Auxiliary Material

Liquid-liquid phase separation in aerosol particles: dependence on O:C, organic functionalities, and compositional complexity

M. Song^{1*}, C. Marcolli¹, U. K. Krieger¹, A. Zuend², and T. Peter¹

¹ Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland

² Department of Chemical Engineering, California Institute of Technology, Pasadena, 91125, California, USA

*To whom correspondence should be addressed. Email: mijung.song@env.ethz.ch

1. Experimental methods

The instrument operation, experimental procedure, and evaluation methods have been described in detail previously [*Song et al.*, 2012]. Micrometer-sized aqueous droplets were deposited on a hydrophobically coated glass slide using a droplet generator. The glass slide was mounted inside the flow-cell. Aqueous solutions for droplet injection were prepared with purified water (resistivity $\geq 18.0 \text{ M}\Omega$ cm). To change the relative humidity (RH) inside the flow-cell, the water vapor mixing ratio of a constant N₂/H₂O flow (180 sccm) was varied. This flow was brought to 293.2 ± 0.1 K before entering the cell, which was also kept at 293.2 ± 0.1 K. RH was measured by a G-TUCN.34 sensor (U.P.S.I., France), which was calibrated by observing the deliquescence RH (DRH) for pure (NH₄)₂SO₄ (80.0 %), NH₄NO₃ (65.5 %) and NaI (38.0 %) crystals at 293 K. At the beginning of an experiment, the droplets were equilibrated at a RH of < ~100 % during 15 minutes and a single droplet was chosen for observation. The RH was decreased continuously from ~100 % down to 25 % if (partial) efflorescence was observed and to ~0 % in case of no efflorescence. Subsequently, RH was continuously increased to ~100 %. Typically, experiments were carried out twice, once at a rate of 0.14 % and once at a rate of 0.39 % RH min⁻¹. No variation of the results was observed with these rates. The morphological changes of the particle were monitored optically with the microscope and recorded by a CCIR video camera with an acquisition frequency of 25 frames s⁻¹.

For the most volatile organic substances experiments were performed to test whether they show significant evaporation during a humidity cycle at 293 K. These semivolatile components are: pinonic acid, vapor pressure (VP) at 293 K: 7.90 × 10^{-3} Pa, estimate by the EVAPORATION model [*Compernolle et al.*, 2011]; 3-hydroxybenzoic acid, VP estimate at 293 K: 2.73 × 10^{-4} Pa or 2.97 × 10^{-5} Pa using the VP estimation model of *Nannoolal et al.* [2008] or *Moller et al.* [2008], respectively, from the E-AIM website http://www.aim.env.uea.ac.uk/aim/aim.php; and 2,4,5-trimethoxybenzoic acid (asaronic acid), VP estimate at 293 K: 3.85 × 10^{-3} Pa [*Nannoolal et al.*, 2008] or 9.11 × 10^{-4} Pa [*Moller et al.*, 2008]. Small crystals of these substances were deposited in the flow-cell and monitored during a humidity cycle. For none of these substances any change in shape was visible, evidencing that there was no appreciable evaporation occurring. Furthermore, we checked whether the more hydrophobic (low O:C ratio) substances would spread on the substrate by measuring the contact angle of droplets with O:C = 0.33 (consisting of 1,2-hexanediol) and O:C = 0.50 (1,2-butanediol) on the substrate.

2. O:C calculation

In this study, we mixed various organic components with ammonium sulfate (AS) in water, and determined the mixture's O:C ratio by the following equation:

$$O:C = \frac{\sum_{k=1}^{n} \frac{\mathrm{mf}_{k}}{\mathrm{MW}_{k}} \times \mathrm{O}_{k}}{\sum_{k=1}^{n} \frac{\mathrm{mf}_{k}}{\mathrm{MW}_{k}} \times \mathrm{C}_{k}}$$

n: number of organic components in the mixture

- *k*: organic component
- mf_k : mass fraction of component k in the mixture
- MW_k: molecular weight of component k
- O_k : number of oxygen atoms in a molecule of component k
- C_k : number of carbon atoms in a molecule of component k

3. Parameterization of average onset RH of liquid-liquid phase separation

A parameterization of the average onset RH of LLPS (SRH) in the range of AS dry mass fraction $(mf_d(AS))$, $0.1 < mf_d(AS) < 0.9$, as a function of O:C was obtained by fitting a three-parameter sigmoid function to data from this study and the literature [*Marcolli and Krieger*, 2006; *Ciobanu et al.*, 2009; *Bertram et al.*, 2011; *Song et al.*, 2012] at temperatures between 290 and 298 K.

SRH (%) =
$$\frac{10^{1.76}}{10^{1.76} + 0.11 \times 10^{3.45 \times (0:C)}} \times 100 \%$$

4. Supporting Tables

List of investigated organic/AS/H₂O model mixtures, namely "complex organic mixture (COM)" (Table S1), "oxidized aromatic compound (OAC) + dicarboxylic acid (DCA)" (Table S2), "Polyol+DCA" (Table S3), "OAC" (Table S4), "Polyol" (Table S5), "multi-functional compound (MFC)" (Table S6) and "DCA" (Table S7). Each mixture consists of an organic fraction and AS with different organic-to-inorganic dry mass ratios (OIR). The Tables give the organic components in terms of organic dry mass fraction (mf_d(org) (%)), the O:C and H:C ratios, the occurrence of LLPS: present ("yes") or absent ("no"), and the onset RH of LLPS (%) (SRH) for OIR = 2:1, 1:2 and 1:6 ("0" = no LLPS, "-" = no experiment performed). The uncertainty in the SRH was typically 1.5 % RH.

Table S1. COM/AS/H₂O

	COM1	COM2	COM3	COM4
Components (O:C)	$mf_d(org)$ (%)	$mf_d(org)$ (%)	$mf_d(org)$ (%)	$mf_d(org)$ (%)
Diethylmalonic acid (0.57)	12.5	0.0	0.0	0.0
Methylmalonic acid (1.00)	0.0	12.5	0.0	12.5
Malonic acid (1.33)	0.0	0.0	12.5	12.5
Glutaric acid (0.80)	0.0	0.0	0.0	12.5
2-methylglutaric acid (0.67)	12.5	12.5	12.5	0.0
3-methyladipic acid (0.57)	12.5	12.5	12.5	0.0
Malic acid (1.25)	12.5	12.5	12.5	12.5
Levoglucosan (0.83)	12.5	12.5	12.5	12.5
Pinonic acid (0.30)	3.125	3.125	3.125	3.125
Pinolic acid (0.30)	3.125	3.125	3.125	3.125
3-hydroxybenzoic acid (0.43)	6.25	6.25	6.25	6.25
3,5-dihydroxybenzoic acid (0.57)	12.5	12.5	12.5	12.5
1,2,7,8-octanetetrol (0.50)	12.5	12.5	12.5	12.5
0:C	0.63	0.68	0.70	0.77
H:C	1.57	1.50	1.53	1.44
LLPS	yes	yes	yes	no
SRH for OIR = 2:1; 1:2; 1:6	74.6; 84.5;	0.80 9.72 0	0.701.732	0.0.0
	71.9	0,00.2,72.0	0, 17.4, 13.3	0,0,0

Table S2. OAC+DCA/AS/H₂O

	OAC+DCA1	OAC+DCA2	OAC+DCA3
Components (O:C)	$mf_d(org)$ (%)	$mf_d(org)$ (%)	$mf_d(org)$ (%)
3-hydroxybenzoic acid (0.43)	6.25	6.25	6.25
4-hydroxybenzoic acid (0.43)	6.25	6.25	6.25
2,5-dihydroxybenzoic acid (0.57)	12.5	18.75	18.75
2,6-dihydroxybenzoic acid (0.57)	6.25	6.25	6.25
3,4-dihydroxybenzoic acid (0.57)	6.25	6.25	6.25
3,5-dihydroxybenzoic acid (0.57)	37.5	43.75	43.75
Malonic acid (1.33)	12.5	6.25	0.0
Malic acid (1.25)	12.5	6.25	0.0
Diethylmalonic acid (0.57)	0.0	0.0	6.25
2-methylglutaric acid (0.67)	0.0	0.0	6.25
0:C	0.68	0.61	0.56
H:C	0.95	0.90	0.95
LLPS	no	no	no
SRH for OIR = 2:1; 1:2; 1:6	-; 0; -	-; -; 0	-; 0; 0

Table S3. Polyol+DCA/AS/H₂O

	Polyol+DCA1	Polyol+DCA2
Components (O:C)	$mf_d(org)$ (%)	$mf_d(org)$ (%)
Levoglucosan (0.83)	20	0.0
Glutaric acid (0.80)	20	0.0
2-methylglutaric acid (0.67)	0.0	30
Diethylmalonic acid (0.57)	20	30
Sorbitol (1.00)	20	20
1,2,7,8-octanetetrol (0.50)	20	20
0:C	0.72	0.65
H:C	1.90	1.92
LLPS	yes	yes
SRH for OIR = 2:1; 1:2; 1:6	70.7; 81.4; 73.6	85.2; 87.0: 78.0

Table S4. OAC/AS/H₂O

			2,5-	2,6-
	OAC1	OAC2	dihydroxybenz	dihydroxybenz
			oic acid	oic acid
Components (O:C)	$mf_d(org)$ (%)	$mf_d(org)$ (%)	$mf_d(org)$ (%)	$mf_d(org)$ (%)
2,4,5-trimethoxybenzoic	35	0.0	0.0	0.0
acid (0.50)	55	0.0		
3,5-dihydroxybenzoic acid	35	70	0.0	0.0
(0.57)	55			
2,5-dihydroxybenzoic acid				
(0.57)	30	30	100	0.0
2,6-dihydroxybenzoic acid	0.0	0.0	0.0	100
(0.57)				
0:C	0.55	0.57	0.57	0.57
H:C	0.98	0.86	0.86	0.86
LLPS	yes	no	yes	yes
SRH for OIR = 2:1; 1:2;	92.6; 95.3;	. 0. 0	• 68 5.	-; 91.5; -
1:6	87.0	-, 0, 0	-, 00.3, -	

Table S5. Polyol/AS/H₂O

	Polyol1	Polyol2
Components (O:C)	$mf_d(org)$ (%)	$mf_d(org)$ (%)
Sorbitol (1.00)	50	60
1,2,7,8-octanetetrol (0.50)	50	40
0:C	0.71	0.76
H:C	2.29	2.29
LLPS	yes	no
SRH for OIR = 2:1; 1:2; 1:6	62.6; 69.4; 59.0	-;0;0

Table S6. MFC/AS/H₂O

	MFC1	MFC2	MFC3	
Components (O:C)	$mf_d(org)$ (%)	$mf_d(org)$ (%)	$mf_d(org)$ (%)	
2-oxoglutaric acid (1.00)	0.0	0.0	30	
Maleic acid (1.00)	20	50	30	
3,4-Dihydro-2,2-dimethyl-4-oxo-2H-	20	10	5	
pyran-6-carboxylic acid (0.50)	20	10	5	
Itaconic acid (0.80)	20	15	15	
Dehydroacetic acid (0.50)	20	10	5	
Kojic acid (0.67)	20	15	15	
0:C	0.67	0.79	0.84	
H:C	1.09	1.06	1.10	
LLPS	yes	yes	no	
SRH for OIR = 2:1; 1:2; 1:6	79.3; 76.6; 76.5	0; 59.0; 0	-; 0; 0	

Table S7. DCA/AS/H₂O

	DCA(C7)	DCA(C6)	DCA(C5)	DCA(C5+C6 +C7)
Components (O:C)	$mf_d(org)$ (%)	$mf_d(org)$ (%)	$mf_d(org)$ (%)	$mf_d(org)$ (%)
3-methyladipic acid (0.57)	33.3	0.0	0.0	11.1
3,3-dimethylglutaric acid (0.57)	33.3	0.0	0.0	11.1
Diethylmalonic acid (0.57)	33.3	0.0	0.0	11.1
2-methylglutaric acid (0.67)	0.0	33.3	0.0	11.1
3-methylglutaric acid (0.67)	0.0	33.3	0.0	11.1
2,2-dimethylsuccinic acid (0.67)	0.0	33.3	0.0	11.1
Glutaric acid (0.80)	0.0	0.0	33.3	11.1
Methylsuccinic acid (0.80)	0.0	0.0	33.3	11.1
Dimethylmalonic acid (0.80)	0.0	0.0	33.3	11.1
0:C	0.57	0.67	0.80	0.67
H:C	1.71	1.67	1.60	1.67
LLPS	yes	yes	no	yes
SRH for OIR = 2:1; 1:1; 1:2;	89.6; -; 87.8;	74.1; -; 72.7;	00.	70.3; 74.0; -;
1:6	88.3	73.8	0, -, 0, -	-

References

- Bertram, A. K., et al. (2011), Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component, *Atmos. Chem. Phys.*, *11*(21), 10995-11006.
- Ciobanu, V. G., C. Marcolli, U. K. Krieger, U. Weers, and T. Peter (2009), Liquid-Liquid Phase Separation in Mixed Organic/Inorganic Aerosol Particles, J. Phys. Chem. A, 113, 10966-10978.

- Compernolle, S., K. Ceulemans, and J. F. Muller (2011), EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions, *Atmos. Chem. Phys.*, *11*(18), 9431-9450.
- Marcolli, C., and U. K. Krieger (2006), Phase changes during hygroscopic cycles of mixed organic/inorganic model systems of tropospheric aerosols, J. Phys. Chem. A, 110(5), 1881-1893.
- Moller, B., J. Rarey, and D. Ramjugernath (2008), Estimation of the vapour pressure of nonelectrolyte organic compounds via group contributions and group interactions, *J. Mol. Liq.*, *143*(1), 52-63.
- Nannoolal, Y., J. Rarey, and D. Ramjugernath (2008), Estimation of pure component properties -Part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions, *Fluid Phase Equilibr.*, 269(1-2), 117-133.
- Song, M., C. Marcolli, U. K. Krieger, A. Zuend, and T. Peter (2012), Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles, *Atmos. Chem. Phys.*, 12, 2691–2712.