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We study resonating valence bond (RVB) states in the projected entangled pair states (PEPS) formalism. Based
on symmetries in the PEPS description, we establish relations between the toric code state, the orthogonal dimer
state, and the SU(2) singlet RVB state on the kagome lattice: We prove the equivalence of toric code and dimer
state, and devise an interpolation between the dimer state and the RVB state. This interpolation corresponds to
a continuous path in Hamiltonian space, proving that the RVB state is the fourfold degenerate ground state of a
local Hamiltonian on the (finite) kagome lattice. We investigate this interpolation using numerical PEPS methods,
studying the decay of correlation functions, the change of overlap, and the entanglement spectrum, none of which
exhibits signs of a phase transition.
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I. INTRODUCTION

Resonating valence bond (RVB) states have been intro-
duced by Anderson1 as a wave function in the context of
high-temperature superconductivity and have since then re-
ceived significant attention. RVB wave functions are obtained
as the superposition of all nearest-neighbor (or otherwise
constrained) singlet coverings on a given lattice, and they
have been studied as an ansatz capturing the behavior of
frustrated quantum spin systems, in particular Heisenberg
antiferromagnets on frustrated lattices.2 They are believed to
describe so-called topological spin liquids, i.e., exotic phases
with degenerate ground states which however do not break
rotational or translational symmetry, despite the presence
of strong antiferromagnetic interactions. Particular interest,
both theoretically and experimentally, has been devoted to
frustrated magnets on the kagome lattice, as those systems are
realized in actual materials and form candidates for the first
experimental observation of a topological spin liquid.3–7

Unfortunately, models with potential RVB ground states
are typically difficult to study. One the one hand, this is due
to presence of frustration. Yet, the bigger issue seems to be
that different singlet configurations are not orthogonal, which
up to now has, e.g., hindered a full understanding of how
RVB states appear as ground states of local Hamiltonians.8

In order to better understand the RVB phase, simplified
so-called dimer models have been introduced,9 where the
system is redefined on the Hilbert space spanned by all dimer
coverings of the lattice, making different dimer configurations
orthogonal by definition. Dimer models have subsequently
been studied for various lattices, and it has in particular been
found that for certain geometries, such as for the triangular10

or the kagome lattice,11 such states appear as ground states of
local Hamiltonians with topological ground state degeneracy
(fourfold on the torus), forming a Z2 topological spin liquid.
Unfortunately, these findings cannot be mapped back to the
true RVB state due to the different underlying Hilbert spaces
which are not related by a simple mapping, and thus, the way in
which the corresponding RVB states can describe ground states

of local Hamiltonians is only partially understood (although
very remarkable progress in this direction has been made
during the last years8,12).

More recently, projected entangled pair states (PEPS) have
been introduced as a tool to study quantum many-body
wave functions.13,14 PEPS give a description of quantum
many-body states based on their entanglement structure in
terms of local tensors, and form a framework which allows
us to both analytically understand these wave functions and
to study their properties numerically. In particular, there is
a clear way to understand how PEPS arise as ground states
of local Hamiltonians, especially for systems with unique
ground states15 and with topological order,16 based on the
symmetry properties of the underlying tensor representation.
Numerically, they form a tool for computing quantities such
as correlation functions or overlaps efficiently with very high
accuracy, using transfer operators of matrix product form.14

In this paper, we perform a systematic study of RVB and
dimer states in the PEPS formalism, focusing on the kagome
lattice. We introduce closely related PEPS representations for
the RVB wave function17 and a version of the dimer state in
which different dimer configurations are locally orthogonal.
These representations allow us to derive a reversible local
mapping between the RVB and the dimer state, as well as to
prove local unitary equivalence of the dimer state and Kitaev’s
toric code.18 This yields a Hamiltonian for our dimer model,
and subsequently a Hamiltonian for the RVB state: That is,
we can for the first time prove that the RVB state on the
kagome lattice is the ground state of a local Hamiltonian with
topological ground state degeneracy (fourfold on the torus)
for any finite lattice. The PEPS formalism further allows us
to construct an interpolation between RVB and dimer state
where the Hamiltonian changes smoothly along the path.
Using techniques for numerical PEPS calculations,14 we try
to assess whether the RVB state is in the same phase as the
dimer state (which is equivalent to the toric code and thus
a Z2 topological spin liquid) by looking for signatures of a
phase transition along the dimer-RVB interpolation. We have
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considered the behavior of correlation functions, the rate at
which the ground state changes in terms of the wave function
overlap,19 and the entanglement spectrum of the system, and
have found that all of these quantities behave smoothly and
show no sign of a phase transition.

Let us describe the organization of the paper. For the
sake of conciseness, alternative definitions, proofs, etc., have
been moved to appendices. In Sec. II, we introduce the RVB
and dimer states and their PEPS representations, as well
as the formulation using tensor networks. Alternative PEPS
representations are discussed in Appendix A. In Sec. III, we
discuss the relations between the toric code, the dimer state,
and the RVB state, using the symmetry of the underlying
tensors. Based on these findings, we show how to construct
a smooth interpolation between the dimer state and the
RVB state in Sec. IV, and subsequently study its properties
numerically. In Sec. V, we use the relation between the toric
code, the dimer state, and the RVB state to construct parent
Hamiltonians for the dimer state and the RVB, as well as a
smooth path of Hamiltonians for the interpolation between
them. Appendix C provides a simpler parent Hamiltonian
for the dimer state, based on a more direct mapping to the
toric code, and Appendix D shows how to directly derive a
(much more compact) parent Hamiltonian for the RVB state
by generalizing the techniques developed in Ref. 16 for PEPS
with symmetries to the symmetries found in the RVB.

II. DEFINITIONS

A. The RVB and orthogonal RVB state

We start by introducing dimer states and resonating valence
bond (RVB) states. We focus on the kagome lattice, Fig. 1(a),
both for its relevance and for clarity of the presentation; but
our techniques generalize to other lattices (see conclusions).
A dimer is a pair of vertices connected by an edge. A dimer
covering is a complete covering of the lattice with dimers,
Fig. 1(b). We can associate orthogonal quantum states |D〉
with each dimer covering D. Then, the dimer state is given by
the equal weight superposition |�dimer〉 = ∑ |D〉, where the
sum runs over all dimer coverings D. Usually, it is favorable to
ensure orthogonality of different states |D〉 and |D′〉 locally;
we will introduce such a version of the dimer state which is
particularly suited for our purposes in Sec. II C.

(a) (b)

FIG. 1. (Color online) (a) Oriented kagome lattice. Spins are
associated with vertices. (b) Dimer covering of the kagome lattice.
The lattice is completely covered with dimers (marked blue), i.e.,
disjoint pairs of adjacent vertices.

Let us now turn towards the resonating valence bond (RVB)
state. We first associate with each vertex of the lattice a spin- 1

2
particle, or qubit, with basis states |0〉 ≡ |↑〉 and |1〉 ≡ |↓〉.
Then, for each dimer covering D we define a state |σ (D)〉
which is a tensor product of singlets |01〉 − |10〉 (we omit
normalization throughout) between the pairs of spins in each
dimer in the covering, where the singlets are oriented according
to the arrows in Fig. 1(a). The resonating valence bond
(RVB) state is then defined as the equal weight superposition
|�RVB〉 = ∑

D |σ (D)〉 over all dimer coverings.

B. PEPS representation of the RVB state

We will now give a description of the RVB state in terms
of projected entangled pair states (PEPS).13 PEPS are states
which can be described by first placing “virtual” entangled
states between the sites of the system, and subsequently
applying linear maps at each site to obtain the physical system.
A PEPS representation of RVB states has first been given in
Ref. 17; a detailed discussion how it is related to our description
can be found in Appendix A.

To obtain a PEPS description of the RVB state, we first
place 3-qutrit states

|ε〉 =
2∑

i,j,k=0

εijk|ijk〉 + |222〉 (1)

inside each triangle of the kagome lattice, as depicted in Fig. 2.
Here, εijk is the completely antisymmetric tensor with ε012 =
1, and i, j , and k are oriented clockwise [i.e., consistent with
the arrows in Fig. 1(a)]. Second, we apply the map

P = |0〉(〈02| + 〈20|) + |1〉(〈12| + 〈21|) (2)

at each vertex, which maps the two qutrits from the adjacent
|ε〉 states to one qubit. It is straightforward to check that this
construction exactly gives the resonating valence bond state
defined above (see Appendix A for a detailed discussion).

C. PEPS representation of dimer state

In a similar way as for the RVB state, we can also obtain a
PEPS representation of the dimer state. To this end, we enlarge
our local Hilbert space and replace the map P in Fig. 2 by the
map

P⊥ = |02〉〈02| + |12〉〈12| + |20〉〈20| + |21〉〈21|. (3)

FIG. 2. (Color online) PEPS construction of the RVB state: Place
|ε〉 states (green), Eq. (1), and then apply the map P (red), Eq. (2), as
indicated. To obtain the dimer state, replace P with P⊥, Eq. (3).
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It is straightforward to check that the resulting state is an equal
weight superposition of all dimer coverings, and that different
dimer configurations are orthogonal, since the position of the
dimers can be unambiguously inferred from the location of
the |2〉’s. Note that while we write the physical space as a
subspace of a 3 × 3-dimensional space, in fact only a four-
dimensional subspace is used. A more detailed discussion of
the construction can again be found in Appendix A.

As one might expect, it is possible to obtain the RVB state
from the dimer state by coherently discarding the information
about where the singlet is located and only keeping the singlet
subspace span{|0〉,|1〉}. This is most easily seen by noting that

P = PP⊥,

and thus applying P to each site of the dimer state yields the
RVB state.

Note that our representation of the dimer state differs from
the formulations typically used in the literature in two points:
First, while dimer models have been usually studied on the
space spanned by valid dimer configurations, our formulation
allows to locally check whether a dimer is present on a given
link. This allows us to enforce the restriction to the space
of valid dimer configurations using a local Hamiltonian, and
ultimately enables us to map our dimer model to the toric code
by local unitaries. Second, unlike mappings where the presence
or absence of a dimer is represented by a spin,20 our mapping
uses actual singlets built of two entangled particles. This allows
us to locally interpolate between the dimer and the RVB model,
and gives rise to a gapped entanglement spectrum, which is in
contrast to the gapless entanglement spectra which had been
observed previously for topologically ordered systems.

D. Gauge transformation

The PEPS representation of the RVB and dimer state are
built using unnormalized singlets, as the weight of |01〉 − |10〉
and |22〉 in Eq. (1) is the same. Since the number of singlets
in all dimer configurations is the same, this is not an issue;
however, in some situations (cf. Sec. III B) it will be more
convenient to normalize the singlets, i.e., replace (1) by

|ε̂〉 = 1√
2

2∑
i,j,k=0

εijk|ijk〉 + |222〉. (4)

Note that |ε̂〉 = (Y ⊗ Y ⊗ Y )|ε〉, where Y =
diag(2−1/4,2−1/4,1). Since on the other hand,
P⊥(Y ⊗ Y ) = 2−1/4P⊥ (and thus also for P , as well as
the interpolation defined in Sec. IV), we find that these two
PEPS do not only represent the same total state, but are in
fact related by a local gauge transformation, allowing us to
directly relate all properties of their PEPS description.

E. The toric code

Consider a square lattice of qubits, with an A-B pattern
on the plaquettes, Fig. 3(a). Kitaev’s toric code state18 is the
ground state of the Hamiltonian

HTC =
∑
pA

1

2

(
1 − Z⊗4

pA

) +
∑
pB

1

2

(
1 − X⊗4

pB

)
, (5)

(a) (b)

FIG. 3. (Color online) Construction of the toric code as a tensor
network. (a) The toric code is defined on a square lattice with two
types of plaquettes. By taking 2 × 2 blocks over A-type plaquettes,
a particularly convenient tensor network description can be found.
(b) Tensor for the toric code; depicted are the nonzero entries. The
four auxiliary indices are in the X basis, while the physical sites are
in the Z basis.

where the sums run over all A and B type plaquettes pA and
pB , respectively, and the tensor products of Paulis act on the
qubits adjacent to each plaquette.

The toric code state can be written as a PEPS17 with
bond dimension D = 2. A particularly useful representation
is obtained by blocking the qubits in 2 × 2 blocks around
A-type plaquettes, as indicated in Fig. 3(a) and letting the
PEPS projector be16

PTC =
1∑

α,β,γ,δ=0

|α + β,β + γ,γ + δ,δ + α〉〈α̂,β̂,γ̂ ,δ̂| (6)

for each of these blocks. Here, the sums are modulo 2, and
the ordering of the indices is illustrated in Fig. 3(b); the virtual
qubits are expressed in the X eigenbasis |0̂〉 = (|0〉 + |1〉)/√2,
|1̂〉 = (|0〉 − |1〉)√2.

F. Formulation using tensor networks

PEPS can also be expressed in terms of tensor networks;
while both descriptions are mathematically equivalent we will
utilize either of them when more convenient.

A tensor network state is a state

|ψ〉 =
1∑

i1,...,iN=0

ci1...iN |i1, . . . ,iN 〉, (7)

where ci1...iN can be expressed efficiently by a tensor network,
i.e., as the sum over α1, . . . ,αM of product of tensors
with indices i1, . . . ,iN and α1, . . . ,αM , where each of the
tensors only has a few indices. Tensor networks are often
expressed graphically, with tensors denoted by boxes with
legs corresponding to the indices, where connecting legs
corresponds to contracting over the corresponding index; cf.
Fig. 4(a).

It is straightforward to see that the simplified PEPS
representation of the RVB state can be expressed using two
types tensors, E and P , defined such that

|ε〉 ≡
∑
αβγ

Eαβγ |α,β,γ 〉 (8)
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(a)

(b)

(b)

FIG. 4. Tensor network notation for the RVB state. (a) Tensors are
denoted as boxes with one leg per index. Connecting legs correspond
to summing over that index; this panel, e.g., shows

∑
β Ai

αβB
j

βγ .
(b) Tensor network description of the RVB state; the triangular link
is shorthand for the tensor E implicitly defined in Eq. (8); see panel
(c). Depending on whether we choose P as in Eq. (9) or replace it
with P⊥, Eq. (10), we obtain a tensor network for either the RVB or
the dimer state; in the latter case, the physical indices ik form double
indices (ik,jk).

and

P ≡
∑
iηϑ

P i
ηϑ |i〉〈η,ϑ |, (9)

which form the tensor network of Fig. 4(b) [where we use the
shorthand Fig. 4(c) for E]; it has open indices i1, . . . ,iN and
yields the coefficient ci1,...,iN in Eq. (7). Again, we can replace
P by P⊥ defined by

P⊥ ≡
∑
ijηϑ

(P⊥)ijηϑ |i,j 〉〈η,ϑ | (10)

to obtain a PEPS representation of the dimer state.

III. RELATIONS

In this section, we will show how one can transform
reversibly between the toric code, the dimer state, and the
RVB state. To this end, we will start by recalling the concept
of G injectivity of PEPS16 and subsequently apply it it to prove
equivalence of the toric code and the dimer state, and to devise
a mapping which transforms between the dimer and the RVB
state.

A. Z2 injectivity

We start by introducing Z2 injectivity, which has been
introduced (as G injectivity, with G any finite group) in Ref. 16
as a tool to characterize PEPS with topological properties.
Let Z̄ be a unitary such that {1,Z̄} forms a representation of
Z2; i.e., Z̄2 = 1. A Z2-invariant tensor network consists of
tensors which are invariant under the symmetry action on all
virtual indices simultaneously, as depicted in Fig. 5(a) (we
restrict to equal representations on all indices). This property
is stable under blocking; i.e., two (or more) Z2-invariant
tensors together are still Z2 invariant; see Fig. 5(b). A Z2-
invariant tensor is called Z2 injective if the corresponding
PEPS projector P is injective on the invariant subspace (the
subspace belonging to the trivial representation), i.e., if it has
a left inverse P−1 such that P−1P is the projection onto the
invariant subspace. Differently speaking, this means that there
exists a linear map which we can apply to the physical system
to obtain direct access to the virtual system, up to a projection
onto the symmetric subspace 
S . Z2 injectivity is stable under

(a)

(b)

FIG. 5. Z2-invariant tensor network. (a) A tensor is called Z2

invariant if it is invariant under some Z̄ applied to all virtual indices,
where {1,Z̄} forms a representation of Z2. (b) Z2 invariance is stable
under concatenation of tensors.

concatenation: When composing two Z2-injective tensors, we
obtain another Z2-injective tensor.16

The key point to note is that any two Z2-injective tensor
networks with identical geometry and symmetry representa-
tion, but different tensors, are locally equivalent: There exists
a map acting on the physical system of individual tensors
which transforms the networks into another. This follows since
both PEPS projectors, PA and PB , have left inverses which
yield the projector 
S onto the symmetric subspace,P−1

A PA =
P−1

B PB = 
S , and thus PA = (PAP−1
B )PB , and vice versa.

An important special case are Z2-isometric tensors whereP
is a partial isometry, P−1 = P†: Any two Z2-isometric tensors
PA and PB can be transformed into each other by a unitary
acting on the physical system. Again, Z2 isometry is a property
which is stable under concatenation.16

B. Toric code and dimer state

In the following, we will show that the toric code state
and the orthogonal dimer state are both built of Z2-isometric
tensors, which implies that they can be transformed into each
other by local unitaries. (This relation has been observed
previously by mapping the presence or absence of dimers to
a spin degree of freedom.20) In this section, we will consider
the Z2 representation {1,Z}, with Z = ( 1

−1 ).
For the toric code tensor Eq. (6), it is straightforward to

check that it is invariant under Z⊗4 and acts isometrically on
the invariant subspace, i.e., is Z2 isometric. In order to see the
same for the dimer state, we first rewrite P⊥, Eq. (10), as

P⊥ =
1∑

k=0

Ak ⊗ Bk, (11)

where A0 = B1 = |0〉〈0| + |1〉〈1|, and A1 = B0 = |2〉〈2|. Us-
ing this decomposition, we replace each tensor P⊥ in Fig. 4(b)
with a pair of tensors A and B connected by a two-dimensional
bond, cf. Fig. 6(a), oriented as in Fig. 6(b). This orientation
allows us to block the tensors into triangles, labeled A and
B, containing only A and B type tensors, cf. Fig. 6(b); the
triangles are connected by bonds of dimension two.

The bonds are associated with vertices; a bond state |0〉
(|1〉) indicates that the dimer lies inside the A (B) triangle
(similar to the “arrow representation” of Ref. 21). As each
triangle contains either no or one dimer, the A (B) tensors are
odd (even) under Z⊗3 symmetry, and moreover isometric on
the (anti)symmetric subspace if we use the gauge of Eq. (4);
the possible mappings from bond to physical configurations
are given in Fig. 7.
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(a) (b)

FIG. 6. (Color online) Transformation of the dimer state into the
toric code. (a) P⊥ can be rewritten as a tensor network with bond
dimension 2. (b) Network obtained by replacing P⊥ in Fig. 4(b) with
the tensor network of panel (a). The tensor network can be grouped
into triangular tensors which contain only A or B tensors, and which
are connected by bonds of dimension 2.

We now group one A and one B tensor to obtain square
tensors, which are antisymmetric and isometric; grouping two
of these square tensors finally yields a Z2-isometric tensor
with symmetry representations Z and Z ⊗ Z, respectively.
Blocking two tensors of the toric code also yields a Z2-
isometric tensor with the very same symmetry, and thus the
dimer state and the toric code can be converted into one another
by local unitaries.

C. RVB and dimer state

Let us now show that we can reversibly (though not
unitarily) transform the dimer state to the RVB state. In
principle, the forward direction is obvious, as P = PP⊥;
however, this transformation cannot be inverted. In order
to construct an invertible transformation, we will show that
both states can be understood as being constructed from
Z2-injective tensors connected by |ε〉 bonds: Following the
reasoning of Sec. III A, we can reversibly transform between
the two Z2-injective tensors and thus between the RVB state
and the dimer state.

For this section, we will use the PEPS representation Fig. 4
of both the RVB and the dimer state. The representation of the

FIG. 7. (Color online) Nonzero orthogonal virtual states and the
corresponding orthogonal physical states for the dimer state tensors
(the red lines denotes singlets). The A (B) type tensors are supported
on the odd (even) parity subspace.

(a) (b)

FIG. 8. (Color online) Definition of the tensor P�. (a) P� is
obtained by blocking 12 tensors P with 6 triangular “bond tensors” E;
it maps 6 virtual qutrits to 12 physical qubits. (b) Effective depiction
of the tensor P�.

Z2 symmetry is given by

Z̄ :=

⎛
⎜⎝

1

1

−1

⎞
⎟⎠ .

It is straightforward to see that both P , P⊥, and the bond tensor
E are antisymmetric under the action of the symmetry on all
virtual indices. Let us now form a new tensor by blocking
all the tensors covering one star; cf. Fig. 8. We call the
new tensors P� and P⊥,�, respectively (with corresponding
PEPS projector P� and P⊥,�). Clearly, we can tile the
lattice with P� tensors connected by E bonds; see Fig. 9.
Due to stability of Z2 invariance, one finds that P� and
P⊥,� are Z2 invariant. On the other hand, it can be checked
analytically using a computer algebra system thatP� is indeed
invertible on the invariant subspace of Z̄⊗6; i.e., P� is Z2

injective. This immediately implies Z2 injectivity of P⊥,� (as
P� = P⊗6P⊥,�).

FIG. 9. (Color online) Complete covering of the kagome lattice
with stars, Fig. 8. The stars tensor P� (or projectors P�), together
with triangular tensors E (or |ε〉 bonds), describe the RVB state (or
its orthogonal version, if we choose P⊥,� instead). By acting with
O� on each of the stars, we can reversibly convert between the RVB
and the orthogonal RVB.
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We can now use the argument of Sec. III A to construct
an invertible mapping: Z2 injectivity of P� implies the
existence of P−1� such that P−1� P� is the projector onto

the Z̄⊗6-invariant subspace on the virtual qutrits along the
boundary of the star. If we now define O� = P⊥,�P−1� , it
follows thatO�P� = P⊥,�; i.e., it (locally) converts the RVB
into the dimer state. [Note that O� is only well defined on
the range of P�, rg(P�); we choose O� to vanish on its
orthogonal complement.] Analogously, we can define O−1�
such that O−1� P⊥,� = P� [again such that it vanishes on

rg(P⊥,�)⊥], and it is easily verified that O−1� O� = 1rg(P�)

andO�O−1� = 1rg(P⊥,�); i.e., O−1� is the pseudoinverse of O�.
Applying the maps O� or its inverse to all K = N/12 stars

in the tiling Fig. 9, we can now reversibly convert between
the dimer and the RVB state, |�dimer〉 = O⊗K� |�RVB〉 and

|�RVB〉 = (O−1� )⊗K |�oRVB〉.

IV. INTERPOLATION

A. Interpolation between dimer model and RVB

Let us now show how to continuously deform the dimer
state into the RVB state; as we will show in Sec. V C, this
interpolation does correspond to a continuous change of the
associated local parent Hamiltonian. To this end, we define a
family of PEPS projectors

P(θ ) = |+〉[|0〉(〈02| + 〈20|) + |1〉(〈12| + 〈21|)]
+ θ |−〉[|0〉(〈02| − 〈20|) + |1〉(〈12| − 〈21|)] (12)

with a two-qubit physical space. Clearly, P(0) ≡ P and
P(1) ≡ P⊥, both up to local isometries. By placing P(θ )
in the tensor network Fig. 2, we therefore obtain a smooth
interpolation |�(θ )〉 between the RVB and the dimer state.
Clearly, we can accordingly define P�(θ ) and subsequently
O�(θ ) = P�(θ )P−1� , which is a continuous invertible map
from rgP� to rgP�(θ ). Note that while it might seem that
the interpolation (12) results in a discontinuity as θ → 0, the
discussion about the equivalence of RVB and dimer state in
the preceding section shows that this discontinuity disappears
when considering whole stars.

This interpolation can be understood as a way to make
different dimer configurations more and more orthogonal,
analogous to what is achieved by decorating the lattice in
Ref. 22: Overlapping two different dimer configurations gives
rise to a loop pattern, and the absolute value of their overlap
is xL−2N , with N the number of loops (including length-2
ones) and L their total length (which equals the number of
lattice sites). Here, x = 1/

√
2 for the RVB and x = 0 for

the dimer state, and Eq. (12) corresponds to an interpolation
x(θ ) = 1√

2
1−θ2

1+θ2 .

B. Numerical results

We have numerically studied the interpolation (12) between
the dimer state (which is a topological Z2 spin liquid) and
the RVB state to determine whether they are in the same
phase. We use the tensor network representation of Fig. 4,
where the interpolating path is characterized by tensors

=

2 2 2 2

2 2 2 2

2

2

2

2

2

2

2

2

Nh

Nv

(a)

(c)

(b)

(d)

FIG. 10. (Color online) (a) Lattice used for the numerical calcu-
lations. The red dots denote P (θ ) tensors. (b) By blocking three spins,
we transform this to a square lattice. (c) Resulting square lattice. For
OBC, we set the bonds at the boundary to |2〉 as shown; for CBC, we
consider a vertical cylinder where left and right indices are connected.
(d) Tensor representation of the scalar product 〈�(θ )|�(θ ′)〉.

P (θ ) corresponding to P(θ ) of Eq. (12). For the numerical
calculations, it is particularly convenient to block three spins,
i.e., P (θ ) tensors, together with two E tensors, as indicated
by the dashed squares in Fig. 10(a); this allows us to
rewrite the system on a square lattice with three spins per site
[Fig. 10(b)]. We perform simulations both for open boundary
conditions and for cylindrical boundary conditions. For open
boundary conditions (OBC), we set all open indices in the
tensor network to |2〉 (i.e., there are no outgoing singlets at
the edges), as indicated in Fig. 10(c). The case of cylindrical
boundary conditions is obtained by putting the system on a
vertical cylinder, i.e., connecting the left and right indices,
while the upper and lower outgoing indices are still set to
|2〉. We will denote by Nh and Nv the number of sites in
each row and column of the square lattice, respectively. We
will generally consider the case where Nv → ∞ for finite Nh.
In this case, cylindrical boundary conditions give the same
results as periodic boundary conditions as long as topological
degeneracies are appropriately taken into account, and we will
therefore refer to them as periodic boundary conditions (PBC)
in the following.

1. Correlation functions and gap of the transfer operator

First, we have studied the decay of correlation functions
along the dimer-RVB interpolation. Correlation functions can
be computed for lattices of arbitrary size using standard
methods for the contraction of PEPS.14 We have computed
various correlation functions, all of which show an exponential
decay with a slope which changes smoothly with θ , and do
not exhibit any sign of a phase transition; as an example,
Fig. 11 shows the connected dimer-dimer correlation function
between two z ⊗ z operators [z = diag(1, −1,1)], where each
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FIG. 11. (Color online) Two-point correlations as a function of
the distance for different values of θ . The plot shows data for an
infinite system where in the PEPS contraction (Ref. 14) the bond
dimension has been truncated at D = 40 and D = 60, respectively.

dimer is supported on one square tensor of Fig. 10(b) and the
two squares are in the same row, as a function of the distance
r between the squares, for different values of θ , evaluated on
an infinite system. (This data has been obtained by row-wise
contraction using infinite matrix product states and iTEBD,
and then evaluating the correlation function using the fixed
point tensor.)

The decay of any correlation function is bounded by the gap
of the transfer operator, i.e., one row in Fig. 10(d). We have
used exact diagonalization to determine the gap of the transfer
operator for PBC. The result for Nh = 4, . . . ,10, as well as the
extrapolated data for Nh = ∞, is shown in Fig. 12. Again, the
gap of the transfer operator stays finite and converges rapidly
for growing Nh. Note that the fact that the ground state is a
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FIG. 12. (Color online) Gap of the transfer operator as a function
of θ along the RVB-dimer interpolation for Nh = 4, . . . ,10 and
PBC. As the transfer operator is parity preserving (changing) for
Nh even (odd), it has two (almost) degenerate largest eigenvalues
corresponding to different parity sectors (for Nh even, there is an
exponentially small splitting in Nh); the plot shows the ratio of the
third eigenvalue and the average of the two maximal eigenvalues.
Note that this quantity upper bounds the decay of any correlation
function. The data for Nh = ∞ has been obtained by fitting the data
for Nh = 6, . . . ,10 with a + b exp(−cNh). The inset shows the fit
for θ = 0, 0.1, 0.2, 0.3, 0.5 (from bottom to top, the curves have been
shifted vertically in the plot); note that the two rightmost data points
have not been used for the fit.

PEPS throughout the interpolation (and thus satisfies an area
law) does not preclude critical behavior.17,23

2. Overlap

In order to detect phase transitions which are not reflected
in correlation functions, we have also studied the rate at which
the state changes as we change θ , as quantified by the overlap
(or fidelity).19 Concretely, let |�(θ )〉 be the state interpolating
between |�RVB〉 ≡ |�(0)〉 and |�dimer〉 ≡ |�(1)〉, as defined
in the preceding section. We define the change of overlap

FNh,Nv
(θ,ε) := 1

ε2

[
1 − |〈�(θ + ε)|�(θ )〉|2

〈�(θ + ε)|�(θ + ε)〉〈�(θ )|�(θ )〉
]

and are interested in the behavior of the limit

f (θ ) = lim
Nv,Nh→∞

lim
ε→0

1

NvNh

FNh,Nv
(θ,ε) (13)

which describes how quickly the state changes in the thermo-
dynamic limit.

We have computed this quantity in two different ways. In
the first approach, we use that for sufficiently small Nh we can
exactly compute FNh,Nv

(θ,ε) for arbitrary values of Nv and ε

by exact row-wise contraction of the tensor network Fig. 10(d),
and use this to extrapolate the limit

F̂Nh
(θ ) = lim

Nv→∞
lim
ε→0

1

NhNv

FNh,Nv
(θ,ε) (14)

to arbitrary accuracy for Nh = 4,6,8; this data is then used in
a finite size scaling analysis to infer f (θ ) ≡ lim F̂Nh

(θ ). We
apply this approach to the OBC case. The second approach
makes use of the fact that limε→0 FNh,Nv

(θ,ε) can be expressed
as an average over correlation functions, as we show in
Appendix B. Again, this average over correlation functions
can be computed exactly for any value of Nv , and Nh � 10
[to reach N = 10, we use that total bond dimension of the
transfer operator of the P tensor, and thus the overall bond
dimension in the tensor network in Fig. 10(d), can be reduced
from D2 = 9 to 6], which again allows us to determine F̂Nh

for Nh = 4,6,8,10, and subsequently apply a finite size scaling
analysis. We apply this approach to the PBC case.

The resulting data are shown in Fig. 13, together with
extrapolated data for Nh = ∞ from the finite size scaling. (See
Fig. 14 for a discussion of the finite size scaling analysis.) The
extrapolated curves for open and periodic boundary conditions
agree very well. The extrapolated value for f (θ ) seems to
become essentially constant for θ � 0.15, which might suggest
a nonanalytic behavior of f (θ ); however, zooming into this
region (inset of Fig. 13) shows clearly that f (θ ) decreases
again for θ � 0.12, showing no evidence for the presence of a
phase transition. (See Fig. 14 for a discussion of the difference
observed between the extrapolated OBC and PBC data.)

3. Entanglement spectrum

Finally, we have also studied the behavior of the entangle-
ment spectrum along the interpolation for an infinite cylinder,
using the techniques described in Refs. 24 and 25 (in particular,
using exact contraction). In Fig. 15 we give the entanglement
spectra for Nh = 8 for the integer and half-integer spin sector
(the boundary Hamiltonian does not couple the two sectors).
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FIG. 13. (Color online) The overlap change F̂Nh
, Eq. (14), as

a function of θ for both open boundary conditions (Nh = 4,6,8)
and periodic boundary conditions (Nh = 4,6,8,10). The solid black
and red lines give the extrapolated data for Nh = ∞ for open and
periodic boundaries. The inset shows a zoom of the Nh = ∞ data for
θ � 0.18, where the black (red) crosses correspond to open (periodic)
boundaries. The details of the scaling analysis are given in Fig. 14.

While at first, it seems that the lowest lying S = 1
2 and

S = 1 states cross with the S = 0 ground state at some
small θ , a scaling analysis (Fig. 16) suggests that the gap
of the entanglement Hamiltonian is more likely to vanish at
θ = 0; also, note that there is no prior reason to assume that
a vanishing gap in the entanglement spectrum implies any
critical behavior in the actual system, as the boundary state is
a thermal state of the entanglement Hamiltonian and therefore
will have finite correlations even for a critical entanglement
Hamiltonian.25

Let us also point out an interesting aspect of the en-
tanglement spectrum: While the system under consideration
is topological (rigorously provable in an environment of
the dimer point26), the entanglement Hamiltonian has a
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FIG. 14. (Color online) Finite size scaling analysis for F̂Nh
. The

plot shows OBC and PBC data for F̂Nh
. Due to the absence of

boundary effects, the PBC data converge very quickly to the Nh = ∞
value once Nh is beyond the correlation length. We have fitted the
PBC data for Nh = 6,8,10 with a + b exp(−cNh). The OBC data, on
the other hand, have a 1/Nh leading term from the boundary; we have
fitted the data for Nh = 4,6,8 with a + b/Nh. Note that the correction
for the data points for OBC would most likely be concave, suggesting
that the true Nh = ∞ value is closer to the PBC data.

unique ground state, i.e., it is gapped, which shows that
the connection between topologically ordered systems and
gapless entanglement spectra might be less clear than generally
believed. Note that the reason that the entanglement spectrum
is gapped (unlike for the toric code, the RK model,11 or the
mapping of Ref. 20) is due to the fact that our representation
of the dimer state involves singlets (i.e., an entangled state
of two spins) rather than single spins indicating the presence
or absence of a dimer, and that we split these singlets when
computing the entanglement spectrum, just as one would do
for the RVB state itself.

V. HAMILTONIANS

A. Hamiltonian for the dimer state

As has been proven in Ref. 16, every G-injective PEPS
on a square lattice appears as the ground state of a local
Hamiltonian, acting on at most 2 × 2 elementary cells, which
has a fixed degeneracy determined by the symmetry group.
In particular, this result can be directly applied to the dimer
state to infer that it is the ground state of a local Hamiltonian
with fourfold degeneracy. Alternatively, we can obtain a
Hamiltonian for the dimer state by using its local isometric
equivalence to the toric code: The same transformation
will also transform the toric code Hamiltonian into a local
Hamiltonian for the dimer state. Note, however, that we need
to add extra terms to the dimer Hamiltonian which ensure that
the state is constrained to its local support, as the isometry is
only defined as a map between the local support of the toric
code and of the dimer state, respectively.

In Appendix C, we explicitly derive a Hamiltonian for the
dimer state using the duality with the toric code Hamiltonian.
It has three types of terms (all of them projectors), acting on
vertices, triangles, and hexagons, respectively:

(1) h⊥
v acts on individual vertices. It ensures that there is

exactly one singlet per vertex.
(2) h⊥


 acts inside the triangles (as used in the A-B
blocking). It makes sure that each triangle holds zero or one
singlet.

(3) h⊥� acts on the six vertices adjacent to each hexagon.
It makes sure that all singlet configurations around the
corresponding star appear with equal weight.

(The exact form of these three terms, together with their
derivation, can be found in Appendix C.)

How does this Hamiltonian compare to the Rokhsar-
Kivelson (RK) Hamiltonian for dimer models?9–11 The res-
onance terms h⊥� of our Hamiltonian correspond to those
of the RK Hamiltonian; in both cases, they ensure that the
ground state is the even weight superposition of all dimer
configurations. On the other hand, our Hamiltonian has two
additional types of terms (h⊥

v and h⊥

) which ensure that the

system is in a valid dimer configuration; these terms are not
present in the conventional dimer models as they are defined
right away on the subspace of valid dimer configurations.
While this makes our Hamiltonian more complicated, it is
outweighed by the fact that we have a completely local
description of our system; in particular, it is this locality
of the description which allows us to interpolate between
the dimer state and the RVB state locally. Beyond that, the
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FIG. 15. (Color online) Entanglement spectrum of an infinite (vertical) cylinder for decreasing θ , and perimeter Nh = 8. The spectrum is
shown as a function of the momentum K along the one-dimensional (horizontal) edge. The eigenstates are also labeled according to their spin
quantum numbers ( 1
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(b) the half-integer sector; the two sectors are not coupled by the entanglement Hamiltonian. Note that for both sectors, the same energy scale
has been chosen (i.e., trace-normalizing the boundary states in both sectors), corresponding to a local entanglement Hamiltonian (Ref. 24).

particular way in which we make the dimer configurations
locally orthogonal allows us to define the resonance moves
h⊥� on a single hexagon (cf. Appendix C), as compared to the
star required in the usual RK Hamiltonian.11

B. Hamiltonian for the RVB state

The Hamiltonian H⊥ = ∑
h⊥

i for the dimer state is frustra-
tion free; that is, all Hamiltonian terms—which we have chosen
to be projectors—annihilate the dimer state, h⊥

i |�dimer〉 = 0.
We can make use of this fact to directly obtain a corresponding
frustration-free Hamiltonian for |�RVB〉 = (O−1� )⊗K |�dimer〉:
Define

hi := O⊗κ� h⊥
i O⊗κ� (15)

where for each i, the product O⊗κ� only involves the stars

in the covering Fig. 9 which overlap with h⊥
i . Then, hi

is positive semidefinite, and hi |�RVB〉 = 0. Moreover, for
each star k we add a term hk to the Hamiltonian which
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FIG. 16. (Color online) Gap between the lowest S = 1 and S = 0
state (left) and S = 1

2 and S = 0 state (right) of the entanglement
Hamiltonian for the dimer-RVB interpolation for Nh = 6,8.

projects onto the orthogonal complement of rgP�, and thus
restricts the ground-state (= zero-energy) subspace of the
overall Hamiltonian to rgP⊗K� . [Note that conversely, those

terms h⊥
i in H⊥ which restrict the ground-state space to

(rgP⊥�)⊗K give hi ≡ 0 in Eq. (15).] As O⊗K� is a bijection

between rgP⊥� and rgP�, it follows that there is a one-to-one

correspondence between ground states of H⊥ and of H =∑
hi ; in particular, the constructed RVB parent Hamiltonian

has a topology-dependent degeneracy of the ground space
(fourfold on the torus), which is obtained from the ground
space of the dimer Hamiltonian by applying O⊗K� .

The Hamiltonian constructed this way is rather large: In
particular, those triangle terms h⊥


 which lie at the intersection
of three stars give rise to terms acting on three stars in Fig. 9.
In order to obtain simpler terms, one can choose to adapt
the framework for parent Hamiltonians of G-injective PEPS
derived in Ref. 16 to the RVB state, which results in a parent
Hamiltonian acting on two overlapping stars, i.e., 19 spins; we
give the full derivation in Appendix D.

C. Hamiltonian for the dimer-RVB interpolation

The relation between the dimer and RVB Hamiltonian ex-
tends to the whole interpolating path introduced in Sec. IV A,
and gives rise to a continuous path of local Hamiltonians
interpolating between the dimer model and the RVB state:
In order to ensure continuity, we first replace the dimer
Hamiltonian H⊥ = ∑

i h
⊥
i by an equivalent Hamiltonian

Ĥ⊥ := ∑
i ĥ

⊥
i + ∑

j 
j . Here, ĥ⊥
i is the projection of h⊥

i

onto (rgP⊥�)κ(i), where the tensor product ⊗κ(i) goes over all

stars supporting hi and we omit vanishing ĥ⊥
i , and 
j is the

projector onto rgP⊥� on star j , where the sum ranges over all

stars. As H⊥ is a parent Hamiltonian, the restriction to rgP⊥�
is ensured by the terms in H⊥ locally; thus, Ĥ⊥ has the same
ground-state space as H⊥ with a spectral gap above, and we can
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smoothly interpolate between H⊥ and Ĥ⊥ without changing
the ground-state space or closing the gap. For Ĥ⊥, it is now
straightforward to construct a continuous interpolating path
Ĥ (θ ) = ∑

i ĥi(θ ) + 
j (θ ), where ĥi(θ ) = O⊗κ� (θ )ĥiO⊗κ� (θ ),
and 
j (θ ) projects onto rg P�(θ ) for star j .

VI. CONCLUSIONS

In this paper, we have applied the PEPS formalism to the
study of the resonating valence bond states and dimer models.
We have discussed PEPS representations of the RVB and
the dimer model and studied their structure and relation. In
particular, we have given a local unitary mapping between
the dimer model and the toric code; furthermore, by defining
the dimer state with locally orthogonal dimers, we were able
to devise a local reversible mapping between the dimer state
and the RVB state which allowed us to prove that the RVB
state is the fourfold degenerate ground state of a local parent
Hamiltonian for any finite lattice. Subsequently, this allowed
us to devise a smooth interpolation between the dimer state and
the RVB state and the corresponding Hamiltonians. We have
studied this interpolating path numerically, considering the
behavior of correlation functions, the rate at which the ground
state changes, and the entanglement spectrum, and have found
that all of these quantities behave smoothly and show no sign
of a phase transition.

Our results make heavy use of the formalism of PEPS and
their associated parent Hamiltonians, and in particular of G

injectivity and G isometry, which we generalize in order to
assess the RVB state on the kagome lattice. Similarly, the
PEPS representation of the dimer-RVB interpolation allowed
for efficient numerical simulations, enabling us to study the
phase of the RVB state. We believe that these techniques
will be of further use in the study of related systems. In
particular, the results can be generalized to other lattices: First,
the PEPS description of RVB states applies to arbitrary graphs.
All lattices with the “linear independence property”8,27,28 are
G injective, and whenever the linearly independent blocks
allow cover the lattice up to disconnected patches (such as
in Fig. 9); this allows interpolating between the RVB and the
corresponding dimer state. (This is the case, for instance, for
the square-octagon or the star lattice in Ref. 28, whereas for
the hexagonal lattice it appears that no such covering can be
found.) Further, if the dimer model can be expressed in terms
of Z2-injective tensors, this allows us to conclude that it is
equivalent to the toric code. (This is the case, e.g., for the
star lattice, but not for the square-octagon lattice.) Also note
that our findings are not restricted to spin- 1

2 SU(2) singlets as
dimers, but can be generalized to higher dimensional singlets
or any other state, as long as Z2 injectivity can be established.

ACKNOWLEDGMENTS

We acknowledge helpful comments by S. Kivelson and
A. Seidel. We wish to thank the Perimeter Institute for
Theoretical Physics in Waterloo, Canada, and the Centro de
Ciencias Pedro Pascual in Benasque, Spain, where parts of this
work were carried out, for their hospitality. N.S. acknowledges
support by the Alexander von Humboldt Foundation, the
Caltech Institute for Quantum Information and Matter (an

NSF Physics Frontiers Center with support of the Gordon and
Betty Moore Foundation), and NSF Grant No. PHY-0803371.
D.P. acknowledges support by the “Agence Nationale de la
Recherche” under Grant No. ANR 2010 BLANC 0406-0,
and CALMIP (Toulouse) for supercomputer resources under
Project No. P1231. J.I.C. acknowledges the EU project
QUEVADIS, the DFG Forschergruppe 635, and Caixa Man-
resa. D.P.-G. acknowledges QUEVADIS and Spanish grants
QUITEMAD and MTM2011-26912.

APPENDIX A: DIFFERENT PEPS REPRESENTATIONS
FOR THE RVB AND DIMER STATE

In this Appendix, we give an overview of different PEPS
representations of the RVB and dimer state and how they are
related. We will start from the representation introduced in
Ref. 17, and subsequently show how to derive from it the
representation used in this paper.

1. PEPS representation of the RVB

We first explain the PEPS representation of the RVB state
introduced in Ref. 17, which is illustrated in Fig. 17: We place
states

|ω〉 = |01〉 − |10〉 + |22〉 ∈ C
3 ⊗ C

3 (A1)

along all edges of the lattice (observing its orientation); this
associates four three-level systems (qutrits) with each vertex.
Then, we apply the following map to the qutrits at each vertex,
which maps them to one physical qubit:

P4 = |0〉(〈0222| + 〈2022| + 〈2202| + 〈2220|)
+ |1〉(〈1222| + 〈2122| + 〈2212| + 〈2221|)

=
4∑

k=1

(|0〉〈0|k + |1〉〈1|k) ⊗ 〈222|/k. (A2)

Here, in the second formulation the sum runs over the four
virtual systems k, 〈0|k and 〈1|k act on the virtual system k, and
〈222|/k acts on all virtual systems but k.

What is the intuition underlying this construction? The
Hilbert space holding the bond state, |ω〉 = |01〉 − |10〉 +

FIG. 17. (Color online) PEPS representation for the RVB. Place
maximally entangled “bonds” |01〉 − |10〉 + |22〉 along the edges of
the lattice (blue), and subsequently apply the linear map ("PEPS
projector") P4 (red circle), Eq. (A2), which maps the four qutrits at
each vertex (encircled) to a spin- 1

2 degree of freedom. Alternatively,
we can obtain the (orthogonal) dimer state by replacing P4 with P4,⊥,
Eq. (A3): P4,⊥ ensures that only one qutrit per vertex holds a singlet,
but keeps the full Hilbert space, thus ensuring local orthogonality of
different dimer configurations.
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|22〉, Eq. (A1), should be understood as a direct sum C
2 ⊕ C

1

[with a corresponding SU(2) representation 1
2 ⊕ 0]. The two-

dimensional subspace, S = span{|0〉,|1〉}, provides the spin- 1
2

degree of freedom which holds the singlets |01〉 − |10〉 used
to construct the RVB state, while the third level, |22〉, is used
as a tag indicating that there is no singlet along that edge,
synchronizing this choice for both ends. In order to understand
what happens when we applyP4 to the bonds |ω〉, let us rewrite
P4 as

P4 = P4 P4,⊥,

where P4,⊥ is a projector acting within the virtual space as

P4,⊥ =
4∑

k=1

1S,k ⊗ |222〉/k〈222|/k, (A3)

with 1S,k the projector onto the subspace S on site k. Thus,
P4,⊥ projects one virtual qutrit onto the “singlet space” S,
while the others are projected onto the |2〉 subspace. Due to
the form of |ω〉, it follows that both sides of each bond have
to be projected onto the same subspace; i.e., either the singlet
is selected, or both ends of the bond need to be in the |2〉
state. From these two observations, it follows that by applying
P4,⊥ to the bonds |ω〉, we obtain configurations with singlets
along the edges, such that exactly one singlet is incident to each
vertex, while all other edges are in the “unused” state |22〉. This
way, all possible dimer configurations are orthogonal—we can
infer the location of the dimers by measuring whether we are in
the S subspace or in the |2〉 state. Moreover, the final state has
an equal weight of all dimer configurations, as |01〉 − |10〉 and
|22〉 appear with the same relative weight everywhere. Thus,
it follows that the state obtained by applying the maps P4,⊥ to
the bonds |ω〉 is a realization of the (orthogonal) dimer state.

It is now straightforward to see that applying P4 to this
dimer state gives the actual (nonorthogonal) RVB state: P4

keeps the singlet degree of freedom at every vertex, but it
(coherently) erases the information about the edge the singlet
is associated with; as the phases between different dimer
locations are chosen to be +1, we indeed obtain an equal
weight superposition of all dimer coverings with singlets, i.e.,
the RVB state.

2. Simplified PEPS representation

We will now prove that the PEPS representation of the RVB
state Eqs. (A1) and (A2) is equivalent to the form introduced
in Sec. II B. We start by rewriting P4, Eq. (A1), as

P4 = P (Q ⊗ Q). (A4)

Here, P : C
3 ⊗ C

3 → C
2 is defined just as P4, but acting only

on two virtual systems,

P = |0〉(〈02| + 〈20|) + |1〉(〈12| + 〈21|)
[cf. Eq. (2)], and Q : C

3 ⊗ C
3 → C

3 is defined as

Q = |0〉(〈02| + 〈20|) + |1〉(〈12| + 〈21|) + |2〉〈22|;
it is straightforward to check that (A4) holds. We choose to
apply the Q’s as depicted in Fig. 18(a): Then, applying Q⊗3

(a) (b)

FIG. 18. (Color online) Simplified PEPS construction for the
RVB and dimer state. (a) Start from the representation Fig. 17 and
rewrite P4 in two layers, P4 = P(Q ⊗ Q), Eq. (A4). The Q’s act
as indicated by the green circles, and make sure at most one singlet
degree of freedom is kept; they thus return one qutrit each. P2 makes
sure exactly one singlet is kept, which can come from either of the
two Q’s. (b) The simplified PEPS construction: Applying three Q’s
to three bonds around a loop results in a state |ε〉 which holds at
most one singlet, Eq. (A5), and which is placed across every triangle.
Subsequently, P is applied to pick one of the singlets at each vertex.

to |ω〉⊗3 across each triangle yields a 3-qutrit state

|ε〉 =
3∑

i,j,k=0

εijk|ijk〉 + |222〉, (A5)

where εijk is the completely antisymmetric tensor with ε012 =
1, where i, j , and k are oriented clockwise. Thus, we obtain a
PEPS construction for the RVB state where we place tripartite
bond states |ε〉 across triangles, and apply P to each adjacent
pair of qutrits, as shown in Fig. 18(b).

As already explained in Sec. II C, this PEPS representation
of the RVB state can again be understood as arising from a
PEPS representation of the dimer state, P = P P⊥ with P⊥ =
1S ⊗ |2〉〈2| + |2〉〈2| ⊗ 1S. Note that different dimer coverings
are again locally orthogonal, although in a different fashion—
they become orthogonal on triangles. Note that this dimer state
can be obtained from the one discussed in the previous section
A 1 using thatP⊥(Q ⊗ Q) = (R ⊗ R)P4,⊥, whereR = 1S ⊗
〈2| + 〈2| ⊗ 1S + |2〉〈22|: While R removes some degrees of
freedom, different dimer configurations remain orthogonal on
triangles.

APPENDIX B: CHANGE OF OVERLAP AND
CORRELATION FUNCTIONS

In this Appendix, we show how to compute the change of
the overlap of the state along the dimer-RVB interpolation
from two-point correlation functions; it can be seen as a
Hamiltonian-free PEPS version of the result that the change of
the overlap can be expressed as an integral over imaginary time
correlation functions.29 While we will illustrate the derivation
for the particular case of the dimer-RVB interpolation, it will
equally apply to most other PEPS interpolations.

The interpolating path is given by

|ψθ 〉 = P⊗N
θ |�〉, (B1)

with Pθ as in Eq. (12), and where |�〉 ≡ |�dimer〉 is the dimer
state. Pθ can be split as

Pθ = P+ + θP−, (B2)
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where P+ and P− are projectors independent of θ , P+ + P− =
1; the following derivation holds for any interpolation of the
form Eqs. (B1) and (B2). Note that from (B2), we have that

Pθ+dθ =
(
1 + 1

θ
P−dθ

)
Pθ . (B3)

We want to compute the change of the normalized overlap

O(θ,θ + dθ ) = 〈ψθ |ψθ+dθ 〉√〈ψθ |ψθ 〉
√〈ψθ+dθ |ψθ+dθ 〉

.

As the first-order change to O(θ,dθ ) can be at most a
(unphysical) phase change, we are interested in the second
order in dθ . We write |ψθ+dθ 〉 = |ψθ 〉 + |dψθ 〉, and from
Eqs. (B1) and (B3), it follows that |dψθ 〉 can be expanded
in orders of dθ .

For notational convenience, let us define

N = 〈ψθ |ψθ 〉, A = 〈ψθ |dψθ 〉/N , B = 〈dψθ |dψθ 〉/N .

Note that since both |�〉 and Pθ in Eq. (B1) are real, |ψθ 〉
is real, and thus A is real; we will use this in the following
derivation. Using the above definitions (where A is first order
and B second order in dθ ) we have (neglecting third and higher
order terms)

O(θ,θ + dθ ) = N (1 + A)

N
√

1 + (2A + B)

≈ (1 + A)

[
1 − 2A + B

2
+ 3(2A)2

8

]

= 1 − 1

2
(B − A2).

Clearly,

|dψθ 〉 =
∑ dPθ

dθ
P⊗(N−1)

θ |�〉dθ =
∑

i

1

θ
P i

−|ψθ 〉 dθ,

where the sum is over all possible positions i of the 1
θ
P i

−. (As
A only appears as A2 in the overlap, we can neglect the second
order term.) It follows that

A = 1

θ

∑
i

〈ψθ |P i
−|ψθ 〉

N dθ ≡ 1

θ

∑
i

〈P i
−〉θ dθ,

where we have used the notation

〈X〉θ := 〈ψθ |X|ψθ 〉
〈ψθ |ψθ 〉 .

On the other hand, to second order

B = 1

θ2

∑
ij

〈P i
−P

j
−〉θ (dθ )2,

and thus, the second-order term in the expansion

O(θ,θ + dθ ) = 1 − 1

2
gθN (dθ )2

can be expressed as an average over connected correlation
functions:

gθ = B − A2

N (dθ )2
= 1

θ2N

∑
ij

〈P̂ i
−P̂

j
−〉θ , (B4)

where P̂ i
− := P i

− − 〈P i
−〉θ , and N is the number of sites. This

derivation shows that for PEPS interpolations, we can infer
the change of the overlap from two-point correlators; this
argument can be extended to relate the pth order expansion
coefficient of the overlap to p-point correlators.

For systems with finite correlation length ξ , the sum
in Eq. (B4) is proportional to ξ 2N , and thus, gθ ∼ ξ 2/θ2.
Therefore, the only way gθ can diverge when the correlation
functions decay exponentially is if θ → 0. Note, however, that
for θ = 0, 〈P̂ i

−P̂
j
−〉θ = 0, so whether gθ diverges at θ → 0

depends on the rate at which the latter vanishes.
Note that Eq. (B4) does not apply when θ = 0. For that

case, one can easily check that 〈ψθ=0|dψθ=0〉 = 0 and thus
A = 0. On the other hand, 〈dψθ=0|dψθ=0〉/(dθ )2 is the norm
of the PEPS where Pθ=0 ≡ P+ has been replaced by P− at a
single site (summed over all sites), which immediately shows
how to compute g0 = B/N(dθ )2.

APPENDIX C: A SIMPLE PARENT HAMILTONIAN FOR
THE ORTHOGONAL RVB

In this Appendix, we show how to directly derive a parent
Hamiltonian for the dimer state (in the representation of
Sec. II C) by relating it to the toric code on the same lattice.
Let us start by considering the toric code model on a kagome
lattice, where the spins sit on the edges of the lattice, as
illustrated in Fig. 19(a). The toric code Hamiltonian has two
types of terms: First, it has terms acting on the four qubits
across each vertex, as

hT C
v = −X⊗4,

(a) (b)

FIG. 19. (Color online) (a) Tensor network and Hamiltonian for
the toric code on the kagome lattice. Two types of terms ensure the
parity constraints over the triangular and hexagonal plaquettes, while
the vertex term enforces an equal weight superposition of all even
parity configurations. Note that the −Z⊗3 acting on the triangles
can be understood as enforcing each individual tensor to be in the
correct subspace. (b) Hamiltonian terms obtained by transforming
each tensor unitarily into a projector onto the symmetric subspace.
Z⊗3 still enforces that the tensor is in the correct subspace; further,
there is a Z⊗2 at each vertex enforcing equality of the adjacent
qubits—translated to the dimer state, this will enforce that there
is exactly one singlet adjacent to each vertex. Finally, the X⊗12

term around the hexagon makes sure that all such configurations
appear with equal weight—it will make the dimer configurations
resonate in the orthogonal RVB state. (Note that this model can also
be understood as a toric code model on a “decorated” hexagonal
lattice with two sites per edge and a vertex between, and X stabilizers
around plaquettes and Z stabilizers across vertices.)
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and second, it has terms acting across plaquettes—triangles
and hexagons—as

hT C

 = hT C

� = −Z⊗3, hT C� = −Z⊗6,

where X and Z are the Pauli matrices. For future purposes, we
have introduced different labels for the two types of triangles:
hT C


 refers to an upward pointing tensor [sketched blue in
Fig. 19(a)], and thus to a downwards triangle, and vice versa.
In analogy to the square lattice toric code, Eq. (6), we can write
the toric code state with triangular Z2-invariant tensors

PTC =
∑
α,β,γ

= |α − β,β − γ,γ − α〉〈α̂,β̂,γ̂ |.

The states 〈η̂| on the virtual level are again in the x eigenbasis,
which makes them invariant under Z⊗3. The tensors are
marked blue in Fig. 19(a), with the virtual indices associated
with vertices of the kagome lattice. PTC can be transformed
by a unitary acting on the physical system to the projector onto
the invariant subspace,

P̃TC = 1
2 (1⊗3 + Z⊗3),

where the physical qubits are now associated with vertices;
cf. Fig. 19(b). It can be easily checked that the action of
the Hamiltonian terms in the transformed basis is as follows
[illustrated in Fig. 19(b)]:

h̃TC
v = −Z⊗2

enforces that the two qubits per vertex are in the same state
(namely equal to the value of the virtual index);

h̃TC� = −X⊗12

acts on the 12 qubits around each hexagon and ensures that all
bond configuration appear with the same probability; finally,
in the original representation, hTC


 = hTC

 enforced that the

qubits at each tensor are in the proper subspace; it thus has
to be replaced by the corresponding term for the transformed
tensor,

h̃TC

 = h̃TC

� = −Z⊗3.

The three terms are depicted in Fig. 19(b).
Let us now consider what happens if we change all A-

type tensors (upwards pointing triangles) to projectors onto
the antisymmetric subspace,

P̃def

 = 1

2 (1⊗3 − Z⊗3),

while the B-type tensors (downwards pointing triangles)
remain of the form

P̃def
� = 1

2 (1⊗3 + Z⊗3).

Clearly, this gives rise to a different triangular Hamiltonian for
all A-type tensors,

h̃def

 = Z⊗3,

which enforces odd parity, while we keep h̃def
� = h̃TC

� for the B-
type tensors. All other Hamiltonian terms remain unchanged,
since we still need to ensure that the qubits on both sides of
the vertex are equal (h̃def

v = h̃TC
v ), and that all configurations

appear in an equal weight superposition (h̃def� = h̃TC� ).
The projectors P̃def


 and P̃def
� can now be transformed to the

A and B tensors for the dimer state by local isometries, which

allows us to explicitly construct its parent Hamiltonian: First,
the terms h̃def


 and h̃def
� enforce that the sites at each tensor are

in the correct subspace; they are thus mapped to a local term
h� = h
 which have the four states of Fig. 7 as ground states.
The vertex term h̃def

v is transformed to

hv = −(1S ⊗ |2〉〈2| + |2〉〈2| ⊗ 1S),

S = span {|0〉,|1〉}, which ensures there is only one singlet
adjacent to each vertex. Finally, h̃def� is transformed to a term
which swaps the singlet/no-singlet configuration for the 12
qutrits adjacent to each hexagon, observing the orientation of
the singlets: This is achieved by an operator

h� = −�⊗6,

where � acts on the two qutrits in each triangle adjacent to the
hexagon as

� = |22〉(〈01| − 〈10|) − |20〉〈02| − |21〉〈12| + H.c.,

(C1)

with proper orientation of the singlet—the first term changes
between a singlet and no singlet along the edge, and the
latter two terms flip the location of a (outwards-pointing)
singlet in the triangle; the negative sign is due to the fact
that the two singlets are oriented differently. The action of �

is illustrated in Fig. 20(a). Note that this �⊗6, although it
acts on a hexagon only, in fact achieves resonance between all
loop configurations on the star built around the hexagon, as
illustrated in Fig. 20(b) for a particular instance.

APPENDIX D: G-INJECTIVE TOOLBOX AND PARENT
HAMILTONIAN FOR THE RVB STATE

In the main text, we have seen how to manipulate the RVB
state in a kagome lattice, to connect it with the dimer state
and then with the toric code in such a way that we can apply
the results about Z2-injective PEPS given in Ref. 16 to give
a local frustration-free Hamiltonian with topological features
for the RVB state. Another possible approach is to modify the
toolbox for G-injective PEPS developed in Ref. 16 to adapt it
to lattices different than the square one, even frustrated ones.

(a) (b)

FIG. 20. (Color online) Resonance moves in the dimer state. (a)
Resonance move implemented by a single �, Eq. (C1): � acts on the
lower two qutrits only and flips the two configurations singlet/no
singlet, and the two configurations singlet left/singlet right. (b)
Applying �⊗6 around the hexagon gives a resonance between pairs
of dimer configurations around the hexagon (marked red and green,
respectively). Note that any such pair of dimer configuration can be
described by a closed loop of even length on the star; cf. Ref. 8.

115108-13
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Since this route is necessarily technical, and assumes the reader
is familiar with Ref. 16, we only sketch it in this appendix. The
payoff: a more local Hamiltonian—acting on two partially
overlapping stars, that is, 19 spins—and the possibility of
applying the G-injectivity toolbox to rather general lattices
in the future.

For simplicity, we will stick to Z2 injectivity and the
kagome lattice, but it is straightforward how to extend the
ideas to general finite groups and general lattices. We will
work with the tensor network picture of the RVB state given in
Fig. 4(b), where the RVB state is recovered from contracting
two types of tensors P and E. In the first part of this appendix,
Secs. D1 to D3, we will generalize the three key ingredients
of Ref. 16: (i) showing that Z2 injectivity is stable while
growing the lattice, (ii) showing the “intersection property”
for good-shaped Hamiltonians—as the one acting on three
overlapping stars—and (iii) showing that we recover the
desired ground space while closing the boundaries. All that
will produce a local frustration-free Hamiltonian for the RVB
state with local terms acting on three overlapping stars and
4-fold degeneracy. Finally, in Sec. D4, we will see how to
reduce the size of the local Hamiltonian to two overlapping
stars. For that, we will need the concept of linear independence
introduced by Seidel in Ref. 8.

1. Growing Z2 injectivity

We recall from the main text that a region in a tensor network
is Z2 injective if it is Z2 invariant, as illustrated in Fig. 5,
and in addition one can left-invert the tensor in that region
(understood as a map from the auxiliary to the physical system)
to get the projection onto the invariant subspace. In Fig. 8 of the
main text, the basic Z2-injective block—one star—is depicted.
In Fig. 21 we illustrate how to grow the Z2-injective property
from one to two partially overlapping stars, but the procedure
can be applied to grow arbitrarily large regions. The only basic
property we need for that is the possibility of decomposing the
final tensor as in Fig. 21(a), and that this property is preserved
as we grow the region. The general result is that for regions that
are grown keeping this property (it is trivial that one can grow
in this way all regions that are required to be Z2 injective later
on in this appendix), there is an inverse giving the projector
onto the invariant subspace:

1

2

1∑
r=0

(−1)|t |r Z̄r ⊗|b|,

where |t | is the number of tensors, both of P and E type, |b|
is the number of outgoing indices in the region, and

Z̄ :=

⎛
⎜⎝

1

1

−1

⎞
⎟⎠ .

As commented in the main text, the extra sign one obtains
depending on the parity of the number of elementary tensors
in the region only affects the definition of “invariant subspace,”
which can be the symmetric (|t | even) or the antisymmetric
one (|t | odd).

FIG. 21. (Color online) Graphical proof that Z2 injectivity is
stable as growing a region. We illustrate it in the case of growing
from one to two partially overlapping stars. Our aim is to prove
the existence of a left inverse on the invariant subspace on the two
stars, using the existence of the left inverse on a single star. Since
we are considering the tensor network representation of the RVB
state made out of tensors P —with physical index—and triangular
links E without physical index, given a region, all one needs is to
clarify whether the outgoing auxiliary indices come from a P tensor
or from an E tensor. In our case, we start with two overlapping stars
with outgoing indices of type P and divide them into three regions,
the middle one (bow tie) with all outgoing indices of type P and
the rest. By gathering indices together, we have panel (a), where the
circle represents the bow tie and each square one of the other two
regions. The crucial property is that the circle together with any of
the two squares is Z2 injective. We proceed as follows. We apply the
inverse to the circle and left square, getting panel (b), where Z̄ now
means ⊗Z̄. The next step, illustrated in (c), is to build a new circle
tensor attached to the right square tensor, and passing the Z̄r through
using the symmetry of the circle tensor. Now we invert the remaining
two tensors, getting (d). By tracing the middle (extra) line we obtain
δrs and therefore finish the argument since we have constructed the
desired inverse.

2. Intersection property

We recall from the main text and Ref. 16 that given a PEPS,
one can construct parent Hamiltonians H = ∑

R hR where the
local term hR only acts on a region R. The way to construct
them is simple. Each hR is the orthogonal projector (or any
positive semidefinite operator) whose kernel coincides with
the range of the PEPS tensor on that region (seen as a map
from the auxiliary to the physical indices in the region). This
Hamiltonian is �0, frustration free, and has the initial PEPS as
ground state. In Ref. 16 we noticed how in the square lattice,
G injectivity preserves the structure of the parent Hamiltonian
as we grow it properly (i.e., by translational invariance) from
a single local operator. That is, the kernel of

∑
R⊂R hR is

exactly the range of the PEPS tensor in the larger region R.
This property is known as the “intersection property” since it
is related to the way the kernels of hR for different regions
intersect. We will illustrate here the intersection property for
the case h1 + h2 where h1 acts on the 3 stars colored in blue-
red in Fig. 22(a) and h2 acts on those colored in red-green.
The only property one needs to make the argument work is
that the common interaction area is Z2 injective and that the
noncommon areas are not directly connected. The proof is
graphically given in Fig. 22.
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FIG. 22. (Color online) Graphical proof of the intersection
property for the case h1 + h2 where h1 acts on the 3 stars colored
in blue-red in (a) and h2 acts on those colored in red-green. It is
easy to see that by separating the common part (2 red stars) and
the rest, with the convention that the common part has all outgoing
indices of type P, ker h1 ⊗ Hgreen is given by panel (b), where N is an
arbitrary tensor, whereas Hblue ⊗ ker h2 is given by panel (c), where
M is arbitrary. Here Hgreen and Hblue represent the Hilbert spaces
associated with the physical indices in the green and blue regions,
respectively. As before, we have gathered together all virtual (as well
as the physical) indices within each type of tensor. Given a state |ψ〉
in the intersection of both kernels, there exist N and M such that
|ψ〉 can be expressed both in the form (b) and (c). In the equality
(b)=(c) we invert the circle tensor, obtaining the equality given in
panel (d). After that, we apply an auxiliary extra circle tensor, then
the inverse of the red-green tensors (3 stars), which is also Z2 injective
by the previous section, and then trace the extra virtual system. Since
one can assume without loss of generality that both M and N have
the symmetry ⊗Z̄, we can also eliminate the sums. After all that we
arrive at panel (e) for some tensor L. Substituting (e) in (c) gives the
desired form for |ψ〉 and hence the result.

3. Closing the boundaries

It is not difficult to see that if one considers the RVB state
as a PEPS in a torus of arbitrary size, by blocking tensors and
gathering indices together, one has the tensor network given
in Fig. 23(b). It may seem at first sight that we are back to
a square-lattice PEPS. However, there is a crucial difference.
Not all tensors in the square decomposition of Fig. 23(b) are
Z2 injective. We do require that the four overlapping regions
R1, . . . ,R4 resulting from removing one row and one column
with an intersecting blue tensor contain all possible 3-star
regions and that they can be constructed by growing 3-star
regions keeping the intersection property commented on last
section. Figure 23(a) illustrates a possible way of getting that
in the surrounding of a blue tensor. We will now use the trivial
fact that, given the frustration-free Hamiltonian

H =
∑

s∈{3−star}
hs (D1)

resulting from summing the local projectors corresponding
to each 3-star region in the torus, its ground space coincides
with ∩4

k=1 ker Hk , where Hk = ∑
s⊂Rk

hs is the Hamiltonian
corresponding to the region Rk . By the intersection property
proved in last section, the associated kernels are given by
Fig. 24.

(a) (b)

FIG. 23. (Color online) The kagome lattice with periodic bound-
ary conditions can be decomposed as in (b), where all outgoing indices
on the black regions are of type P , whereas all outgoing indices of
the blue regions are of type E. All tensors in (b) have an additional
physical index “going out of the paper.” A possible way to obtain
such a decomposition is illustrated in (a). The black regions are Z2

injective; the same happens if one takes two black regions with the
intermediate red or green one or if one takes the four black regions
with the intermediate red, green, and blue ones. The blue region is
the one corresponding to the cross points. Note that the black and the
blue only interact through a red or green region, exactly as required
in (b).

The argument now is a modification of Theorem 5.5 of
Ref. 16. We include a sketch for the sake of completeness. The
aim is to show that the ground space of (D1) is spanned by the
four states |ψr,s〉, r,s = 0,1, depicted in Fig. 25.

Using the two horizontal equalities of Fig. 24 and reasoning
as in the previous sections (inverting the two columns which
are Z2 injective, growing new tensors around the remaining
column, inverting them and taking traces), we obtain that the
state is of the form of Fig. 26(a) (from the upper equality
in Fig. 24), as well as of the form of Fig. 26(b) (from the
lower equality). The vertical equalities then give that Fig. 26(a)
equals Fig. 26(b).

M N

QP

FIG. 24. (Color online) Any state which is in the ground state of
the parent Hamiltonian when we close the boundaries in a periodic
way [where we close the boundaries as indicated in Fig. 23(a)] can
be represented graphically in any of the forms given in the figure. As
in Fig. 23, each of the tensors, including the “boundary conditions,”
have a physical index going “out of the paper.”
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FIG. 25. (Color online) The ground space of the Hamiltonian with
periodic boundary conditions has dimension four and is spanned by
the states |ψr,s〉 in the figure. As above, Z̄ means ⊗Z̄.

We can now invert the two rows containing black tensors.
The way to do it is to invert the two black tensors with one
intermediate red one, then construct two new black tensors
around the remaining red one, invert again, and take traces.
This even allows us to select a particular r = r0, this way
removing the sum over r . We end up in Fig. 26(c) and from
there, with similar techniques we show that the given state must
be a linear combination of states of the form given in Fig. 25.
Since clearly all such states belong to the ground space of the
Hamiltonian, and all of them are linearly independent, they
form a basis of the ground space. Note that as in the toric
code, all four ground states are related by nonlocal string
operators on the virtual level. Indeed, the action of these
virtual operators is nothing but changing the sign (or flipping
the direction) of the dimers crossing the links in which they
lie. Note also that the same procedure and conclusions can
be obtained starting from the parent Hamiltonian of a basic
region different from the 3-star one, as long as one can grow
properly the lattice starting from this region while keeping the
intersection property. Another example of such a basic region
is the 7-star region of Fig. 27(a).

FIG. 26. (Color online) Intermediate step in the proof that the
ground space of the Hamiltonian is spanned by the vectors given in
Fig. 25 above.

FIG. 27. (Color online) The figure illustrates the first step in the
reduction to show that the parent Hamiltonian on two overlapping
stars suffices to give the RVB state as a unique ground state—up
to the string operators given in Fig. 25 which induce a 4-fold
degeneracy. The left (right) upper part of (b) represents the kernel
of the Hamiltonian grown from 2-star regions which acts on the stars
with a dot (cross). The circles represent the stars with the same color
in (a), with all outgoing indices of type P . The squares represent the
rest of (a), having outgoing indices both of type P (those connecting
with the boundary) and type E (those connecting with the circles).
As in the previous figures, all bonds connecting the same objects
have been gathered together in the same bond. Also, all tensors have
an additional physical index which “goes out of the paper.” The
boundary conditions in the upper part of (b) have also a physical index
corresponding to the part of (a) with the same color. The intersection
of these two kernels, which is the kernel of H6 = ∑

x,◦ H2, is the sum
of the two subspaces depicted in the lower part of (b). Needless to
say that the boundaries of the lower part of (b) do not have physical
index.

4. A 2-star Hamiltonian

The first step to show that a 2-star Hamiltonian suffices
is sketched in Fig. 27. Starting from the parent Hamiltonian
for 2-star regions, and using the intersection property, one
gets that the Hamiltonian acting on the four stars marked
with a dot (cross) has a kernel equal to the upper-left
(upper-right) subspace in Fig. 27(b). Therefore, the kernel
of the Hamiltonian H6 = ∑

x,◦ H2—the sum of all terms
acting on two overlapping stars marked by both circles or
crosses—is the intersection of those subspaces. Take a vector
in the intersection. Then we can reason with the very same
techniques as above. First we invert the circles, then grow
again circles at both sides of the blue square and invert the joint
tensor circle-square-circle. Closing the unnecessary indices
by taking traces we arrive at the fact that the original tensor
indeed belongs to the sum of the subspaces in the lower part
of Fig. 27(b). Since clearly each one of these subspaces is
contained in the kernel of H6, the lower part of Fig. 27 is
indeed equal to the kernel of H6.

The second step is to add a 2-star term including the middle
star, for instance, the one marked by squares in Fig. 27(a).
We will show that this term penalizes all the states in the
lower-right subspace of Fig. 27(b). That is, ∩x,◦,� ker H2 =
ker{∑x,◦,� H2} equals the lower-left subspace in Fig. 27(b),
where the intersection/sum runs on all 2-star Hamiltonians in
the 7-star region given in Fig. 27(a). This procedure illustrates
how from 2-star Hamiltonians one reaches the desired ground
space in the 7-star region of Fig. 27(a). Since this ground space
is the same one obtains growing from 3-stars, we are done.

115108-16



RESONATING VALENCE BOND STATES IN THE PEPS . . . PHYSICAL REVIEW B 86, 115108 (2012)

FIG. 28. (Color online) The figure illustrates the second step in
the reduction to a 2-star Hamiltonian. (a) represents the space S,
coming from the lower-right part of Fig. 27(b), each state of which we
want to penalize by the 2-star term marked by squares in Fig. 27(a). All
outgoing indices are of type P . (b) illustrates the idea of “completing
the path”: for each set of free sites—marked by a circle—there exist 2
disjoint dimer coverings (in green and violet, respectively) compatible
with the choice of free sites, which in addition form a Hamiltonian
cycle in the remaining graph.

Let us first explain the intuition behind the following
reasoning. For this, we will use the PEPS representation of
the RVB of Fig. 17. The intuition is that the Z̄ appearing
in the lower-right part of Fig. 27(b)—which denotes nothing
but a Z̄⊗4 in the 4 bonds connecting the corresponding
regions—cannot escape the middle star: That is, no matter
how we use the gauge symmetry of the tensors in the PEPS,
there will be one, and only one, Z̄ in one of the bonds of the
middle hexagon. This “excitation” can be then detected by
a 2-star term including the middle star. To make it rigorous
we will need the linear-independence property, proven by

Seidel in Ref. 8: The sum ⊕D{|σ (D)〉 ⊗ HD,free} is direct.
Here, D means a fixed dimer covering of the 2-stars, |σ (D)〉
the associated tensor product of singlets, and HD,free the total
Hilbert space of those free sites which do not have any dimer.
The sum runs on all possible dimer coverings of the 2-stars.

Let us now take the Hamiltonian acting on the stars marked
with a square in Fig. 27(a). Using the Z2 injectivity, its kernel
is exactly given by K = ⊕b{Hb ⊗ ∑

valid |σ (D)〉}, where b is
a fixed choice of free sites—with an odd number of terms to
allow dimer coverings—and the sum runs over all possible
dimer coverings having b as the set of free sites. We are then
finished if we can show that the subspace S given by Fig. 28(a)
has trivial intersection with K, or equivalently, that the sum
S ⊕ K is direct. By the very definition of the PEPS tensor, S
is given exactly by S = ⊕b{Hb ⊗ ∑

valid Ẑ|σ (D)〉} where Ẑ

changes the sign of |σ (D)〉 when D has one dimer on a link
marked by Z̄ in Fig. 28(a) and only in this case. By the linear
independence property of Seidel, the sum S ⊕ H will be direct
as long as we can guarantee that for each b, in

∑
valid Ẑ|σ (D)〉

there will be terms in the sum with dimers on the Z̄ links and
terms without dimers on the Z̄ links. This last statement can
be easily checked by “completing the path,” as illustrated in
Fig. 28(b). The fact that for each b, there exists a Hamiltonian
cycle of alternating colors for the sites not in b can be easily
seen as follows. We can have paths of alternating colors in the
desired vertices in all but the middle bow tie. Since b contains
an odd number of sites, at one side of the bow tie we arrive
with the same color whereas at the other side we arrive with
different colors. Exactly as in Fig. 28(b) we can complete the
cycle within the bow tie.
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