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Abstract: In this paper, we analyze the performance of an electro-optic
modulator based on a single quantum dot strongly coupled to a nano-
resonator, where electrical control of the quantum dot frequency is achieved
via quantum confined Stark effect. Using realistic system parameters, we
show that modulation speeds of a few tens of GHz are achievable with
this system, while the energy per switching operation can be as small as
0.5 fJ. In addition, we study the non-linear distortion, and the effect of pure
quantum dot dephasing on the performance of the modulator.
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1. Introduction

During the past decade there has been an extensive effort towards building solid state optical
devices with micron-scale footprint. The main drive behind this research is the development
of optical networks for chip to chip interconnects [1–3] and optical quantum information pro-
cessing [4–7]. In these networks, modulators play an essential role in sending and routing in-
formation. Most of the micron-scale modulators fabricated so far are based on either classical
effects or collective quantum effects [8–10]. However, a few papers recently published [11,12]
show that a single quantum emitter can be deterministically used to control the transmission of
a beam of light.

The reduction in operating power is one of the most important reasons for miniaturizing opti-
cal components down to scales where the active component is represented by a single quantum
emitter. Currently, one of the main bottlenecks in developing high speed electronic devices
is the large loss in the metal interconnect at high frequency [13]. The development of light
switches operating at levels of just a few quanta of energy may be a solution. At the same time,
these devices represent a new tool in the rapidly developing toolbox of quantum technologies.

Our recent demonstration of electro-optic switching at the quantum limit is based on a single
InAs quantum dot (QD) embedded in a GaAs photonic crystal resonator. The system operates
in the strong coupling regime of cavity quantum electrodynamics (CQED) [14]. The control of
the quantum dot is achieved by changing the quantum dot frequency via the quantum confined
Stark effect [11]. In this paper we theoretically analyze the performance of this type of electro-
optic modulator. We study its maximum achievable modulation speed, linearity, step response
and power requirement. Lastly, we investigate how pure QD dephasing affects the modulator
performance.

2. Modulation method and analysis

The Master equation describing the dynamics of a coherently driven single QD (lowering op-
erator σ = |g〉〈e|; where |g〉 and |e〉 are the ground and the excited states of the QD) coupled to
a single cavity mode (with annihilation operator a) is given by (h̄ = 1) [15]

dρ
dt

= −i[H,ρ]+κL [a]+ γL [σ ]+
γd

2
(σzρσz −ρ) (1)

where ρ is the density matrix of the coupled cavity/QD system; 2γ and 2κ are the QD sponta-
neous emission rate and the cavity population decay rate respectively; γd is the pure dephasing
rate of the QD; σz = [σ†,σ ]. L [D] is the Lindbald operator corresponding to a collapse opera-
tor D. This is used to model the incoherent decays and is given by:

L [D] = 2DρD† −D†Dρ −ρD†D (2)
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Fig. 1. (a) Transmission spectra of coupled cavity-QD system for two different detunings.
The blue arrow shows the wavelength of the laser whose transmission is being modified.
(b) Normalized steady state transmission with different QD detunings. The laser is resonant
with the cavity. We used the following parameters: g/2π = κ/2π = 20 GHz; γ = κ/80; the
pure dephasing rate is assumed to be zero for this analysis (γd/2π = 0).

H is the Hamiltonian of the system without considering the losses and is given by (in rotating
wave approximation, where the frame is rotating with the driving laser frequency)

H = Δωca
†a+Δωaσ†σ + ig(a†σ −aσ†)+Ω(a+a†) (3)

where Δωc = ωc −ωl and Δωa = ωa −ωl are respectively the cavity and dot detuning from the
driving laser; ωc, ωa and ωl are the cavity resonance, the QD resonance and the driving laser
frequency respectively; Ω is the Rabi frequency of the driving laser and is given by�μ ·�E, where
�μ is the dipole moment of the transition driven by the laser and �E is the electric field of the
laser inside the cavity at the position of the QD; and g is the interaction strength of the QD with
the cavity.

Using the identity 〈 ˙̂O〉= Tr(Ôρ̇) for an operator Ô and a density matrix ρ in Eq. (1), we find
the following Maxwell-Bloch equations (MBEs) for the coupled cavity/QD system (assuming
the laser is resonant with the cavity frequency, i.e., Δωc = 0):

d〈X〉
dt

= A〈X〉+ iΩB (4)

d〈Y 〉
dt

= C〈Y 〉+ iΩD〈X〉 (5)

where

X =
[

a σ a† σ†
]T

(6)

Y =
[

a†a σ†σ a†σ aσ†
]T

(7)

A =

⎡

⎢
⎢
⎣

−κ g 0 0
−g Γ 0 0
0 0 −κ g
0 0 −g Γ∗

⎤

⎥
⎥
⎦ (8)

B =
[ −1 0 1 0

]T
(9)

C =

⎡

⎢
⎢
⎣

−2κ 0 g g
0 −2γ −g −g
−g g Γ−κ 0
−g g 0 Γ∗ −κ

⎤

⎥
⎥
⎦ (10)
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D =

⎡

⎢
⎢
⎣

1 0 −1 0
0 0 0 0
0 1 0 0
0 0 0 −1

⎤

⎥
⎥
⎦ (11)

where Γ = −(γ + γd + iΔωa). In deriving the MBEs, we assume that under low excitation, the
system stays mostly in the lowest manifolds (single quantum of energy) and hence 〈aσz〉 ≈
−〈a〉 and 〈a†aσz〉 ≈ −〈a†a〉 [16].

When operating as a modulator, the cavity/QD system modulates the transmission of the
laser driving the cavity (laser amplitude E and frequency ωl). The system is modulated using
an electrical signal which changes the QD resonance frequency via quantum confined Stark ef-
fect (QCSE). In our analysis, we assume that the optical signal is always resonant with the bare
cavity (ωl = ωc) and only the QD resonance frequency changes. We note that applying electric
field across the QD reduces the overlap between the electron and the hole wavefunctions and
thus reduces the dipole moment of the QD and the coherent coupling strength g. However the
reduction in g is due to the change in the spatial overlap of the eigen-states of the perturbed
Hamiltonian (the Hamiltonian describing the confining potential of the QD), while the change
in the QD resonance frequency is due to the modification of eigenvalues of the perturbed Hamil-
tonian. The perturbation in eigen-states due to QCSE is a higher order effect than the change
in eigenvalues. Hence the reduction in g is much less prominent than the change in the QD
resonance frequency and we preserve strong coupling even with the applied electric field [11].
However, there is a finite probability for the electron or the hole to tunnel out of the QD, when
a large electric field Etun is applied. For successful operation of the electro-optic modulator, the
applied electric field must be smaller than Etun and in this paper, we assume that this condition
is satisfied.

The system operates in strong coupling regime when g >> κ,γ . In this regime, when the
quantum dot and the cavity are resonant, the optical system has a split resonance (in contrast
to a single Lorentzian), as shown in Fig. 1(a). The detuning of the quantum dot due to the
application of an electric field causes dramatic changes in the transmission spectrum of the
optical system. This directly affects the transmitted intensity of a laser tuned at the bare cavity
resonance [shown by an arrow in Fig. 1(a)]. Figure 1(b) shows the steady-state transmission
(normalized by the transmission through an empty cavity) for different values of QD-cavity
detuning. This has been derived by solving the MBEs [Eqs. (4), (5)] at steady-state (in absence
of pure dephasing, i.e., γd/2π = 0), which gives that the ratio of the maximum to the minimum

transmission through the cavity is
(
1+g2/κγ

)2
.

The performance of the modulator is analyzed by numerically solving the MBEs, and thus
deriving the time evolution of the system. An alternative method involves numerically solving
the exact Master equation [Eq. (1)]. Both methods give us exactly the same solutions and we
report only the result obtained from the MBEs, as this method is much faster and computation-
ally less demanding. To relate our theory to current state of the art technology where values of
κ/2π = g/2π ≈ 20 GHz (κ/2π = 20 GHz corresponds to a cavity quality factor of ∼ 8000) can
be easily achieved [14], we mainly analyze the system performance for both κ/2π and g/2π
ranging between 10 to 40 GHz.

3. Frequency response

The foremost criterion of a good electro-optic modulator is its speed of operation. In this
electro-optic modulator, the modulation speed is determined by two different time scales. One
time scale depends on how fast the QD can be modulated by applying an electric field. This
depends on the drift velocity of electrons and holes in the semiconductor, and the electrical
capacitance of the modulator. As the active area of the modulator is very small (dimensions of
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Fig. 2. The frequency response of the switch for different (a) κ . (g/2π) is kept constant at
20 GHz and (b) g. (κ/2π) is kept constant at 20 GHz. For both simulations Ω = 1 GHz;
Δω0/2π = 10 GHz; γd/2π = γ/2π = 0.1 GHz.

a QD ∼ 10× 10nm2), this time scale is extremely short and thus does not limit the modulator
speed. The other time scale is due to the optical bandwidth of the system, i.e., the finite band-
widths of the cavity spectrum and the dip induced by the strong coupling of the dipole to the
cavity. The cavity has a finite bandwidth, which limits how fast the modulator can operate. This
optical bandwidth limits the speed of operation of the electro-optical modulator described here.
To estimate the bandwidth of modulation, one can consider the cavity transmission spectrum
[as shown by the red line in Fig. 1(a)] as the filter response of the modulator; for success-
ful operation, the pulse band-width should not exceed the splitting obtained due to the strong
coupling. Following this argument, the bandwidth of the pulse that can be modulated via this
electro-optic modulator is approximately g2/κ .

However, to obtain the modulation speed more rigorously, we apply a sinusoidal change
in the QD resonance frequency: Δωa(t) = 1

2 Δω0(1− cos(ωet)); where Δω0 is the maximum
detuning of the QD resonance (this is proportional to the amplitude of the electrical signal
applied to tune the QD) and ωe is the frequency of the modulating electrical signal and hence
also the frequency of the change in the QD resonance. The system performance is determined
by analyzing the change in the cavity output (i.e. κ〈a(t)†a(t)〉) as a function of ωe . The on/off
ratio is defined as the ratio of the maximum to minimum cavity output during sinusoidal driving.
The Rabi frequency Ω of the driving laser is chosen such that the QD is not saturated. The effect
of free carriers generation in semiconductor surrounding the QD by two photon absorption of
the driving laser is not included in our analysis as at low Ω (that is, at low intensity of the
driving laser) this effect is very small. The pure dephasing rate γd/2π of the QD is assumed to
be 0.1 GHz.

Figure 2 shows the on-off ratio of the output signal as a function of frequency of modulating
signal for different κ and g. We observe that the modulator behaves like a second order low pass
filter with a roll-off of −20 dB/decade. Figure 3 shows the cut-off frequency and the on-off ratio
at low frequency as a function of different g and κ . The cut-off frequency of the filter increases
with the coupling strength g. Similarly, reduction in κ increases the cut-off frequency. However
when κ < g, the change in cut-off frequency is not significant and g plays the dominant role. At
the same time, the on-off ratio decreases with g, which occurs because we kept the maximum
detuning Δω0/2π fixed at 5 GHz. By increasing Δω0/2π the on-off ratio can be increased for
higher values of g.
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Fig. 3. (a) Cut-off frequency of the modulator as a function of g and κ . In the color scheme,
the maximum cutoff frequency of ∼ 90 GHz is red and the minimum cut-off frequency of
∼ 10 GHz is blue; (b) On-off ratio of the modulator at a modulating frequency of ωe/2π = 5
GHz as a function of g and κ . For both plots Δω0/2π = 5 GHz; γd/2π = 0.1 GHz; Ω = 1
GHz.
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Fig. 4. Normalized output signal for two different maximal QD detunings Δω0. (a)
Δω0/2π = 2 GHz. (b) Δω0/2π = 40 GHz. For both simulations the frequency of the elec-
trical signal is ωe/2π = 20 GHz, κ/2π = g/2π = 20 GHz and Ω = 1 GHz.

4. Nonlinear distortion of signal

Another important property of good modulators is that the modulated optical output should
closely resemble the shape of the modulating electrical signal. If the modulator does not oper-
ate in the linear regime, the output signal contains spurious higher harmonics. Figure 4 shows
the optical output signal for two different values of maximal QD detuning Δω0. For small values
of the electrical input (i.e., for small Δω0), the output follows exactly the variation of the QD
resonance frequency, as shown in Fig. 4(a). However, distortions appear for higher amplitudes
of Δω0 [Fig. 4(b)]. Here we observe ripples at a frequency different from the modulating fre-
quency ωe. These ripples do not arise only because of the finite bandwidth of the system, but are
also due to the nonlinearity of the system with respect to Δω0. More detailed analysis of these
ripples are described below, when we analyze the step response of the modulator. The value of
Δω0 also affects the visibility of the modulated signal. The on-off ratio (i.e., the desired output)
is proportional to the first harmonic of the modulated output signal. Figure 5 shows the ratio of
second and third harmonics to the first harmonic of the output signal as a function of Δω0. As
expected, the higher order harmonics increase with increase in QD detuning Δω0.

We note that by employing a differential detection method, one can get rid of the even order
harmonics. For differential detection, one uses two electro-optic modulators, but the electrical
signals applied to the modulators are out of phase. Let us assume the desired signal, when the
modulator is in linear regime, is x(t) = Asin(ωt). Due to nonlinearity the distorted signal is
xd(t) = A1sin(ωt)+A2sin2(ωt)+A3sin3(ωt)+ · · ·, where A1,A2, A3 are the amplitudes of dif-
ferent harmonics. In differential detection, we apply two out of phase signals and then subtract
the modulated optical signals to remove the even order harmonics, which are unaffected by the
phase change. Hence the performance of the modulator is primarily determined by the third
order harmonics.

5. Step response

The step response gives information about both the bandwidth of the system and the nonlinear
distortion. To analytically calculate the step response we consider two situations: (1) when the
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Fig. 5. Ratio of the second and third harmonic to the first harmonic of the modulated signal,
as a function of the maximum frequency shift of the QD, scaled by a factor of g2/κ . The
first harmonic is proportional to the actual signal. For the simulation we assumed that the
modulation is working in the passband (ωe/2π = 20 GHz); κ/2π = g/2π = 20 GHz and
the dephasing rate γd/2π = 0.

electrical signal goes from on to off (that is the QD detuning goes from Δω0 −→ 0); and (2)
when the electrical signal goes from off to on (that is the QD detuning goes from 0 −→ Δω0).
For low excitation and small dephasing rate, the average value of cavity output κ|〈a(t)†a(t)〉|
is approximately given by κ|〈a(t)〉|2, where 〈a(t)〉 is

〈a(t)〉Δω0→0 = r(0)e−α(0)tcos(β (0)t +φ(0))+SS(0) (12)

and
〈a(t)〉0→Δω0 = r(Δω0)e−α(Δω0)t cos(β (Δω0)t +φ(Δω0))+SS(Δω0) (13)

where the switching happens at t = 0 and

α(ω) =
κ + γ + iω

2

β (ω) =

√
4g2 − (κ − γ − iω)2

2

SS(ω) =
iΩ(γ + iω)

g2 +κ(γ + iω)

φ(ω) = tan−1
(

α(ω)
β (ω)

)

r(0) =
SS(Δω0)−SS(0)

cos(φ(0))

r(Δω0) =
SS(0)−SS(Δω0)

cos(φ(Δω0))

Figure 6 shows the step response of the modulator. The numerical simulation of MBEs and
the analytical expression for the step response show excellent agreement. We see the oscillations
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Fig. 6. Step response of the single QD electro-optic modulator. The parameters used for
the simulation are: κ/2π = 5 GHz; g/2π = 20 GHz; Δω0/2π = 20 GHz; Ω = 1 GHz.

in step response because the system needs finite time to relax. Due to non-linearity of the
system, this relaxation time depends on Δω0. Hence in Fig. 4 we observe ripples only for high
values of Δω0.

Following previous analysis, we observe that with high amplitude of electrical signal (Δω0),
the on-off ratio of the modulator increases, but the modulated signal becomes distorted. In fact,
when QD-cavity coupling g is large, one needs high Δω0 to achieve good on-off ratio (Fig. 3).
However, it should be noted that in a system with high g, the amplitude of electrical signal
causing distortion is also high. Figure 7 shows the ratio between the third and first harmonic of
the modulated signal for different g and Δω0. We observe that for same amplitude of electrical
signal (i.e., Δω0), the distortion is larger for a system with smaller g.

6. Switching power

For most of the modern optoelectronic devices, the energy required per switching operation is
one of the most important figures of merit [13]. For the type of devices presented in this paper,
the fundamental limit for the control energy per switching operation is given by the energy
density of the electric field required to detune the QD inside the active volume. To estimate the
control energy we use the experimental parameters as presented in [11]. When the electrode is
placed laterally at a distance of 1μm, the active region of the cavity/QD system has a volume
of V ∼ 1μm×1μm×200nm. Since the electric field to tune the quantum dot is on the order of
F ∼ 5×104 V/cm, the energy per switching operation is on the order of E = ε0εrF2V/2 ∼ 0.5
fJ (εr ∼ 13). This translates into an operating power of ∼ 5μ W at 10 GHz. The same order of
magnitude estimation is obtained by modeling the device as a parallel plate capacitor with width
w ∼ 1μm, thickness t ∼ 200nm and spacing L ∼ 1μm and taking into account fringing effects.
Since the energy consumption has a quadratic dependence on the applied voltage, the operating
power can be lowered significantly by bringing the electrode closer to the quantum dot. In case
the active volume could be reduced to the size of the quantum dot itself (∼ 25×25×25 nm3),
the switching energy can be lowered below 0.1 aJ. These energy scales are of the same order of
magnitude as all other optical switching devices operating at single photon level [14, 17], and
are orders of magnitude lower than the current state of the art electro-optic modulators [18,19].
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Fig. 7. Ratio between the third and first harmonic of the modulated signal for different QD-
cavity coupling g and maximum QD detuning Δω0. The cavity decay rate κ/2π = 20 GHz
and the modulation frequency ωe/2π = 5 GHz.
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Fig. 8. (a) Normalized steady state transmission of the laser resonant with the dot (i.e.,
Δωa = 0) with pure dephasing rate γd/2π . Parameters used are: g/2π = κ/2π = 20 GHz;
γ = κ/80; (b) On-off ratio of the modulated signal as a function of the dephasing rate, for
κ/2π = g/2π = 20 GHz. The modulation frequency ωe/2π = 5 GHz and the amplitude of
the change in resonance frequency Δω0/2π = 10 GHz.

However, this electro-optic modulator cannot be used to modulate high power optical signal,
as high optical power will saturate the QD.

7. Effect of dephasing of QD

One of the major problems in CQED with a QD is the dephasing of the QD, caused by inter-
action of the QD with nearby nuclei and phonons. The dip in transmission through the cavity
in presence of a coupled QD is caused by the destructive interference of the incoming light
and the light absorbed and re-radiated by the QD [16]. Due to the dephasing of the QD, the
light scattered from the QD is not exactly out-of-phase with the incoming light. This affects the
destructive interference thus causing the cavity to be not fully reflective. Figure 8(a) shows the
steady state transmission through a coupled cavity/QD system (normalized by the transmission
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through an empty cavity) of a laser resonant with the cavity and the QD, as a function of QD
dephasing rate. Hence, the performance of the modulator also suffers because of dephasing.
Figure 8(b) shows the on-off ratio as a function of the dephasing rate γd/2π of the QD. As
expected the on-off ratio falls off with increased dephasing rate.

8. Conclusion

We have performed the detailed analysis of the performance of an electro-optic modulator
where the modulation is provided by a single QD strongly coupled to a cavity. We have
shown that a modulation speed of 40 GHz can be achieved for realistic system parameters
(κ/2π = g/2π = 20 GHz) with a control energy of the order of 0.5 fJ. This type of fast and low
control energy modulator may constitute an essential building block of future nano-photonic
networks.
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