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A thin circular disk translates slowly in its own plane transverse to the axis of 
rotation of parallel plane boundaries filled with viscous incompressible liquid. 
It is shown that the indeterminateness of the geostrophic flow is removed by 
constraints imposed by the dynamics of free shear layers (Stewartson layers), 
which surround a Taylor column whose boundary is not a stream surface. Fluid 
particles cross the Taylor column at the expense of deflexion through a finite 
angle. A comparison is made with the flow past a fat body (Jacobs 1964), 
where the geostrophic flow is determined without appeal to the dynamics of the 
shear layers. The problem is also considered for a disk in an unbounded fluid, 
and it is shown that to leading order there is no disturbance. 

1. Introduction 
The space between a pair of rigid planes is filled by incompressible viscous 

liquid of kinematic viscosity v. The planes rotate about their common normal- 
we call this direction vertical for descriptive brevity-with angular velocity Q 
and we are interested in the disturbance to the state of rigid rotation of the 
contained liquid which is created by the slow horizontal translation relative to 
the fluid of a coplanar rigid disk. By ‘slow’ we imply that the Rossby number 
R, = U/uQ is small, where a is the radius of the disk (if circular, otherwise a 
characteristic horizontal dimension) and U is its speed. Thus we hope to discuss 
the flow in terms of linearized equations and if, in addition, we assume that the 
Ekman number E = v/u2Q is small, the flow outside certain thin viscous layers 
will be geostrophic, that is to say, it results from the balance between the Coriolis 
force and the pressure gradient. However, the determination of this geostrophic 
flow is not straightforward, and the problem has some novel features. 

The Taylor-Proudman theorem insists that the geostrophic velocity field 
be independent of the vertical co-ordinate, and the inviscid boundary conditions 
imply only that the geostrophic flow is horizontal. It is clear that any horizontal 
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flow satisfies the requirement that it does not stretch the vortex lines of the basic 
rigid rotation. For a body of finite thickness, only the subset of flows that follow 
contours of fixed height are allowable, which leads to the formation of a Taylor 
column, i.e. a volume of fluid contained in the vertical circumscribing cylinder 
and moving with the body.7 

But for a body of zero thickness lying in a horizontal plane, there is no reason 
to anticipate the formation of a Taylor column in the usual sense, and it is im- 
possible to get a picture of the flow without appealing to viscous effects. 

The fluid is brought to relative rest at  horizontal solid surfaces by the action 
of viscous forces in thin Ekman boundary layers. The need to be compatible 
with these places a further constraint on the geostrophic flow. If the vertical 
velocity and vertical vorticity in the geostrophic flow are wG and cG, respectively, 
this constraint takes the form, for the disk problem, 

on upward facing surfaces (that is, surfaces whose normal into the liquid is 
parallel to a) and 1 v *  

W a = - z ( n )  cff 

on downward-facing surfaces. If the top surface is free, it cannot sustain anEkman 
layer and the compatibility condition is 

Wcf = 0. 

Now wG and c, are the same at  all points on a vertical line and any such line 
meets an upward and downward facing surface. Hence 

wcf = = 0, 

and it then follows from the geostrophic balance equations that the reduced 
geostrophic pressure pa is harmonic. 

Now pa  is bounded at  large distances from the disk and if it were harmonic 
everywhere it would be constant and the geostrophic flow would vanish. How- 
ever, this is not a possible state of affairs for the following reason. There would 
still be Ekman layers on the disk in which there is a constant volume flux of 
order v*, in the same direction on each side.$ Since w, = 0, there is no way to 
close this flux, except by an azimuthal flux in a collar of cross-section v* x vi 
around the edge of the disk where the Ekman layers on top and bottom join. 
To preserve flux continuity, the swirl velocity in the collar must be O(v-*), 
and the associated velocity gradients are O(u-l). The rate at which energy is 
dissipated by viscosity inside the collar is therefore O(v x v - ~  x d x v*) = O(1). 
This is larger than the rate at  which energy is dissipated in the Ekman layers, 

t This result follows from the purely inviscid non-inertial dynamics only for bodies 
whose intersection with the circumscribing cylinder is a horizontal curve and whose 
tangent planes at  points on this curve are not horizontal. The case of bodies of k i t e  
height which do not satisfy these criteria will be discussed elsewhere. 

$ It is convenient to denote orders of magnitude for small Ekman number by the de- 
pendence on v. This is a consistent procedure for an axially bounded flow, of given geometry. 
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which is O(v x v-1 x d )  = O ( d ) ,  since the velocity gradients in the Ekman layers 
are O(v-4). Now the drag on the disk due to the viscous stress in the Ekman 
layer is O(vA), and that due to stresses within the collar is likewise O(v x v-4 
x v-3 x d )  = O(v4). Thus the rate at  which work is done on the flow is not suffi- 
cient to balance the dissipation in the collar (see appendix A). 

The only way out is to allow the vertical cylinder circumscribing the disk to 
be the centre of a set of Stewartson free shear layers which permit axial flow 
and will allow flux to be completed without the introduction of a collar. Thus 
a Taylor column of a sort is formed. The geostrophic pressure p ,  is no longer 
analytic in an entire plane and we must seek sufficient jump conditions at  its 
circle of singularity to enable it to be determined. These conditions must come 
from the dynamics of the Stewartson layers. 

The Stewartson layers have the usual sandwich structure with outer layers of 
thickness proportional to vf enclosing an inner layer of thickness proportional 
to v*. The 4 layer is no different from that associated with a rising disk and we have 
elsewhere (Moore & Saffman 1969, henceforth I) discussed such layers in detail. 
In  the case of the rising disk, the geostrophic flow is determined uniquely with- 
out reference to the Stewartson layers, which merely smooth out its discon- 
tinuities. In  the present case, however, the geostrophic flow (of order unity) 
is determined by matching to the Stewartson layers. 

It turns out from the detailed analysis to be described below that fluid particles 
can cross the Taylor column and that they suffer a finite deflexion as a result. 
A flow in which the boundary of the Taylor column is a stream-surface of the 
geostrophic flow is not a solution of our problem, in contrast to the thick axi- 
symmetrical body case. This is the first example we have encountered where 
an order unity geostrophic flow is determined by the viscous dynamics of vertical 
shear layers, and illustrates the seemingly endless variety of flows to be en- 
countered in rapidly rotating systems. It should be noted that the method 
of removing the non-uniqueness inherent in the geostrophic flow by considering 
a transient inviscid problem fails completely in this problem, since a thin disk 
moving in its own plane excites no inertial waves. If to avoid this difficulty we 
consider instead a thin oblate spheroid, the ultimate steady flow must have the 
Taylor column boundary as a stream surface. Thus it would appear to be 
impossible to recover the results of the steady viscous analysis by an unsteady 
invisicid analysis. This is not the case for a fat body; Stewartson (1967), with 
an unsteady inviscid analysis, obtains the same final state for the geostrophic 
flow as Jacobs (1964) obtains with a steady viscous treatment. 

We also consider in f3 6 the flow past a disk in an unbounded fluid. In  marked 
contrast, it  is found that the disturbance velocities are O(E4). 

2. The matching to the Stewartson layers 
The analysis can be carried out and the harmonic problem for p ,  can be formu- 

lated for a flat disk of arbitrary shape in a container of arbitrary horizontal 
cross-sect.ion. However, for ease of exposition we shall talk in terms of a circular 
disk in a horizontally unbounded flow between rigid parallel planes. Since a 
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'slow' flow can be regarded as quasi-steady, it is convenient to take axes with the 
disk at  rest and the fluid moving horizontally with velocity U.  We must suppose 
the top and bottom planes also move with the same velocity U. We use cylindrical 
polars ( r ,  8, x )  with origin a t  the centre of the disk and the 8 = 0 direction parallel 
to  u. The bounding planes are x = h, and x = - hB. 

The Taylor column boundary is the circular cylinder r = a, and it divides 
the flow space into three regions. We use a subscript T to denote flow variables 
in the space above the disk and inside the Taylor column; a subscript B for 
the space below the disk and inside the Taylor column, and a subscript E for 
the space outside the column. 

The geostrophic velocity components (uG, vG, 0) satisfy 

aPG -2slu, = --, 
r a8 

(It is convenient to choose units with density p = 1.) Since, as shown in $1,  
pG is harmonic, we have, invoking regularity conditions a t  r = 0 and r = co 
and using an obvious notation, 

where I 'interior' stands for either T or B,  

(The log r term is excluded because the body is not a source of fluid.) 
These equations contain all the information about the geostrophic flow 

which one can obtain without consideration of the shear layers at the Taylor 
column boundary. We shall show that the dynamics of the shear layers which 
join the geostrophic flows give sufficient constraints to determine the geostrophic 
flow uniquely. 

As a first step, we remark that p ,  must be continuous across the shear layers, 
i.e. 

This is because the balance of Coriolis force and pressure gradient normal to 
the layer as expressed in (2.1) can be shown to hold also inside the shear layer, 
so that provided the swirl velocity is of the same order of magnitude in the shear 
layers as i t  is in the geostrophic regions, the pressure change across the shear 
layers is of smaller order. I n  view of (2.2), the continuity of p c  implies that of 
uG, so that the shear layers do not have to redistribute flux between the three 
geostrophic regions, i.e. flux is conserved in any plane z = constant outside 
the Ekman layers. Application of this boundary condition gives 

PGT = PGB = PGE on r = a. (2.5) 

(2.6) 
Qp) = CW) = C'") 

B E7 

DP) = Dg)  = Dg)  - 2Q Ua&. 
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It follows from ( 2 . 3 ) ,  ( 2 . 4 )  and ( 2 . 6 )  that 

VG,(a-) = VGB(a-) = -VG,(a+)-2Usin8. (2.7) 

It is easy to show in a variety of ways (e.g. conformal mapping) that (2.7) 
holds generally for arbitrary disk shape with - U sin 8 replaced by the component 
of the undisturbed geostrophic velocity parallel to the surface of the shear layer, 
Ul17 say, and V interpreted as the component perallel to the shear layer. (An 
observer fixed in the boundaries sees the streamlines refracted so that they make 
equal and opposite angles with the normal when they cross the Taylor column 
boundary.) 

Next we consider the details of the 4 layers. Their equations of motion are 
obtained by introducing the viscous force into the azimuthal momentum equa- 
tion ( 2 . 2 )  and, with boundary layer co-ordinates y = a6 and x = r -a ,  one has 

and 

( 2 . 1 0 )  

( 2 . 1 1 )  

The suffix $ denotes a solution of these equations valid in a layer of thickness 
= (vh/!2)$, where k = hT+hB. Equations ( 2 . 8 )  and ( 2 . 1 0 )  show that vi is 

independent of z ,  and from ( 2 . 8 ) ,  ( 2 . 9 )  and ( 2 . 1 1 ) ,  

vx a3v, 
W$ = ---+W(x,y), 2 a  ax3 ( 2 . 1 2 )  

where W is an arbitrary function of integration. 

form of the Ekman compatibility condition which still holds inside the 
A second relation between v& and w, can be obtained from the appropriate 

layers 

( 2 . 1 3 )  

where the positive sign is taken on upward facing surfaces and the negative 
sign on downwards facing surfaces. Combining ( 2 . 1 2 )  and ( 2 . 1 3 ) ,  we find 

V t I  = A,(?/) exp {PI El + B I ( Y ) ,  ( 2 . 1 4 )  

V f E  = 4A.4 exp { - PE 61 + B,(Y), (2 .15)  

where p; = 2!24/hI, pg = 2!24/(h,+hB), 6 = X / d .  ( 2 . 1 6 )  

The matching conditions between the 4 layers and the geostrophic flow require 
that limvt, = limvGE, etc. 

5- m r 4 a  
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The three unknowns AT, A ,  and A ,  can be determined by the requirement 
that the layers match with a $ layer which smooths out the discontinuities in 
the 4 layers across [ = 0. We have elsewhere discussed in much detail, (I), how 
the dynamics of this layer lead to constraints on the t layer it joins. We shall 
not repeat the argument here but merely state the result that one must have? 

v&T = v&B = v$E, at [ =  O ,  (2.18) 

(2.19) 

Note that the swirl velocity and total (not local) tangential stress are continuous, 
across the + layer. Then we find, using also (2.7) and (2.16), that 

A ,  = A ,  = AE+2Usin8+2v,,(a+), (2.20) 

and ~ T P T A T  + ~ B P B A B +  (h, + h ~ )  PEAE 0- (2.21) 

Thus the shear layer structure is determined in terms of one unknown quantity 
vUCE(a + ), that has still to be found. 

Continuity of local tangential stress does not provide a further relation; 
in fact it is obvious that continuity of both swirl velocity and local tangential 
stress are inconsistent unless h, = hB, in which case one just reobtains (2.20). 
The further relation that solves the problem comes from the argument given in 
$1 that the Stewartson layers must balance the flux at each value of 8 or y, 
so that no collar is required. We shall show how this is to be done in the next 
section. 

3. The flux balance in the Q layer 
layers near the edge of the disk. 

Remember that on the scale of the $ layer, the Q layer is a sheet of zero thickness 
on [ = 0. The + layer at a given station y receives fluid in three ways. There is 
an inflow across the vertical sides El E,, TIT,, B, B, of amount 

Figure 1 is a sketch of the + layer and 

- + hT U$T + h, u$B, 

evaluated on 6 = 0, per unit length of circumference. Next there is they derivative 
of the azimuthal flux due to v4 integrated across the + layer. And finally there 
is an inflow by flux in the Ekman layers on the disk, across T2T3 and B2B,, 
which then goes from the Ekman layer into the + layer. Since v f  and U* are con- 
tinuous to leading order across the + layer,$ the Ekman layers on the top and 

7 These results were deduced in (I) for the case of axisymmetric shear layers. However, 
i t  is almost obvious (see $3) that the same governing equation for thc & layer is obtained 
when the flow is not axisymmetric and the derivation of (2.18) and (2.19) goes through 
unaltered. 

$ One can show by an argument like that in $1 that the discontinuity in U* across the 
+ layer is ~ ( v f ) .  
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bottom planes make no net contribution. The net inflow occurs in the Ekman 
layers on the disk and is, per unit length of circumference, 

where the left-hand side is evaluated in 5 = 0. Substituting the 4 layer velocities 
and retaining only terms of lowest order, we have for the flux across T2T3 and 

Now this flux &(y) must go from the Ekman layer into the body of the 3 layer 
and balance the other two fluxes in order that there should be no flux in the collar. 
Instead of attempting to calculate the first two fluxes directly, which involves 
detailed knowledge of the structure of the & layer, we will use the dynamics 
of the Q layer to obtain an expression for the flux entering the & layer at  its join 
t o  the Ekman layers on the disk. 

FIGURE 1. Flux balance in the + layer. 

The equations of motion of the + layer are obtained when we modify (2.8)- 
(2.1 1) by introducing the viscous force va2 w+/ax2 into the axial momentum 
equation (2.10). The resulting equations can be reduced to the pair 

aw; a3v+ 
-2Q- = v-, az ax3 (3.4) 
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from which it is apparent that v* = O(w4) and the shear layer thickness is pro- 
portional to v:. With this scaling, the Ekman compatibility condition reduces to 

wg = 0. (3.5) 
It looks a t  first sight as if the $ layer cannot draw any fluid from the Ekman 
layers, but what (3 .5 )  really implies is that  the fluid goes from the Ekman layer 
into the + Iayer by an eruption from an annular region of width O(v*) and which 
therefore appears as a source of strength Q on the 4 layer scaling. This singular 
behaviour is associated with the presence of the disk edge, and there is no transfer 
of fluid where the 4 layer meets the Ekman layers on z = h, and z = - h,. 

We now follow a procedure due to  Stewartson (1966). Equation (3.4) is inte- 
grated across the 4 layer a t  a constant x outside the Ekman layers to give 

where 7 = x/vb is the appropriate scaled variable for the Q Iayer. Now, 

lim v + ( ~ ,  x ,  8) = lim va([ ,  x ,  8 ) )  etc. (3.7) 
7-J: 5-0 + 

by the requirement that the 8 and layers match, and vt is independent of z .  
Hence integrating (3.6) from z = 0 + (just outside the upper Elrman layer on the 
disk) to x = h, - (just below the Ekman layer on the upper bounding plane), we 
find 

and similarly 

Adding these two equations we have, on substituting the expressions for v ~ ,  

By conservation of flux inside the Ekman layer and the argument that the flux 
in thc collar is o(vB), the left-hand side of (3.8) which gives the flux from the Ek- 
man layer into the Q layer must equal the inflow &(y). (The azimuthal flux in the 
Ekman layer under the 4 layer is O(v* x v*) and is of higher order.) 

Then equating (3.8) and (3.2), substituting for A,, A,  and A, from (2.20), 
and using (2.7),  we obtain after some reduction 

u ~ ( u )  + vGE(u + - (h, p;  + ILg p g )  (uGE(u + + U sin 6 )  Q-* 

= - +A,{2 + (hp2, - h, 11% - h, pg)Q-*}. (3.9) 

Substitution of the values (2.16) for p E ,  p,, p B  makes the right-hand side of 

uG-3vcE-4Usin8 = 0 (3.10) 

on the Taylor column boundary r = a. Equation (3.10) can be expressed as a 
boundary condition on the exterior geostrophic pressure and we now have 

(3.9) vanish and we are left with 
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sufficient boundary conditions to determine uniquely the geostrophic flow. 
The derivation of this result nowhere depended crucially on the disk being a 
circle, and it is obvious that the result holds for an arbitrary disk in a co-ordinate 
system in which the disk is a t  rest with quantities evaluated on the Taylor 
column boundary, u and v the components normal and parallel to the shear layer 
and - U sin B replaced by Ull, the component of the undisturbed geostrophic 
flow parallel to the shear layer. 

It is appropriate to mention here the result for the case when the upper 
surface is free and cannot sustain an Ekman layer.? Everything remains the 
same except the Ekman compatibility condition on z = hT which becomes 
wt = 0 from which it follows that now 

p ;  = Q*/hT, 13% = 2!2&/h,, p$ = QB/(hT+h,). (3.11) 

Substitution in (3.9) now gives 

uG-2vGE = 3UsinB = 0. (3.12) 

4. The geostrophic motion 
We insert the velocities which follow from the geostrophic pressure distri- 

bution (2.4) into the boundary condition (3.10). We find almost immediately that 

pGE = -2QUrsinB+~QU(a2/r) sinB-fQU(a2/r)cos8, (4.1) 

pGI = -$RUrsinB-f!2Urcos0. ( 4 4  

The streamlines (for motion relative to the disk) are given by pG = const., and 
are sketched in figure 2. The streamlines for motion relative to the boundaries 
can be found by superposing a velocity - U on the whole system. Note that the 
streamlines inside the Taylor column are straight, the velocity is J(f)  U and it 
is inclined a t  an angle tan-l+ = 18.4" with the flow a t  infinity, the deflexion 
being opposite to the direction of rotation. 

The case when the upper surface is free follows on using (3.12). One finds that 

pGl = -+QUrsin0-@2Urcos8. (4.3) 
The velocity in the Taylor column is J ( i ) U  and the deflexion is tan-li = 26.5". 

One can also investigate the motion generated when the disk slides along 
the lower bounding plane. The results cannot be deduced merely by letting 
h,+O in the previous analysis, since it was assumed implicitly that all four 
Ekman layers are distinct. However, it is easy to see that the analysis of $ 2  
goes through with the bottom interior layer deleted, and likewise expression (3.8) 
for the flux into the Q layer. The difference is solely in expression (3.2) for the 
inflow due to the flux in the Ekman layer. By reference to figure 3, it is clear 
that now 

t For the analysis to apply, the deformation of the surface must be o(a@), which is 
satisfied if a@/g = o(E*). 
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FIGURE 2.  Sketch of streamlines for motion relative to circular disk. 

Disk between rigid boundaries 

Upper boundary free 

Disk on lower rigid boundary, upper surface rigid 

Disk on lower rigid boundary, upper surface free 

(A streamline pattern of this kind was predicted by Stewartson (1953) for motion of an 
ellipsoid in an unbounded fluid, by means of an unsteady inviscid analysis. But the de- 
flexion goes to zero as the ellipsoid degenerates into a disk, and we believe the similarity 
is coincidental.) 

a = tan-I), h = ($)+. 

a = tan-14, A = (&I+. 

a = tan-l), h = (%)*. 

cc = tan-ll, h = (+)*. 

u,=O, v,=o u,= U cos 0, v,,= - U sin0 

FIUTJRE 3. Flux balance in the + layer when disk is at  rest on moving bottom wall. 
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evaluated on [ = 0, where u, and v, are the velocity components of the bottom 
bounding plane, and we have used the fact that wi and vi are continuous across 

= 0 to leading order. (Remember also that we are using a co-ordinate system 
in which the disk is at rest.) If we now equate (4.4) with (3.8), and repeat the 
subsequent steps of $3, we find to replace (3.9), 

For the motion produced by a disk sliding along the bottom, (4.5) reduces to the 
boundary condition on r = a, 

4v,+5UsinB- UcosB = 0, (4.6) 

2vaE+3Usin8- UcosB = 0, (4.7) 

pGI = -#!2UrsinB-@UrcosB (4.8) 

pol = -!2Ursin#-QU9+cosB (4.9) 

when the upper surface is rigid; and 

when the upper surface is free. The corresponding geostrophic pressures in the 
interior are 

for upper surface rigid; and 

for upper surface free. 
The force on the disk follows immediately from the standard result for Ekman 

layers that the wall stress in (2Qv)* times the geostrophic velocity above the 
layer in the direction at 45" in the sense of the rotation. 

In  a container that is bounded horizontally by vertical walls, the exterior 
geostrophic flow adjusts to the vertical walls through Stewartson layers. The 
boundary condition on the geostrophic flow is that the normal velocity should 
equal the normal velocity of the wall, with the Stewartson layers absorbing the 
discontinuity in tangential velocity. A discontinuity of normal velocity would 
require velocities O(v-4) and an energy dissipation O(l) ,  which is not matched 
by any input of work. 

We conclude this section by considering the conditions which must hold if 
the analysis is to be valid. These are of two kinds. (i) The & layers must be thin 
and this requires h/a < E-4 so that the apparatus must not be of too great an 
axial extent. Also the thickness of the plate must be small compared with the 
thickness of the Ekman layers. (ii) The linearization of the full equations of motion 
must be valid everywhere in the flow region. Its validity in the geostrophic 
region and in the Ekman layers is guaranteed by the assumption R, < 1, but its 
validity in the interior of the shear layers places a more stringent requirement 
on the flow parameters. The linearization can be shown to be valid if 

Now in the 4 layers v = O(U) ,  while in the & layers the fluctuating part of the 
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swirl velocity is not more than O( Uvi+),t so that the condition will be satisfied 
everywhere if 

ROE-$ < 1. 

This is a much less stringent requirement than arises in the problem of axial 
motion of a body (I) and should not be hard to satisfy in a laboratory situation. 

5. Shear-layer structure for a fat body 
The structure of the shear layers around an axisymmetric fat body was 

studied by Jacobs (1964). Because the body is fat, the indeterminacy of the geo- 
strophic flow in the Taylor column disappears and the only solution of the 
geostrophic equations consistent with Ekman layers is that in which the fluid 
inside the Taylor column is stagnant. The purpose of the shear layers in this 
case is to remove discontinuities in the geostrophic flow, in marked constrast 
to the thin disk case where the geostrophic flow is itself determined by the need to 
fit shear layers. I n  view of this difference, it seems worthwhile to point out the 
differences in the shear layer structure for the two cases. For simplicity, we con- 
sider a lenticular axisymmetric body, with equation z = 5 f ( r ) ,  r < u, and 
f ’(u) finite and non-zero, midway between rigid horizontal planes z = 5 i h .  

With uniform flow of velocity U a t  large distances from the body, the geo- 
strophic flow is, to leading order, 

pGE = -2aUrsin8+2aU(a2/r)sin8, pGI = 0. (5.1) 

The layer equations (2.8)-(2.11) are unchanged, but the Ekman compatability 
condition (2.13) is changed for the interior region, and the condition on the body 
is replaced by 

on z = _ + O ,  x <  0, (5.2) 

where ,!? = tan-l{f’(a)) is the slope of the body at the rim. The solution (2.14) 
is now not correct for the interior region but we find, on combining (2.12) with 
the Ekman conditions and eliminating ua, that vkI satisfies 

Ifp = 0, we re-obtain the equation whose solution is (2.14), but for p > 0, the 
equation is of higher order and the solution has additional arbitrary constants. 
Thus after matching the solution to the geostrophic flow in the interior which 
in this case is zero, there are still two unknown parameters in the layer solution 
for 6 < 0. The unknown geostrophic flow for the thin disk case is replaced by an 
additional constant of integration for the fat body case. The continuity of swirl 
velocity, tangential stress and flux balance in the Q layer are then sufficient to  

t This is because there may be a discontinuity of avt/a[ to be smoothed out. Thus 
q / v f  N v@, giving the estimate quoted. 
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determine the solution and one obtains the shear layer structure essentially 
given by Jacobs (1964). 

When the body is of thickness o(a) and has a slope o(l) ,  (5.3) shows that the 
shear layer has a double structure. There is a a layer of the same structure 
as that found for the disk, and separating it from the stagnant interior is a 
fattergeostrophicpenetrationlayer ofthicknessaEi/IP]*. Thus when (PI = O(E*), 
so that the thickness of the body is comparable to the Ekman layer thickness, 
we get a transition from the stagnant Taylor column predicted by Jacobs to 
the deflected flow we predict for the disk. 

6. Motion of a disk in an unbounded fluid 
The question naturally arises of what is the flow when the horizontal walls 

are absent and the fluid is unbounded. We shall show now that the flow produced 
in this case by the transverse motion of a thin disk is of smaller order of magnitude, 
being O(v*). A Taylor column is produced by the disk, but the change in the geo- 
strophic flow is small, and is not O(1) as when horizontal walls produce extra 
constraints. 

We take axes fixed in the disk and use cylindrical polar co-ordinates. The 
analysis will be for a circular disk of radius a in a stream of velocity U parallel 
to 0 = 0. Further, we shall suppose that the non-linear terms are completely 
negligible, and that v/Qa2 < 1. Then outside Ekman layers on the disk, the vertical 
derivatives of the velocity are small compared with the horizontal derivatives, 
and the approximate equations of motion are 

where 

2QU = ---+v v2,v--+-- 
r lap ae ( r2 r2ae "1 9 

au u i a v  aw -+-+--+- = 0, 
ar r r a0 az 

For reasons explained in I, where the problem of vertical motion in an un- 
bounded fluid was examined, the shear layers on r = a cannot be treated by 
the boundary-layer approximation. 

The boundary conditions at infinity are 

u +  Ucos0, v+ - UsinO, w+O. 



844 D.  W .  Moore and P. G. Saffman 

It may be verified by substitution that a general solution of these equations is 

where a = k3/(k4v2+ 4LR2)k (6.10) 

The boundary conditions on the plane x = 0 are from symmetry 

w = 0 for r > a ;  (6.11) 

and (6.12) 

from the Ekman compatibility condition on the disk. Because the Ekman layers 
come t o  a sudden stop at  r = a ,  there has to be a singularity there so that flux is 
conserved without producing a collar flux. The radial Ekman layer flux at r = a 
is 

- 

and hence from flux conservation, 

(6.13) 

in addition to (6.11) and (6.12). 
It is clear from (6.6)-(6.8) that u, v and w are in the unbounded case of the 

same order of magnitude. Hence, the boundary conditions (6.11) and (6.12) 
imply that A(k)  = O(v*), and hence to leading order, u = Ucos8, v = - Usin8. 
The disturbance produced by the disk is found by substituting these values into 
the right-hand sides of (6.12) and (6.13) and we obtain the equation 

(6.14) 

whose solution is 

(k4~2+4Q2)*(1+i)akJl(ka) 

+ +(vLR)hk( 1 + i) J1(ka), (6.15) 

The substitution of (6.15) into (6.6)-(6.9) gives the velocity and pressure fields 
since we may neglect k4 v2 in comparison with LR2 when v/LRa2 4 1.  

as complicated integrals. On x = 0, we find for the pressure 

pG = - 2QUr sin 8 - U(vLR)* (cos 8 - sin 8 )  aJl(ka) Jl(kr) dk. (6.16) 
/OW 
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The integral in (6.16) is equal to 

(g)p($-E(:)] for r < a, 

(%) [. (:) - E (:)I for r > a, 

(6.17) 

where K and E are the complete elliptic integrals of the first and second kind 
(Jahnke & Emde 1945). As ~ + 1 ,  E ( K ) + ~  andK(K)+$log[16/(1-K2)]. Thus 
the pressure has a logarithmic singularity on the disk edge, and the tangential 
velocity is singular like (r - a)-l. 

For z > 0, the singularities are smoothed out in a shear layer of thickness 

S f f  ($ (6.18) 

The disturbances decrease slowly as z increases and will be negligible when 
6 N a, i.e. z N Qa3/v. Thus a Taylor column of a sort is formed. Note also that the 
flow disturbance is not irrotational. The theory will apply in a container of 
height H if H 9 a/E. (Remember that the theory for contained flow required 
H < a/E*). 

The above solution applies without change if the motion is produced by the 
disk sliding over a rigid plane at the bottom of a semi-infinite volume of fluid. 

The expressions (6.6)-(6.9) can be made the basis of a treatment of the Taylor 
column produced by flow past a fat body in an unbounded fluid; this would be the 
steady viscous analogue of the unsteady inviscid problem solved by Stewartson 
(1953). But we shall defer discussion to a later paper. 

Finally, it should be mentioned that the neglect of convective accelerations 
in the unbounded case puts a more stringent requirement on the Rossby number 
than in the bounded case. For instance, the neglect of Uawjax requires that 
lJ < v/S. Near the body, this requires R, < EQ. If this condition is satisfied, 
inertial effects will become important when x N aE2/R& and will presumably 
show up first as a deflexion of the Taylor column. 

Appendix A. Energy dissipation 
The full linearized equation of motion is 

Taking the scalar product with u and applying the divergence theorem, we 

where n is the normal out of the fluid. The left-hand side of (A2) is the rate at 
which work is done on the fluid by the stresses over the bounding surfaces 
moving with the velocities measured relative to the rotating co-ordinates, and the 
right-hand side is the rate at  which energy is dissipated into heat. Equation (A2) 
justifies the use of energy dissipation arguments to the relative motion, even 
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though the system is not closed because it is constrained to rotate with constant 
angular velocity S. 

For flow past a body a t  rest, the contribution to the left-hand side of (A2) 
from the integrals over the body vanishes. The geostrophic contribution to the 
first term also vanishes since uG.n = - (+Q)ap,/as, and pDc is single valued. 

Appendix. Some experimental observations? 
By T. MAXWORTHY, University of Southern California, Los Angeles, California, U.S.A. 

The results reported in the main body of this paper were considered to be so 
unexpected that some experimental demonstration of the main effects seemed 
very desirable. No effort, as yet, has been made to cover an extensive range of 
the relevant parameters so only the simplest observations will be presented. 

Te blobs \ 
I 

Thin disk 

Lucite top plate 

Slip ring 

(1 r.p.m.) 

FIGURE 4. Top view of rotating tank apparatus showing mechanism to drive a thin disk 
at low velocity and observe the flow streamlines. 

t This work was supported at the University of Southern California by the National 
Science Foundation under Grant GK-2731. 
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For mechanical simplicity a thin (0.005 in. thick) 2 in. diameter disk was rotated 
about the axis of a rapidly rotating cylinder of fluid figure 4. The motion of the 
disk was slow relative to a co-ordinate system fixed within the rotating tank. 
Controlling parameters are an Ekman number (E = v/Qa2), a Rossby number 
(Ro = Ulna)  and two depth parameters h/a and H/a.  Here !2 is the rotation 
rate of the tank; a is the radius of the disk and U is its mean velocity, i.e. the 
velocity of the centre of the disk with respect to the tank; F, is the depth of the 
disk below the top plate and H the total depth of the fluid. 

Flow observations were made using the 'tellurium' precipitation method. 
Small blobs of a tellurium-glue mixture were attached to the tips of a thin metal 
rake which rotated with the disk. The disk was a distance 3a below the top plate 
(h/a = 3; H/a  = 14) and the rake was 1-5a below. Electrical contact was made 
through a system of slip rings machined into the turntable of the device. When 
a small voltage was applied, between the Te blobs and an electrode suspended 
elsewhere within the fluid, colloidal Te was released. Since disk and rake rotated 
together the lines thus formed were steady streamlines with respect to the disk. 

Figure 5, plate 1, shows the results of such observations. Figure 5(a) is for the 
case when s2 = 0 and the streamlines are circles; disturbed streamlines are shown 
superimposed so that the bending of the flow can be clearly seen. Figure 5(b) 
shows the streamlines for Ro = 1.20 x 10W and E = 4.65 x Typically 
the flow is rotated through an angle of 20" ! 
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FIGURE 5. (u) Photograph of undisturbod st,rearnlines with disturbed streamlines super- 
imposed. ( b )  Disturbcd st,reamlines for Ro = 1.20 x E = 4.65 x 
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