
Molecular Gas, Dust, and Star Formation in Galaxies
Proceedings IAU Symposium No. 292, 2012
T. Wong & J. Ott, eds.

c© International Astronomical Union 2013
doi:10.1017/S1743921313001506

The Star Formation Relation
in Nearby Galaxies

Andreas Schruba
Cahill Center for Astronomy and Astrophysics, California Institute of Technology,

MC 249-17, 1200 E California Blvd, Pasadena, CA 91125, USA
email: schruba@astro.caltech.edu

Abstract. I review observational studies of the large-scale star formation process in nearby
galaxies. A wealth of new multi-wavelength data provide an unprecedented view on the interplay
of the interstellar medium and (young) stellar populations on a few hundred parsec scale in 100+
galaxies of all types. These observations enable us to relate detailed studies of star formation in
the Milky Way to the zoo of galaxies in the distant universe. Within the disks of spiral galaxies,
recent star formation strongly scales with the local amount of molecular gas (as traced by CO)
with a molecular gas depletion time of ∼2 Gyr. This is consistent with the picture that stars
form in giant molecular clouds that have about universal properties. Galaxy centers and star-
bursting galaxies deviate from this normal trend as they show enhanced star formation per unit
gas mass suggesting systematic changes in the molecular gas properties and especially the dense
gas fraction. In the outer disks of spirals and in dwarf galaxies, the decreasing availability of
atomic gas inevitably limits the amount of star formation, though with large local variations.
The critical step for the gas-stars cycle seems therefore to be the formation of a molecular gas
phase, a process that shows complex dependencies on various environmental properties and is
being investigated by intensive simulational work.
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1. Introduction to the Star Formation Relation
Knowledge of the relationship between star formation and gas mass in galaxies is of

great importance to our understanding of galaxy evolution. Over the past 50 years nu-
merous observational and theoretical studies have been devoted to analyze and constrain
this relationship. Detailed studies of the gas-stars interaction in our own Galaxy have
been feasible for a long time and have delivered tremendous insight into the various pro-
cesses and couplings on small spatial scales (for recent reviews see McKee & Ostriker
2007 and Kennicutt & Evans 2012). Progressive technological developments have now
also opened up observational research of the star formation process outside our Galaxy
ranging from detailed studies of nearby galaxies to a rapidly increasing number of dis-
tant galaxies. With expected further developments of receiver arrays and sensitive high
resolution instruments such as ALMA, CCAT, ELT, GMT, and JWST, this science field
is likely to experience continued rapid evolution in the near future.

The original proposal of a direct relationship between star formation rate (SFR) and
gas mass was brought forward by Schmidt (1959), who suggested more than 50 years ago
a power law relationship between the volume densities of SFR and gas mass. However,
because volume densities are difficult to constrain observationally in external galaxies,
most studies have analyzed the power law relationship between surface density quantities.
It has been frequently argued that the two relationships will be equivalent under the
common (though questionable) assumption of constant disk scale heights. However, this
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Figure 1. The star formation relation for different gas types: HI (left), H2 (middle), and HI+H2
(right) for 750 pc sized pixels in 7 nearby spiral galaxies. The contours represent data density.
The relationship for different gas types is fundamentally different: HI saturates at ∼10 M� pc−2

and does not correlate with SFR except in the far outer disks of decreasing HI surface density.
H2 scales roughly linear with SFR with a depletion time of ∼2 Gyr. The relationship for total
gas (HI+H2) is the superposition of the two distinct scalings and exhibits a sharp turnover
between HI- and H2 -dominated regimes (dashed line). Figure taken from Bigiel et al. (2008).

overlooks the fact that the two relations operate over vastly different spatial scales.
The relation between volume densities extends from the low density diffuse interstellar
medium (ISM) to individual high density cores of giant molecular clouds (GMCs) where
stars actually form. The relation between surface densities operates on significantly larger
scales, namely the average over a wide range of local conditions extending up to the
whole galaxy. As the processes that govern the evolution of the ISM and star formation
are highly non-linear, it can neither be expected that the two relations are equal nor that
one relation can be inferred from the other. It therefore requires simulations to identify
the governing physical processes from the observed surface density relationships – a task
that has become feasible within the last years.

The first comprehensive observational studies of such a power law relationship have
been performed by Kennicutt (1989) and Kennicutt (1998) which revealed a tight scaling
between the SFR surface density, ΣSFR , and the total gas surface density, ΣGas = ΣHI +
ΣH2. For galaxy-averaged quantities Kennicutt measured a power law relationship with
slope N ≈ 1.4 extending over more than 5 orders of magnitude. The non-linear nature of
the relation meant that the star formation efficiency, SFE = ΣSFR/ΣGas, or its inverse,
the total gas depletion time, τDep = ΣGas/ΣSFR, is not constant but SFR proceeds more
rapidly in regions of high gas (surface) density. A slope of N = 1.5 naturally arises if
large-scale gravitational disk instabilities define the timescale of star formation. However,
a similar super-linear scaling can arise if dynamical timescales are considered.

2. The Resolved Linear Molecular Star Formation Relation
While disk-averaged studies have the potential to reveal differences in the global ratio

of gas mass and SFR as function of galaxy wide properties, they have limited ability
to constrain the underlying (local) physical processes. Today a wealth of new multi-
wavelength data provide us an unprecedented detailed view on the star formation process
on scales of a few hundred parsec across more than 100 nearby galaxies of all types.
Especially the combined analysis of large homogeneous data sets allow us to overcome
previous large methodological discrepancies between different studies. One such initiative
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Figure 2. Left: The molecular star formation relation for a sample of 30 nearby spiral galaxies.
Using sensitive CO data from HERACLES and a novel technique to stack spectra that allows
us to measure faint CO emission with high significance in regions dominated by HI, we find
that SFR and H2 is linearly correlated not only in regions there the ISM is predominately
molecular but also in regions where most of the ISM is atomic highlighting the critical role of
the molecular gas phase as a prerequisite for star formation. Right: The star formation efficiency
– the ratio of SFR and total gas mass (HI+H2) – as function of the molecular-atomic phase
ratio (H2/HI). The turnover eminent in the total gas-SFR relation is fundamentally related to a
smooth transition of the ISM being H2 - or HI-dominated. The dashed lines show the expected
scaling if SFR depends exclusively and linearly on H2 mass. Figures taken from Schruba et al.
(2011).

combines the observational data from THINGS (HI; Walter et al. 2008), HERACLES
(CO; Leroy et al. 2009), SINGS & LVL (IR; Kennicutt et al. 2003; Dale et al. 2009), and
GALEX (UV; Gil de Paz et al. 2007). In a first analysis Bigiel et al. (2008) combined
these data to compare HI, H2, and SFR on 750 pc resolution in a sample of 7 nearby spiral
galaxies. The resulting ΣSFR−ΣGas relation (Fig. 1) consists of two quite distinct regimes.
The relation between ΣSFR and ΣH2 is observed to be about linear (N = 1.0± 0.1) with
mean molecular gas depletion time τDep = 2.0 Gyr. The relation between ΣSFR and ΣHI
however is very steep with ΣHI saturating at ∼10 M� pc−2 and ΣSFR varying by more
than 2 orders of magnitude over a small range of ΣHI. This suggests that the SFR per
unit H2 gas (i.e. SFE) is constant throughout the environments present in the disks of
spiral galaxies. Leroy et al. (2008) tested if SFE shows dependencies on ISM pressure,
dynamical time, galactocentric radius, stellar and gas mass but found none. On the
other hand, the ratio ΣH2/ΣHI is found to correlate with many of these parameters. This
suggests that the formation of stars from H2 (inside of GMCs) is largely independent of
environment while the formation of H2 out of HI depends strongly on environment.

The pixel study by Bigiel et al. was, however, only sensitive to H2 surface densities that
are comparable to the saturation value of HI surface densities and therefore could only
confirm the tight relationship between SFR and H2 in ISM regions that are predominantly
H2. To determine the role of the H2 gas phase for the star formation process in regimes
that are predominantly HI required more sensitive H2 measurements. This has been
achieved by applying a novel stacking technique that first removes the Doppler shift
from the observed CO spectra due to galaxy rotation which then allows for coherent
stacking of the shifted spectra inside rings of galactocentric radius (or any other selection
parameter). This analysis resulted in sensitive measurements of ΣH2 down to ∼1 M� pc−2

and revealed the roughly unchanged extension of the linear ΣSFR−ΣH2 relation previously
observed in H2-dominated regimes far into regions where the ISM is mostly HI (Fig. 2
left panel; Schruba et al. 2011). This analysis also linked the turnover in the ΣSFR −ΣGas
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Figure 3. The molecular star formation
relation as a function of metallicity (color
coded) when applying a constant CO-H2
conversion factor. The spread in the re-
lation is caused by (dwarf) galaxies of
subsolar metallicity that are offset from
the relation for massive solar metallicity
spirals with depletion times of ∼2 Gyr.
This offset stems by plotting observables
(i.e., CO intensity) without accounting for
the CO-H2 conversion factor systematically
changing with metallicity. Most of the scat-
ter is removed if such a dependence is ac-
counted for. Figure taken from Schruba
et al. (2012).

relation (Fig. 1 right) – previously interpreted as a “threshold” for star formation – to
a continuous change in the dominant ISM gas phase. This becomes most clear in the
right panel of Fig. 2 which shows the ΣSFR/ΣGas ratio as a function of the ΣH2/ΣHI ratio
where the dashed lines indicate the expected trend if SFR scales linearly with H2. The
SFR per unit total gas mass thus depends largely on how molecular the ISM is – which
itself is controlled by a complex balance of H2 formation and shielding from UV radiation
that fundamentally depends on the dust-to-gas ratio or equivalently the metallicity. The
determination of the exact dependencies is a topic of active observational and theoretical
research.

3. Accounting for the Metallicity Dependence of the CO-H2 Factor
Despite the fact that power law fits to the ΣSFR − ΣH2 data such as shown in the left

panel of Fig. 2 result in roughly linear relations, there is increasing scatter visible toward
lower SFR and H2 surface densities. This scatter is mostly caused by using CO emission
to trace H2 gas mass and the (inaccurate) use of a constant CO-H2 conversion factor.
Observations show that the CO/SFR ratio decreases steadily for regions of lower metal-
licities. The relative faintness of CO emission in low-metallicity environments persistently
resulted in poor or failed CO detections in surveys of local dwarf galaxies (Young et al.
1995; Leroy et al. 2005). Employing the high sensitivity and large map coverage of the
HERACLES data set and the stacking technique mentioned above allowed us to make
the first sensitive search for CO emission over the entire star-forming disk in local dwarf
galaxies (Schruba et al. 2012). These measurements are shown in Fig. 3 by the larger
symbols with the radially averaged data for spiral galaxies shown for reference by the
smaller symbols. Metallicity is shown by color coding and highlights a systematic trend
in the CO/SFR ratio with metallicity.

The systematic trend with metallicity is, however, mostly an artifact of plotting (scaled)
observables and vanishes once a metallicity dependent CO-H2 conversion factor is ap-
plied. The exact metallicity (and other parameter) dependence of the CO-H2 factor is still
unclear today, however, approximate models are sufficient to remove most of the trends
previously observed in the H2/SFR ratio. Fig. 4 highlights this by applying a CO-H2 fac-
tor that scales with the dust-to-gas ratio as proposed by Wolfire et al. (2010) and shows
that the molecular gas depletion time is basically independent of a large set of galaxy
properties that have been previously invoked to influence the star formation efficiency
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Figure 4. The galaxy-averaged molecular star formation efficiency – the ratio of SFR and H2
mass – as a function of various galaxy properties. A CO-H2 conversion factor that scales with
dust-to-gas ratio (or equivalently metallicity) has been applied following the model by Wolfire
et al. (2010) which is calibrated against the observed SFR/CO-DGR scaling. After accounting
for systematic changes in the CO-H2 factor, the SFR/H2 ratio is found to be constant and
independent of all here tested galaxy properties. Figure taken from Leroy et al. (2012).

(Leroy et al. 2012). Thus most nearby spiral and dwarf galaxies seem to follow this
“normal mode of disk star formation” with a molecular gas depletion time of ∼2 Gyr.

4. Systematic Deviations from the Linear Star Formation Relation
There are, however, several regimes where SFR and H2 do not follow the tight relation-

ship observed for spiral galaxy disks. One such deviation is frequently observed in galaxy
centers which show an excess in the SFR/CO ratio. It is not trivial to assess if the same
deviation also translates to the SFR/H2 ratio as the CO-H2 conversion factor most likely
changes in the central regions of galaxies because of higher gas temperatures and higher
gas velocity dispersions (Narayanan et al. 2011; Narayanan et al. 2012). One method of
obtaining a CO-independent determination of the molecular gas mass and thus constrain-
ing the CO-H2 factor uses infrared continuum emission and dust modeling. Sandstrom
et al. (2012) applied this method to a sample of 26 spiral galaxies and Leroy et al. (2012)
used these results to show that an excess of SFR per unit H2 in the centers of galaxies
is a common feature (left panel of Fig. 5). This excess of star formation is likely caused
by both higher dense gas fractions as well as higher intrinsic star formation efficiencies
and thus resembles the “starburst mode of star formation” observed in local LIRGs and
ULIRGs (e.g., Garćıa-Burillo et al. 2012). What processes drive the enhanced dense gas
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Figure 5. Left: The normalized molecular star formation efficiency as function of galactocentric
radius for 26 spiral galaxies using a CO-H2 conversion factor that is locally calibrated against
total gas masses inferred by dust modeling. Near the galaxy centers the SFR per unit molecular
gas mass is often enhanced indicating a dependence of the star formation process on environment.
Right: Deviations in the star formation relation also appear at small spatial scales. For a scale
dependent aperture study in M33, the median ratio of CO/Hα – a proxy of the ratio of H2/SFR –
varies by more than a magnitude between apertures centered on HII regions and CO peaks. The
tight SFR-H2 relation emerges only for larger apertures that include and average over several
star-forming regions. Figures taken from Leroy et al. (2012) and Schruba et al. (2010).

fractions and star formation efficiencies are currently still unclear and a topic of active
research.

Another regime where the tight SFR-H2 relation apparently breaks down is observed
when looking at the relationship at high spatial resolution. The right panel of Fig. 5 shows
this by comparing the H2/SFR ratio for apertures of various sizes that are centered
either on either Hα-peaks of CO-peaks in M33 (Schruba et al. 2010). For individual
star-forming regions, the H2/SFR ratio systematically varies by more than an order of
magnitude depending on which type of peak the aperture is centered on. The overall
tight relationship is only recovered once apertures contain and average over several star-
forming regions. On the other hand, the scale-dependence of the scatter in the star
formation relation also contains valuable information on the time evolution of individual
star-forming regions, that are thought to evolve from being CO-bright but quiescent
when they form, evolve to have bright CO and Hα emission coexisting for some time, and
finally end as HII regions that remove the molecular gas (Kawamura et al. 2009). Rigorous
attempts to extract this information from the rich data sets on the star formation relation
are currently still sparse and will hopefully be extended in the near future (see Feldmann
et al. 2010 and Feldmann et al. 2011 for a first study).

5. Summary: The Composite Star Formation Relation
New detailed observations in the last few years have shown that the SFR is not a

simple function of the total gas mass but has a complex behavior depending on the dom-
inant gas phase. Fig. 6 tries to make a sketch of these different regimes, though in a much
oversimplified format. In regions of low gas surface densities, ΣGas � 1 − 5 M� pc−2 , as
found in the outer disks of spiral galaxies and in dwarf galaxies, ΣSFR scales with ΣGas
with gas consumption times much larger than the Hubble time (e.g., Bigiel et al. 2010).
Star formation is limited by the availability of its raw material, but the large scatter
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Figure 6. Sketch of the resolved star formation relation of different parts and types of galaxies.
Three different regimes can be defined: The “outer disks & dwarfs” regime (left) in which the
decreasing availability of (atomic) gas limits the SFR with depletion times exceeding the Hubble
time. The “normal & massive disks” regime (middle) in which SFR correlates closely with H2
with depletion times of ∼2 Gyr. The relation is linear as long as star formation proceeds in
isolated molecular clouds and becomes super-linear once these merge to a continuous fluid. An
“inflated/bimodal” trend (right) emerges at high gas surface densities in which the SFR per unit
molecular gas reflects the varying dense gas fractions in quiescent disks and merging starbursts.

in the relation indicates that the ability of the ISM to form overdense, gravitationally
unstable regions strongly depends on environment. Towards smaller galactocentric radii
and higher gas surface densities, ΣGas ∼ 5− 10 M� pc−2 , the SFR increases steeply and
is no longer predictable from the total gas mass. In this range the ISM consists both of
atomic and molecular gas and its phase balance is a sensitive function of gas density,
metallicity, and potentially other parameters. Here our sensitive stacking analysis finds
ΣSFR ∝ ΣH2 which is independent of the local atomic gas mass suggesting that the SFR
per total gas mass is solely controled by the formation of a molecular gas phase. In the
inner disks of spirals where ΣGas � 10 M� pc−2 and the ISM is predominantly molecular,
the SFR scales linearly with the available gas mass showing no significant dependence of
galaxy type and/or global galaxy properties. At surface densities of ΣGas � 100 M� pc−2

– exceeding the surface density of GMCs – the relation begins to steepen again but the
uniform trend is broken. Instead the star formation relations show an inflated/bimodal
form and ΣSFR can vary by factor ∼ 10 at fixed gas surface density. First indications
suggest that the enhancement in the star formation efficiency may be caused by a combi-
nation of higher dense gas fractions and higher star formation efficiencies. This enhanced
“starburst mode of star formation” is likely a transient phase during galaxy evolution
(most likely induced by mergers) at which the distribution of gas volume densities is
shifted toward significantly higher values, thus enabling more rapid star formation than
normal in spirals.
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