Q2 + f11Q
2
1 + f22Q

2
2

+f12Q1Q2 + f122Q1Q
2
2. (5.2)

Analysis of oscillating microcanonical systems can be effi-
ciently performed in a special type of canonical coordinates:
action-angle variables (J,ϕ). Using these variables, harmonic
oscillations x(t) are expressed as x(t) = √

2J/ω cos(ωt + ϕ).
In Eq. (5.2), a reduced form Qj (t) = √

Jj cos(ωj t + ϕj ) is im-
plied, with constant factors

√
2/ωj absorbed into coefficients

f . In our numerical calculations, these coefficients were taken
as f1 = f2 = f12 = f122 = f11 = f22 = 1, and the energies
of harmonic oscillators were J1 = J2 = 1. The averaging
in classical correlation functions in Eq. (5.1) is therefore
reduced to the averaging over the initial phases ϕ1 and ϕ2. In
Fig. 1 we present two-dimensional (2D) signals S

(3)
+++(�2,�1),

S
(3)
++−(�2,�1), S

(3)
+−+(�2,�1), and S

(3)
+−−(�2,�1), defined in

Eq. (3.5), and in Table III provide a list of positions and
intensities of diagonal and cross peaks of S

(3)
+±±, which can

be obtained analytically for this model. First, we notice
that the information contained in the spectrum S

(3)
+++(�2,�1)

is not complete, and it is not possible to determine the
coefficients of Eq. (5.2) from this spectrum alone (since all
the intensities depend on the products of coefficients). On the
other hand, the 2D signal S

(3)
+−+(�2,�1), for instance, allows

us to determine the absolute values of the coefficients f11 and
f22 at frequencies (2ω1,2ω1) and (2ω2,2ω2), respectively, and
thus obtain all remaining coefficients fi,fij ,fijj . However, if
the quadratic anharmonicities f11 and f22 are small, the peaks
at (2ω1,2ω1) and (2ω2,2ω2) may not appear in S

(3)
+++(�2,�1)

or S
(3)
+−+(�2,�1), since their intensities are proportional to

the third power of fii . One can then refer to the spectrum
S

(3)
+−−(�2,�1), in which the peak (2ω1,2ω1) is four times more

intensive than in S
(3)
+−+(�2,�1). Otherwise, one can compare

S
(3)
+−+(�2,�1) with, for instance, S

(3)
+++(�2,�1); both should

have an intensive peak at the frequency (ω2,ω2). Either the
ratio of the intensities of these diagonal peaks or the ratio
of intensities of the cross peaks at (ω2,ω2) and (ω2,2ω2) in
S

(3)
+++(�2,�1) can give us the ratio f11/f22 and thus provide

a way to express all the remaining coefficients fi,fij ,fijj in
terms of f11. Once any of these coefficients are determined
from some other experiment, from a one-dimensional signal,

FIG. 1. (Color online) Absolute values of Fourier transforms
given by Eq. (3.5) of the correlation functions R

(3)
+++(t2 + t1,t1,0),

R
(3)
+−+(t2 + t1,t1,0), R(3)

++−(t2 + t1,t1,0), and R
(3)
+−−(t2 + t1,t1,0) for the

model of two uncoupled constant-energy harmonic oscillators with
V (t) from Eq. (5.2). The two normal mode frequencies are ω1 = 10
and ω2 = 4.2.

for instance, the rest are found automatically. We therefore
conclude that the complementary spectra S

(3)
+±±(�2,�1) can

simplify the analysis of a dynamical system.
We now turn to a system at thermal equilibrium:

two coupled dissipative Morse oscillators Ui(xi) = Di(1 −
exp(−αixi))2 with a bilinear coupling U12x1x2. Each os-
cillator is individually coupled to the Langevin thermostat
at temperature T . The friction coefficient is small such
that the vibrational dynamics remained underdamped. The
fundamental frequencies of Morse oscillators were ω01 ≈ 2ω02

so that a Fermi 1 : 2 resonance is possible. The dynamics
of coupled oscillators as well as time evolution of stability
matrix elements were obtained by solving stochastic Langevin
equations. The details of numerical simulations will be
published elsewhere. We calculated numerically the three-
point quantities R

(3)
+±±(t2 + t1,t1,0) with V = x1. Physically

V = x1 can correspond to a single optically active mode. The
Fourier-transformed spectra S

(3)
+±±(�2,�1) are shown in Fig. 2.

By comparing these spectra with Table III, one can deduce
on the underlying microscopic dynamics. First, the cross
peak at (ω1+ω2, ω2) in S

(3)
+−−(�2,�1) indicates the Fermi-

resonance, f122. The latter conclusion could not be made
for the same peak of the S

(3)
+++(�2,�1) 2D spectrum, since

multiple couplings contribute to its intensity (see Table III).
Second, the (ω2,ω1 + ω2) peak in S

(3)
+−+(�2,�1) indicates a

bilinear mode-mode coupling f12. Third, as one would expect
from the linear dependence of V on x1, no peaks can be
resolved at (2ω1,2ω1) and (2ω2,2ω2), implying weak quadratic
anharmonicities f11,f22. Yet, the peaks at (ω2,ω2) in both
2D spectra, or (ω2,ω2) and (ω2,2ω2) in the S

(3)
+++(�2,�1)

spectrum, allow us to estimate the ratio of f11/f22. We also note
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TABLE III. 2D spectra for the model in Eq. (5.2) for two modes Q1 and Q2 with microcanonical distribution J1 = J2 = 1. The asterisk in
0∗ means that the term is proportional to J1 − J2.

(�1,�2) |S(3)
+++(�2,�1)| |S(3)

+−+(�2,�1)| |S(3)
++−(�2,�1)| |S(3)

+−−(�2,�1)|
(ω1,ω1) 1

8 (f11 + f22)(f1 + f122
2 )2 1

8 f11(f1 + f122
2 )2 1

4 (f11 + f22
2 )(f1 + f122

2 )2 1
8 f11(f1 + f122

2 )2

(ω1,2ω1) 1
16 f11(f1 + 1

2 f122)2 1
8 f11(f1 + f122

2 )2 1
8 f11(f1 + f122

2 )2 1
8 f11(f1 + f122

2 )2

(ω1,ω2) 1
16 f12f2(f1 + f122

2 ) 1
16 f12f2(f1 + f122

2 ) 1
16 f12f2(f1 + f122

2 ) 1
16 f12f2(f1 + f122

2 )

(ω1,ω1 − ω2) 1
16 f12f2(f1 + f122

2 ) 1
16 f12f2(f1 + f122

2 ) 1
16 f12f2(f1 + f122

2 ) 1
16 f12f2(f1 + f122

2 )

(ω1,ω1 + ω2) 1
16 f12f2(f1 + f122

2 ) 1
16 f12f2(f1 + f122

2 ) 1
16 f12f2(f1 + f122

2 ) 1
16 f12f2(f1 + f122

2 )

(ω1,2ω2) 1
64 f122f22(f1 + f122

2 ) 1
16 f122f22(f1 + f122

2 ) 1
64 f122f22(f1 + f122

2 ) 1
16 f122f22(f1 + f122

2 )

(ω1,ω1 − 2ω2) 1
64 f122f22(f1 + f122

2 ) 1
16 f122f22(f1 + f122

2 ) 1
64 f122f22(f1 + f122

2 ) 1
16 f122f22(f1 + f122

2 )

(ω1,ω1 + 2ω2) 1
64 f122f22(f1 + f122

2 ) 1
16 f122f22(f1 + f122

2 ) 1
64 f122f22(f1 + f122

2 ) 1
16 f122f22(f1 + f122

2 )

(ω2,ω1) 1
16 f12f2(f1 + f122

2 ) 1
16 f1f12f2

1
16 f12f2(f1 + f122) 1

16 f12f2(f1 + f122
2 )

(ω2,ω1 + ω2) 1
16 f12f2(f1 + f122

2 ) 1
16 f12f2(f1 + f122) 1

16 f12f2(f1 + f122) 1
16 f12f2(f1 + 3f122

2 )

(ω2,ω2) 1
8 f 2

2 (f11 + f22) 1
8 f 2

2 f22
1
8 f 2

2 (f11 + 2f22) 1
8 f 2

2 f22

(ω2,2ω2) 1
16 f 2

2 f22
1
8 f 2

2 f22
1
8 f 2

2 f22
1
8 f 2

2 f22

(ω2,ω1 − ω2) 1
64 f12f122f2

1
64 f12f122f2

1
32 f12f122f2 0∗

(ω2,ω1 + 2ω2) 1
64 f12f122f2

3
64 f12f122f2

1
32 f12f122f2

1
16 f12f122f2

(2ω1,ω1) 1
16 f11(f1 + f122

2 )2 0 1
4 f11(f1 + f122

2 )2 0

(2ω1,2ω1) 1
32 f 2

11(f11 + f22) 1
16 f 3

11
1
8 f 2

11(f22 + 3
2 f11) 1

4 f 3
11

(2ω1,ω1 − ω2) 1
64 f11f

2
12

1
64 f11f

2
12

1
16 f11f

2
12

1
16 f11f

2
12

(2ω1,ω1 + ω2) 1
64 f11f

2
12

1
64 f11f

2
12

1
16 f11f

2
12

1
16 f11f

2
12

(2ω1,ω1 − 2ω2) 1
256 f11f

2
122

1
64 f11f

2
122

1
64 f11f

2
122

1
16 f11f

2
122

(2ω1,ω1 + 2ω2) 1
256 f11f

2
122

1
64 f11f

2
122

1
64 f11f

2
122

1
16 f11f

2
122

(2ω2,ω2) 1
16 f 2

2 f22 0 1
4 f 2

2 f22 0

(2ω2,2ω2) 1
32 f 2

22(f11 + f22) 1
16 f 3

22
1
8 f 2

22(f11 + 3
2 f22) 1

4 f 3
22

(2ω2,ω1 + ω2) 1
64 f 2

12f22
1
64 f22f

2
12

1
16 f 2

12f22
1
16 f 2

12f22

(2ω2,ω1 + 2ω2) 1
64 f122f22(f1 + f122

2 ) 1
64 f122f22(f1 + 3f122

2 ) 1
16 f122f22(f1 + 3f122

4 ) 1
16 f122f22(f1 + 7f122

4 )

(2ω2,ω1) 1
64 f122f22(f1 + f122

2 ) 1
64 f122f22(f1 − f122

2 ) 1
16 f122f22(f1 + 3f122

4 ) 1
16 f122f22(f1 − f122

4 )

(ω1 + ω2,ω1) 1
16 f12f2(f1 + f122

2 ) 1
32 f12f122f2

1
8 f12f2(f1 + 3f122

4 ) 1
16 f12f122f2

(ω1 + ω2,ω2) 1
16 f12f2(f1 + f122

2 ) 1
32 f12f122f2

1
8 f12f2(f1 + 3f122

4 ) 1
16 f12f122f2

(ω1 + ω2,2ω1) 1
64 f11f

2
12

1
32 f11f

2
12

3
64 f11f

2
12

1
16 f11f

2
12

(ω1 + ω2,2ω2) 1
64 f22f

2
12

1
32 f22f

2
12

3
64 f22f

2
12

1
16 f22f

2
12

(ω1 + ω2,ω1 + ω2) 1
32 f 2

12(f11 + f22) 1
32 f 2

12(f11 + f22) 3
32 f 2

12(f11 + f22) 1
16 f 2

12(f11 + f22)

(ω1 + ω2,ω1 − ω2) 1
64 f22f

2
12

1
32 f22f

2
12

3
64 f22f

2
12

1
16 f22f

2
12

(ω1 + ω2,ω1 + 2ω2) 1
64 f12f122f2

1
32 f12f122f2

3
64 f12f122f2

1
16 f12f122f2

(ω1 − ω2,ω1 − ω2) 1
32 f 2

12(f11 + f22) 1
32 f 2

12(f11 − f22) 1
32 f 2

12(f11 − f22) 0∗

(ω1 − ω2,2ω1) 1
64 f11f

2
12

1
32 f11f

2
12

1
64 f11f

2
12 0∗

(ω1 − ω2,ω1 − 2ω2) 1
64 f12f122f2

1
32 f12f122f2

1
64 f12f122f2 0∗

(ω1 − ω2,ω1) 1
16 f12f2(f1 + f122

2 ) 1
32 f12f122f2

1
32 f12f122f2 0∗

(ω1 − ω2,ω2) 1
64 f12f122f2

1
32 f12f122f2

1
64 f12f122f2 0∗

(ω1 − ω2,ω1 + ω2) 1
64 f 2

12f22
1
32 f 2

12f22
1
64 f 2

12f22 0∗

(ω1 − 2ω2,ω1 − ω2) 1
64 f12f122f2 0 3

64 f12f122f2 0

(ω1 − 2ω2,ω1 − 2ω2) 1
128 f 2

122(f11 + f22) 1
128 f 2

122(f11 − 2f22) 1
128 f 2

122(2f11 + 5f22) 3
128 f 2

122(f11 − 2f22)

(ω1 − 2ω2,2ω1) 1
256 f11f

2
122

1
128 f11f

2
122

1
128 f11f

2
122

3
128 f11f

2
122

(ω1 − 2ω2,ω1) 1
128 f122f22(f122 + 2f1) 1

64 f22f
2

122
1

128 f122f22(5f122 + 6f1) 3
64 f22f

2
122

(ω1 + 2ω2,ω2) 1
64 f12f122f2 0 5

64 f12f122f2 0

(ω1 + 2ω2,ω1 + ω2) 1
64 f12f122f2 0 5

64 f12f122f2 0

(ω1 + 2ω2,2ω1) 1
256 f11f

2
122

1
128 f11f

2
122

3
128 f11f

2
122

5
128 f11f

2
122

(ω1 + 2ω2,ω1 + 2ω2) 1
128 f 2

122(f11 + f22) 1
128 f 2

122(f11 + 2f22) 1
128 f 2

122(6f11 + 7f22) 5
128 f 2

122(f11 + 2f22)

(ω1 + 2ω2,ω1) 1
128 f122f22(f122 + 2f1) 1

64 f22f
2

122
1

128 f122f22(7f122 + 10f1) 5
64 f22f

2
122

(ω1 + 2ω2,2ω2) 1
128 f122f22(f122 + 2f1) 1

64 f22f
2

122
1

128 f122f22(7f122 + 10f1) 5
64 f22f

2
122
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FIG. 2. (Color online) Absolute values of the Fourier transform
given by Eq. (3.5) of the correlation functions R

(3)
+++(t2 + t1,t1,0),

R
(3)
+−+(t2 + t1,t1,0), R(3)

++−(t2 + t1,t1,0), and R
(3)
+−−(t2 + t1,t1,0) for the

model of two linearly coupled dissipative Morse oscillators with the
fundamental frequencies ω1 = 27.3 and ω2 = 13.0.

that the (2ω1,ω1) peak in S
(3)
+−+(�2,�1) and S

(3)
+−−(�2,�1) in

Fig. 2 is the result of anharmonicity of Morse oscillators and
is produced due to the temporal growth of stability derivatives.
This peak is absent in harmonic systems (see Table III).

Another model system at thermal equilibrium that we
consider is two coupled harmonic oscillators Ui(xi) = ω2

i x
2
i /2

with a nonlinear coupling U12x1x
2
2 , each in thermal equi-

librium with environment, and a linear observable V = x1.
The frequencies ω1 and ω2 are close to 2 : 1 resonance.
Figure 3 represents the numerical 2D Fourier transforms of
the corresponding GRF calculated in this system. One can
observe rather strong diagonal peaks at (2ω2,2ω2). By referring
to Table III, one can conclude that these peaks are due to the
significant quadratic f22 contribution of the second mode x2 to
the signal V (t) = x1(t) due to the nonlinear coupling between
the harmonic modes. For the same reason the diagonal peaks
(ω1,ω1) are strong in S

(3)
+++(�2,�1) and S

(3)
++−(�2,�1) and

weak in S
(3)
+−+(�2,�1) and S

(3)
+−−(�2,�1), because the latter

two 2D signals do not depend on f22. Additionally, the strong
diagonal (ω1,ω1) peaks in S

(3)
+++(�2,�1) and S

(3)
++−(�2,�1) do

not allow one to resolve the weak cross peaks (ω1,2ω2) and
(2ω2,ω1), which are much easier to resolve in S

(3)
+−+(�2,�1)

and S
(3)
+−−(�2,�1) 2D signals, and which thus provide useful

complementary information. These cross peaks are indicators
of the 1 : 2 Fermi resonance as it follows from Table III.

As one can see either from Eq. (3.6) or from Figs. 2
and 3, while the 2D signal S

(3)
++−(�2,�1) contains the same

information as S
(3)
+++(�2,�1), and S

(3)
+−−(�2,�1) contains the

same information as S
(3)
+−+(�2,�1), the former spectra are

amplified versions of the latter. For instance, from Eq. (3.6)
we have |S(3)

++−(�2,�1)| = β�1|S(3)
+++(�2,�1)|, which means

FIG. 3. (Color online) Absolute values of the Fourier transform
given by Eq. (3.5) of the correlation functions R

(3)
+++(t2 + t1,t1,0),

R
(3)
+−+(t2 + t1,t1,0), R(3)

++−(t2 + t1,t1,0), and R
(3)
+−−(t2 + t1,t1,0) for the

model of two nonlinearly coupled dissipative harmonic oscillators
with the fundamental frequencies ω1 = 31.9 and ω2 = 14.9.

that the low intensity peaks at higher values of �1 that are
poorly resolved in the spectra S

(3)
+++(�2,�1) will be much

better resolved in the spectra S
(3)
++−(�2,�1). And opposite,

the strong peaks at lower values of �1 in S
(3)
+++(�2,�1) will

be suppressed in S
(3)
++−(�2,�1) (since they will be multiplied

by small �1). The latter provides a significant flexibility for
the exploration of multidimensional spectra and investigation
of complex dynamics by designing a proper experiment with
multiple perturbations and measurements.

VI. FREQUENCY DOMAIN MEASUREMENTS:
SUSCEPTIBILITIES

In the previous sections we discussed time domain sig-
nals R

(n)
+,±,...,±(τ1, . . . ,τk,τ

′
1, . . . ,τ

′
m), that keep track of time

ordering of perturbations V−(τ ′
j ) and measurements V+(τi).

However, in some cases it can be convenient to carry the
experiment in the frequency domain. Frequency domain
experiments which combine multiple measurements of an
observable with multiple perturbations of the system can be
performed in the following way. One can perturb a system
with frequencies ω′

1, . . . ,ω
′
m, while measuring k observables

V (ω) at frequencies ω1, . . . ,ωk and constructing a k-point
correlation function 〈V (ω1) · · ·V (ωk)〉. For this type of exper-
iments, time ordering of measurements and perturbations loses
its sense. The correlation function then depends on all possible
permutations of m perturbations and k − 1 measurements
(except for the last one, which cannot be substituted by a
perturbation due to causality), where m + k = n.

First, let us consider the Fourier transform of the
outputs of the time domain experiments with one
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FIG. 4. (Color online) Generalized suscepti-
bilities for a system of two uncoupled harmonic
oscillators with V(t) from Eq. (5.2).

perturbation and two measurements, which are ordered in
time. These experiments will be governed by the cor-
responding generalized response functions R

(3)
++−(τ3,τ2,τ1) =

θ (τ3−τ2)θ (τ2−τ1)〈V+(τ3)V+(τ2)V−(τ1)〉 and R
(3)
+−+(τ3,τ2,τ1) =

θ (τ3 − τ2)θ (τ2 − τ1)〈V+(τ3)V−(τ2)V+(τ1)〉. The two-point
correlation functions that can be measured in these experi-
ments, and which are defined in Eq. (1.1), are, respectively,

〈V (τ3)V (τ2)〉++− =
∫

dτ1R
(3)
++−(τ3,τ2,τ1)E(τ1),

(6.1)
〈V (τ3)V (τ1)〉+−+ =

∫
dτ2R

(3)
+−+(τ3,τ2,τ1)E(τ2).

Introducing the Fourier transform

F (τ ) = 1

2π

∫ ∞

−∞
d�F̃ (�)e−ı�τ , F̃ (�) =

∫ ∞

−∞
dτF (τ )eı�τ ,

(6.2)

and using the definition in Eq. (3.5), one gets

〈Ṽ (�3)Ṽ (�2)〉++−

=
∫

d�1Ẽ(�1)S++−(�3,�3 + �2)δ(�3 + �2 − �1),

〈Ṽ (�3)Ṽ (�1)〉+−+

=
∫

d�2Ẽ(�2)S+−+(�3,�3 − �2)δ(�3 + �1 − �2).

(6.3)

As we discussed in the beginning of this section, in the
frequency domain, the measured correlation function is the
combination of the two time-ordered correlation functions,
i.e.,

〈Ṽ (ω2)Ṽ (ω1)〉2,1

= 1
2 [〈Ṽ (ω2)Ṽ (ω1)〉++− + 〈Ṽ (ω2)Ṽ (ω1)〉+−+]. (6.4)

Substituting Eq. (6.3) into Eq. (6.4), we get

〈Ṽ (ω2)Ṽ (ω1)〉2,1 = 1

2π

∫
dω′

1χ
(2,1)(ω1,ω2,ω

′
1)Ẽ(ω′

1), (6.5)

where the generalized susceptibility χ (2,1) is

χ (2,1)(ω1,ω2,ω
′
1)

= 2πδ(ω2 + ω1 − ω′
1) 1

2 [S++−(ω2,ω2 + ω1)

+ S+−+(ω2,ω2 − ω′
1)]. (6.6)

The latter result can be generalized to the case of k

measurements and m perturbations, with the corresponding
susceptibility χ (k,m), m + k = n, introduced in Eq. (1.2):

χ (k,m)(ω1, . . . ,ωk,ω
′
1, . . . ,ω

′
m)

= 2πδ

⎛
⎝ k∑

i=1

ωi −
m∑

j=1

ω′
j

⎞
⎠ 1

(n − 1)!

∑
p

× S+,ν1,...,νn−1 (ωk,ωk + ων1 , . . . ,ωk

+ων1 + · · · + ωνn−2 ). (6.7)

The summation in Eq. (6.7) is over the (n − 1)! permutations
of indices νj = +,− (m of these indices are “−”, and k − 1
indices are “+”), with the following rule ω+ ≡ ωj and ω− ≡
−ω′

j . Using the rule of Eq. (6.7), the two remaining three-
point susceptibilities χ (3,0)(ω1,ω2,ω3) and χ (1,2)(ω1,ω

′
1,ω

′
2),

corresponding, respectively, to three measurements (i.e., the
symmetrized three-point correlation function in the frequency
domain), and two perturbations with one measurement (i.e.,
the second-order susceptibility from the response theory) read

χ (3,0)(ω1,ω2,ω3)

= 2πδ(ω3 + ω2 + ω1) 1
2 [S+++(−ω2 − ω1,−ω2)

+ S+++(−ω2 − ω1,−ω1)], (6.8)

χ (1,2)(ω1,ω
′
1,ω

′
2)

= 2πδ(ω1 − ω′
1 − ω′

2) 1
2 [S+−−(ω′

2 + ω′
1,ω

′
2)

+ S+−−(ω′
2 + ω′

1,ω
′
1)], (6.9)

where S+,±,± were defined in Eq. (3.6), and in both cases
the arguments of the S functions were slightly rearranged by
expressing one frequency in terms of the two others within
the constraints of the delta functions. We can also rewrite
Eq. (6.6) in a similar form using the delta-function constraint
ω2 = ω′

1 − ω1:

χ (2,1)(ω1,ω2,ω
′
1)

= 2πδ(ω2 + ω1 − ω′
1) 1

2 [S++−(−ω1 + ω′
1,ω

′
1)

+ S+−+(−ω1 + ω′
1,−ω1)]. (6.10)
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FIG. 5. (Color online) Generalized suscep-
tibilities for a system of two bilinearly coupled
dissipative Morse oscillators with the fundamen-
tal frequencies ω1 = 27.3 and ω2 = 13.0 and
V (t) = x1(t).

The susceptibilities given by Eqs. (6.9) and (6.10) were
calculated numerically for the model systems discussed in
Sec. V and are shown in Figs. 4 and 5.

It should be noted that the symmetrization procedure
given by Eq. (6.7), that is required for frequency domain
measurements, reduces the number of independent n-point
GRF to n − 1 due to the loss of information on time ordering.
While for systems at thermal equilibrium the number of
independent n-point measures in the time domain is equal
to n − 1, this number is expected to be larger for nonthermal
systems, for which there exists no simple relation between the
distribution density ρ(E) and its derivative ∂ρ(E)/∂E.

VII. DISCUSSION

We proposed and analyzed a class of experiments in which
multiple measurements of a dynamical variable are combined
with multiple perturbations of the corresponding dynamical
system. The n − 1 time intervals between m perturbations
and k = n − m measurements constitute (n − 1) dimensional
space and result in a family of (n − 1) dimensional measures
R(k,m)(tn−1, . . . ,t1). These objects can be directly measured
by subjecting a system to weak impulsive perturbations. In
the latter family of (n − 1) dimensional measures, n − 1
of them are independent and thus can provide additional
information on dynamics to the one already contained in the
usual multipoint correlation function, R(n,0)(tn−1, . . . ,t1), and
response function, R(1,n−1)(tn−1, . . . ,t1).

Each perturbation introduces a new dynamical quantity,
the stability derivative, to an n-point correlation function
R(k,m)(tn−1, . . . ,t1), which carries information on classical
coherence, i.e., coherence of the nearby classical trajectories.
Various combinations of perturbations and measurements
thus lead to different time correlation functions between
classical dynamical quantities and their classical coherences.
On the other hand, in case of weakly anharmonic systems
we have shown that a perturbation of a dynamical quantity
cancels some of its random phase by launching two classical
trajectories with infinitely close initial conditions. The latter
allow us to manipulate the total random phase of the n-point
time correlation functions, and thus to change the resulting
(n − 1) dimensional spectra. These differences result in new

spectral peaks or contributions of different mode couplings
to their intensities. Additionally, one can amplify or suppress
different parts of multidimensional spectra by choosing the
appropriate combination of perturbations and measurements.
In particular, we have shown that while the 2D signals
S+++(�2,�1) and S+−+(�2,�1) contain the same information
as S++−(�2,�1) and S+−−(�2,�1), respectively, for systems
at thermal equilibrium, the former provide better resolution
of spectral peaks at lower �1, while the latter provide better
resolution at higher �1.

In the present paper we only discussed applications of this
class of multidimensional measures to Hamiltonian systems,
yet the approach can be extended to non-Hamiltonian dy-
namical systems such as chemical reactions, electric currents,
currents in membranes, biological systems, and systems
initially at a steady state. For instance, the method of
multiple perturbations and measurements can be used to obtain
new information on structure and connectivity of complex
biological networks. A limited number of methods is currently
available to study complex reaction mechanisms [37]. The
introduced GRF, with their special type of correlations between
multiple perturbations, are believed to serve as a useful tool
to study correlations in complex reaction networks and thus
help to extract information on their topology. The same ideas
can be applied to investigate topology of electric currents in
biological systems. Thus, the proposed method of multiple
perturbations and measurements can provide tools to study
complex behavior of general dynamical systems and will be
analyzed in future extensions.
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APPENDIX

In this Appendix we provide classical expressions of the
four-point measures R+,±,±,± for systems with Boltzmann

043818-10



MULTIDIMENSIONAL MEASURES OF RESPONSE AND . . . PHYSICAL REVIEW A 86, 043818 (2012)

distribution:

Rc
++++(τ4,τ3,τ2,τ1) = 〈V (τ4)V (τ3)V (τ2)V (τ1)〉,

Rc
+++−(τ4,τ3,τ2,τ1) = β

d

dτ1
Rc

++++(τ4,τ3,τ2,τ1),

Rc
++−+(τ4,τ3,τ2,τ1) = −〈V (τ4)V (τ3){V (τ2),V (τ1)}〉

+β
d

dτ2
Rc

++++(τ4,τ3,τ2,τ1),

Rc
++−−(τ4,τ3,τ2,τ1) = β

d

dτ1
Rc

++−+(τ4,τ3,τ2,τ1),

Rc
+−++(τ4,τ3,τ2,τ1) = −〈V (τ4)V (τ1){V (τ3),V (τ2)}〉

− 〈V (τ4)V (τ2){V (τ3),V (τ1)}〉
+β

d

dτ3
Rc

++++(τ4,τ3,τ2,τ1),

Rc
+−+−(τ4,τ3,τ2,τ1) = β

d

dτ1
Rc

+−++(τ4,τ3,τ2,τ1),

Rc
+−−+(τ4,τ3,τ2,τ1) = −β

d

dτ3
〈V (τ4)V (τ3){V (τ2),V (τ1)}〉

−β
d

dτ2
〈V (τ4)V (τ2){V (τ3),V (τ1)}〉

−β
d

dτ2
〈V (τ4)V (τ1){V (τ3),V (τ2)}〉

+ 〈V (τ4){V (τ3),{V (τ2),V (τ1)}}〉
+β2 d2

dτ2dτ3
Rc

++++(τ4,τ3,τ2,τ1),

Rc
+−−−(τ4,τ3,τ2,τ1) = β

d

dτ1
Rc

+−−+(τ4,τ3,τ2,τ1). (A1)

The Fourier transforms given by Eq. (3.5) of the above
quantities are

S++++(�3,�2,�1) =
∫

C̃1(ω3,ω2,ω1)

× θ̃ (�1 − ω1)θ̃(�2 − ω2)

× θ̃ (�3 − ω3)dω1dω2dω3

S+++−(�3,�2,�1) = iβ�1S++++(�3,�2,�1)

S++−+(�3,�2,�1) = −
∫

C̃2(ω3,ω2,ω1)

× θ̃ (�1 − ω1)θ̃ (�2 − ω2)

× θ̃ (�3 − ω3)dω1dω2dω3

+ iβ(�2 − �1)S++++(�3,�2,�1)

S++−−(�3,�2,�1) = iβ�1S++−+(�3,�2,�1)

S+−++(�3,�2,�1) = −
∫

θ̃ (�1 − ω1)θ̃(�2 − ω2)

× θ̃ (�3 − ω3)dω1dω2dω3

× [C̃2(ω3,ω3 − ω1,ω2 − ω1)

+ C̃2(ω3,ω1 − ω2 + ω3,ω1)]

+ iβ(�3 − �2)S++++(�3,�2,�1)

S+−+−(�3,�2,�1) = iβ�1S+−++(�3,�2,�1)

S+−−+(�3,�2,�1) =
∫

θ̃ (�1 − ω1)θ̃(�2 − ω2)

× θ̃ (�3 − ω3)dω1dω2dω3

× [iβ(ω2 − ω3)C̃2(ω3,ω2,ω1)

+ iβ(ω1 − ω2)C̃2(ω3,ω1 − ω2 + ω3,ω1)

− iβ(ω2 − ω1)C̃2(ω3,ω3 − ω1,ω2 − ω1)

+ C̃3(ω3,ω2,ω1)]

+β2(�2 − �3)(�1 − �2)

× S++++(�3,�2,�1)

S+−−−(�3,�2,�1) = iβ�1S+−−+(�3,�2,�1) (A2)

where C̃1(�3,�2,�1)=∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞〈V (t3+t2+t1)V (t2+t1)

V (t1)V (0)〉 ei�3t3ei�2t2ei�1t1dt1dt2dt3 and C̃2(�3,�2,�1),
C̃3(�3,�2,�1) are defined similarly by replacing
the correlation function under the integral with
〈V (t3 + t2 + t1)V (t2 + t1),{V (t1),V (0)}〉 and 〈V (t3 + t2 + t1)
{V (t2 + t1),{V (t1),V (0)}}〉, respectively; θ̃ (�) = πδ(�) + i

�

is the Fourier transform of the Heaviside step function.
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