
Downloaded 08 Mar 2006 to 131.215.225.174. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

INTERMOLECULAR QUENCHING 603 

rule. However, some exceptions have been recently 
reported. For example, from a study of the wave­
length dependence of the intensity of benzene-sensitized 
fluorescence of p-terphenyl, Braun, Kato, and Lipsky4 

4 S. Lipsky, C. L. Braun, and S. Kato, J. Chern. Phys. 37, 190 
(1962). Additional references in this paper. 
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concluded that this rule breaks down in the case of 
benzene and its alkyl derivatives, suggesting that the 
higher excited states of the donor are not converted 
quantitatively into the lowest excited state. 

A detailed discussion of these results will be pre­
sented elsewhere. 
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Separation of the Schrodinger equation for molecular dynamics into sets of variables can sometimes be 
performed when separation into individual variables is neither possible nor for certain purposes necesary. 
Sufficient conditions for such a separation are derived. They are the same as those found by Stackel for the 
corresponding Hamilton-Jacobi problem, with an additional one which is the analog of the Robertson 
condition for one-dimensional sets. 

Expressions are also derived for operators whose eigenvalues are the separation constants. They provide 
a variational property for these constants. For use in aperiodic problems an expression is obtained for the 
probability current in curvilinear coordinates in an invariant form. Application of these results to reaction 
rate theory is made elsewhere. 

INTRODUCTION 

I N 1891, Stackel obtained the necessary and sufficient 
conditions for separation of variables in the Hamil­

ton-Jacobi equation, separating a partial differential 
equation for a system of n degrees of freedom into n 
ordinary differential equations.1 Later, Robertson ex­
tended these results to the n-dimensional Schrodinger 
equation, obtaining conditions the same as those found 
by Stackel, plus one additional one.2 The differential 
geometric implication of this last condition has been 
described by Eisenhart.a 

In 1897, Stackel generalized his earlier work, by 
considering the conditions for separation of the Hamil­
ton-Jacobi equation into sets of variables.4 His results 

*Research performed in part under auspices of the U.S. Atomic 
Energy Commission. 

t Visiting Senior Scientist, B.N.L. Present address: Noyes 
Chemical Laboratory, University of Illinois, Urbana, Illinois. This 
research was supported in part by a fellowship from the Alfred 
P. Sloan Foundation. 

I P. Stackel, Habilitationschift, Halle (1891). (I am indebted 
to the librarian of Princeton University for a photocopy of this 
manuscript.) In deriving the necessary conditions Stackel con­
sidered a general coordinate system; in deriving the sufficient 
ones he considered orthogonal systems. 

2 H. P. Robertson, Math. Ann. 98, 749 (1927). The similarity 
of conditions noted refers to those for the only coordinate systems 
considered by Robertson, namely, orthogonal ones. Parentheti­
cally, it may be noted that in some non-Euclidean spaces for 
which n>3, it is impossible to find a set of orthogonal coordinates 
[e.g. Ref. 7 (b) pp. 45 and 104]. 

a L. P. Eisenhart, Ann. Math. 35, 284 (1934). 
4 P. Stackel, Ann. Mat. Pura Appl. Ser. 2A 25, 55 (1897). 

reduced to those obtained previously1 when each set 
consisted of only one coordinate. In the present paper, 
this result is extended to then-dimensional Schri:idinger 
equation, using arguments paralleling those employed 
by Robertson and Stackel. An application to reaction 
rate theory is given elsewhere.5 

In a subsequent section an expression for the prob­
ability current in curvilinear coordinates is derived by 
using the standard expression for the gradient in tensor 
calculus. (No separation of variables is assumed.) The 
expression has application to aperiodic problems. In a 
concluding section of the paper operators are formed 
whose eigenvalues are the separation constants. A 
variational property of these constants is then derived 
for possible use in approximations. 

DERIVATION OF SOME CONDITIONS FOR 
SEPARATION 

The n-dimensional Schri:idinger equation has the 
form6 

L: (g)-i- gig"- +k2(a1- V)1f=O, " a ( ih/1) 
r,-1 aq, aq. (1) 

where k2 equals 2//i}, a1 is the energy E, Vis the poten­
tial energy, and 1f the wavefunction for the entire 
system. g" is reciprocal to g". The latter appear in the 

6 R. A. Marcus (to be published). 
s E.g., W. Pauli, Jr., Handbuch der Physik, edited by S. Fltigge 

(Springer-Verlag, Berlin, 1958), Vol. 5, p. 39. 
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fundamental line element ds in a mass-weighted space 
having the q• as generalized coordinates and are defined 
in (2b) 

ds2= :t g,.dq'dq•. (2a) 
r,s=l 

If the coordinates q• are the ordinary Cartesian 
coordinates x•, then g •• equals m,o •• , where m. is the 
mass of the atom whose coordinates include this x• 
and where o .. is the Kronecker delta function. If the 
coordinates q• are any other ones, the corresponding 
g" and grs are then computed from the expressions 

n 1 aq• aq• 
g••= L:--- (2b) 

i=l mi a xi axi · 

For example, if the q' are mass-weighted Cartesian 
coordinates, i.e., if they equal (mr) !x•, then gr. equals o ••. 

Robertson considered systems having orthogonal 
coordinates (g"= 0 if r~s) .7 In generalizing to sets of 
coordinates, we consider (as did Stackel in 1897) 
systems for which any coordinates belonging to differ­
ent sets are orthogonal,8 and so those for which g" 
vanishes when r and s belong to different sets. 

The 1-1th set is denoted by an index 1-1· Let it contain 
h,.. coordinates and let there be m sets. Then, 

fh,..=n. 
1'~1 

The coordinates in the ~-tth set are denoted by q"'' 
( i = 1 to h,..) and will be referred to as set 1-1· The Schrod­
inger equation (1) then becomes 

m ~ a ay; 
(g)-!L .l..J -.g!g~"i~'i-.+k2(a1- V)if;=O. (2) 

"~1 i,j=l aq~'' aq~'' 

To find some conditions for the separation, we shall 
impose Condition (3) on the g"''"i. Eventually condi­
tions will be found in which (3) plays a role. They will 
be shown later to be sufficient to effect separation 
rather than to be necessary: 

(3) 

where f'"'i""i depends only on set 1-1 and where a,.. depends 
only on coordinates in the remaining m-1 sets. Upon 
introduction of (3) and ( 4), where if;,.. depends only on 
Set 1-1, (2) yields (5) 

(4) 

7 (a) More precisely, when the coordinates are orthogonal the 
quantities reciprocal to g", g,., are diagonal. However, since gg" 
is the cofactor of g.,, where g is the nXn determinant of the g,., 
and since g., is diagonal, so is g". For example, (b) C. E. Weather­
burn, Riemannian Geometry (Cambridge University Press, New 
York, 1957), Eq. (14), p. 41. 

8 In this case, by suitable numbering of the coordinates, the 
nonvanishing elements in the g" determinant occur in blocks 
along the diagonal, one block for each set of coordinates; g,. 
vanishes when r and s belong to different sets. It can then be 
shown that g" also vanishes for such pairs of r and s. 

(Problems in which there are symmetry or antisym­
metry conditions on q•'s drawn from different p. sets 
are not considered here.) 

a "" a a (g)-!,L:2 L -.f'"'"'i~,_.+k2(a1- V)=O. (5) 
,.. 1/1,.. i.j~l aq"' aq~'• 

If Eq. (5) is separated into m partial differential 
equations, one for each set if;~', there will be m-1 
separation constants, a2 to am. Each if;,.. will depend on 
a1 to am, and so (5) can be regarded as an identity in 
a1 to am, i.e., it is satisfied for arbitrary values of 
a1, ···,am (when no boundary conditions are imposed). 
It can be differentiated with respect to any of these a,, 
noting that Vis of course independent of the a's. One 
so obtains m equations 

(g)-l,L:a~<W~<.= lh., (6) 
p. 

where WI', is a function only of the coordinates in the 
~th set and of the a.'s: 

1 a ~ 1 a , . . al/1,.. 
W".=--- L --!""'~''-. 

k2 aa. i,i=<l if;,.. aq~ti aq"'i 
(7) 

It must be possible to find a value of (a1, • • • , am), 
say (a1°, • • •, am0), such that det WI<, in Eq. (7) does 
not vanish. (Otherwise, if; would depend on less than 
m constants a,. Compare Appendix I.) Let the corre­
sponding value of w!'. be denoted by cf>~t.'· It depends 
no longer on ( a 1, • • ·, an). For this a= a 0, the functions 
conjugate to these cf>~t.', ¢'"'"exist since the determinant 
of the ¢p..', ¢', is nonzero. We may write 

Comparison with ( 6) then shows that 

cf>'~'l=a,Jgl. 

(8) 

(9) 

According to (8) ¢'¢'~<• is the cofactor of¢,...' in ¢'. 
Since each ¢,..' depends only on the coordinates in the 
1-1th row, the cofactor ¢'¢'~<• must be independent of 
them, as is ap. by definition. From (9), it then follows 
that ¢' / g! is independent of the coordinates of the p.th 
set. Since this independence holds for all p. we have 

¢'/gi=K, a constant. (I') 

From (3) and (9) we also have 

(II') 

Finally, Eq. (5) can be written as in (10), using (8) 
and (9): 

V = 'fct>'"1(a1cf>p.I1 +~ _!:. :E ~f'~'i~<; ay;;). ( 10) 
~t~l k ifi~t i.j=l a~· aq ' 

The rhs of (10) is only apparently a function of the a's. 
Like V, it must actually be independent of them, and 
so is unchanged when the ( a1, • • ·, an) is replaced by 
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(a1°, · • •, an°). The corresponding function in paren­
theses is a function of set J.L alone and will be denoted 
by X/. Thus, a third condition for the separation of 
variables is 

(III') 

CONDITIONS (I') TO (III') ARE SUFFICIENT 

Conditions (I') to (III') are sufficient for separation 
of the variables into the m sets. The proof is as follows. 

Inserting these conditions into the Schrodinger equa­
tion (2), noting that q/cf/~'1 is independent of Set J.L, and 
using (8) one obtains 

(11) 

where 

1 h~< a a'if; 
Y~<=- L -J'~<i~<i~+k2 (a1cf>~<1'-X~<'). (12) 

'if;l' i,;Fl aq~'' aq~'' 

Consider any specified value of all the coordinates in 
the system. ( Y 1, • • ·, Y m) can then be regarded as a 
vector in an m-dimensional space, with components 
Y1, • • ·, Y m· This vector is orthogonal to another 
vector ( cp111

, • • • , cf>'m1) in this same space. The subspace 
orthogonal to any vector (c/>'11 , • • ·, cf>m1) is m-1 dimen­
sional. However, there are already m-1 linearly inde­
pendent vectors orthogonal to (cf>IU, • • ·, cf>'m1), namely 
(cf>n,', • • ·, cf>mx'), where X= 2 to m [cf. Eq. (8)]. It 
follows that ( Y1, • • ·, Y m) must be a linear combination 
of them. That is 

m 

Yl'= -k2Lavcf>l'/, (13) 
v=2 

where the a. are constants. Equation (13) holds for 
any set of specified values of all the coordinates, and 
hence over all configuration space. 

Equations (12) and (13) yield the separated equa­
tions: 

hi' a a'lj; m L -.J'I'il'i~+k2 (Lavcf>I'/-XI'')'if;I'=O. (14) 
i,;Fl aq~'' aq'"' v=l 

In summary, one sees that given m2 quantities, ¢~</ 
such that each is a function only of the set of variables 
described by the first index and such that the product 
of their determinant with 1/ g! is a constant, then a 
separation of variables into sets of variables can be 
effected when conditions (II') and (III') are also 
fulfilled. 

COMPARISON WITH STACKEL AND ROBERTSON 

SUickel found that Conditions (II') and (III') alone 
sufficed for separation of the Hamil ton-Jacobi equa­
tion. (I') is the analog of the additional one found by 
Robertson for the case where each subspace J.L is one 
dimensional. 

For comparison with Robertson's results and for 
application it is convenient to define new quantities 

(15) 

where 1/ is the h~'th root of an h~<X h~' determinant, 

hi' 

det1'~''~'i. 
i,J=l 

From (15) cf> equals 

We introduce1~': 
hi' 

1~'= ( det1'"'~'i)1/h~', 
i,i=l 

which equals 1~'' / K 11m. The quantities 1'"'~'i, 11', and cf>l'• 
are again functions only of the J.Lth set of variables. 
From (8) and (15) we also have 

h, 

Lcf>~''cf>~'x = o.x. (16) 
I'= I 

With these quantities, Conditions (I') to (III') be­
come9 the following conditions on the grs and on V: 

cf>/ g!= 1/IDI', 
~t=l 

hi' 

( det g'"'~'i) 1/h,= ¢~<1, 
i,j=l 

The separated equations become 

(I) 

(II) 

(III) 

1 hi' a a m 

- L -1~''~'i~ +k2 (La.cf> -X )if; =0 (17) 
11' i,i=l aq~'' aq~<i I' v=l ~'' I' I' ' 

where 
hi' 

1~''~'i= g~''~'1~</ ( det g~''~'i) 1/h ... 

i,i=l 
(18) 

In the special case that all the subspaces J.L are one­
dimensional there is only one 1~''~'i for each J.L, and so 
the latter equals its determinant 11'· There is also only 
one g~''~'i for each J.L, which then equals its determinant. 
The conditions and the separated equations then re­
duce to those obtained by Robertson. 

Given a set of coordinates which permit a separation 
into sets of variables and given some method (not 
specified) for determining the Stackel coefficients cf>~''' 
Eq. (I) provides the values for the 1/s: Each 1~' is 
the factor in cf>/ gt which depends only on set J.L. Equa-

9 To obtain (II) one first computes a determinant from (II') : 

h. h. 
det g•;•;= (cf,'"l)hp. detj•;•;. 
i,j-1 i,j'-1 
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tion (18) is then used to determine the j~>i~>i's. The 
separated equations are given by ( 17). 

The problems of determining the systems of subspaces 
which permit separation of variables and of determining 
the SUickel coefficients remain as separate problems. 
Eisenhart solved the one-dimensional analogs of Con­
ditions (I) to (III) and determined thereby all the 
coordinate systems in n dimensions which permit 
separation of the Schrodinger equation into n one­
dimensional equations.3 He has tabulated the Stackel 
coefficients for n= 3 but not for larger n. Presumably 
those for larger n can be derived from various results 
in his paper.10 Then again, a study analogous to Eisen­
hart's but devised for several-dimensional sets rather 
than for purely one-dimensional ones would be of 
interest here. 

To illustrate for later use how a common case falls 
within the formalism embodied in Eqs. (I) to (III), 
( 17) and ( 18), we consider in Appendix II the separa­
tion of rotation from vibration in a diatomic molecule. 

PROBABILITY CURRENT IN CURVILINEAR 
COORDINATES 

Usually, literature expressions for the probability 
current across a surface are given for Cartesian or 
spherical polar coordinates, sometimes mass weighted, 
more often not.ll By using an expression for the current 
in an invariant form and then introducing the standard 
form for V in Riemannian geometry one may obtain 
the current in curvilinear coordinates. The result is 
given by Eq. (23). It reduces to (24) when the surface 
being crossed is a coordinate hypersurface. The result 
is then used to obtain an expression for the transmission 
coefficient. 

It will be recalled12 that from the time-dependent 
SchrOdinger equation, Hlf;= (h/i)ay;jat, an equation of 
continuity (19) can be derived, where the probability 
density pis 1/;*1/; and where I is a vector defined by (20): 

(apjat) +v· I=O, 

I= (h/2i) (1/;*Vlf;-lf;Vif;*). 

(19) 

(20) 

According to Green's theorem in n dimensions, V ·I 
integrated over some volume V equals I· v integrated 
over the area S enclosing V, v being the unit outward 

1o For example, Eq. (1.8) in Ref. 4 can be solved for a quantity 
P; knowing the metric tensor. With the aid of (2.1) there, one 
finds thereby <tis/<P, from which cf> is immediately calculated: q, 
equals [det (q,ia /cf>) ].-11<"+1) cf>ia is then obtained by inversion. 
However, a much more direct method of obtaining cf>ia from the 
metric tensor can probably be found. 

11 However, the expression for a "probability current density" 
in curvilinear coordinates is given in Ref. 6, p. 40. It equals Ig!, 
aside from a. term of magnetic origin. No use was made of co­
variant and contravariant forms, and so the expression cited does 
not emphasize its invariant property. Nevertheless, it would lead 
to Eq. (24) when used to calculate J for the current through a 
coordinate hypersurface. 

12 For example, E. C. Kemble, The Fundamental Principles of 
Quantum Mechanics (Dover Publications, Inc., New York, 1958), 
p. 31. 

drawn vector normal to S.13 Because of the probability 
interpretation of p it then follows from (19) in the 
standard way that J, the probability current through 
S, is given by (21). It is, of course, a scalar 

]= 1 l·vdrr, (21) 

where drr is the area element of S. 
The covariant and contravariant components of V 

along the coordinate curve qi are ajiJqi and 

n gii() 
:E-., 
j=! aq• 

respectively.13 The corresponding components of the 
vector I are therefore seen from (20) to be 

Ji= fgiiJ;. 
i=l 

Inasmuch as the inner product I· v is 

n 

Lfivi(and 
i=l 

Eq. (21) is equivalent to 

EI1vi) ,13 

i=l 

J=1 Eiiv1drr. 
s j=! 

(22) 

(23) 

Although S is a closed surface, it often happens that 
if one considers two bounded portions of S, joined by 
some connecting surface, and lets the two bounded 
regions increase in size indefinitely, the contributions 
of the current through the connecting portions ulti­
mately becomes negligible. For example, this occurs 
when if; is square integrable over each of the first two 
infinite regions. If if; describes a wave packet and if we 
remove one of the two remaining surfaces to infinity, 
only the remaining surface contributes to J in any 
finite time. 

With these remarks as preliminary we consider the 
case that S represents a single qN-coordinate hyper­
surface, SN, over which if; is square integrable. Only 
the VN term in (23) does not vanish14 and, as discussed 
in Appendix III, vNdrr equals 

gl ITdqi. 
ir'N 

Is A. J. McConnell, Applications of the Absolute Differential 
Calculus (Blackie and Son, Ltd., Glasgow, 1947). 

14 Ifv is the unit normal to SN, then one can show v;=li;N/gNN!, 
as follows: Let J. be any vector which lies in S N but which is 
otherwise arbitrary. Since SN contains all coordinate curves but 
that of qN (each of them is at the intersection of SN with any 
n-2 other coordinate hypersurfaces) we can choose J. so that only 
the ith component X' does not vanish (i;6-N). v•:l. equals T.v;Xi, 
i.e., v;X'. Since vis normal to SN, v•J. vanishes and, therefore, so 
does :v; (i;6-N). Since vis a unit normal then gNNvNVN=l, i.e., 
VN=1/gNNJ. pN equals gNNl'N· 
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The probability current l through SN is therefore 

(24) 

where JN is given by (22). 

TRANSMISSION COEFFICIENT 

As in the usual Cartesian case,l5 we take l to be the 
probability current when the behavior of the wave 
packet is approximated by that of an infinite wave 
train (i.e., by an improper eigenfunction). The trans­
mission coefficient K is defined to be the ratio of trans­
mitted to incident probability current. 

Let the wavefunction be given by ( 4), where 

is square integrable over the coordinate hypersurface 
SN. We consider an open16 coordinate curve qN and note 
that for large values of qNfN has the following asymp­
totic form.17 (Set N is now 1-dimensional.) 

(25) 

where 

(26) 

and where the region considered is one where XN is real. 
[For large qN in the cases we have examined,JN behaves 
as a power of qN. Then, the second two terms in (26) 
vanish asymptotically.] Solution of the Schrodinger 
equation, subject to the boundary conditions (25), 
permits the determination of T. Using (24) and (I) 
one also finds 

(27) 

1& For example, L. D. Landau and E. M. Lifshitz, Quantum 
Mechanics (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1958), pp. 54 and 73. 

1• For example, a coordinate curve which extends to infinity. 
Under certain conditions (25) is also applicable over arcs of 
closed coordinate curves such as circles or ellipses. 

17 We have applied the method given in Jeffreys and Jeffreys, 
Methods of Mathematical Physics (Cambridge University Press, 
New York, 1962), p. 522, by first introducing a change of de­
pendent variable Y N= XN! Ni and then obtaining the asymp­
totic solution for Y N under the typical conditions of XN real. 
[exp(±fixNidqN)!JNiXNt then describes an infinitely long wave 
train]. The x here is ix on p. 522. 

where 

(28) 

By definition, we have 

K= ltransl line= j T 1
2

• (29) 

Inasmuch as cfxf>N1 and the remaining factors in (28) 
are independent of qN ( cfxt>N1 is the cofactor of cfiNl in cp), 
fJ is independent of qN, and so line and ltrans are well 
defined. K depends only on the constants of the motion. 
Conservation of l leads to I T 12 being equal to 1- I R 12• 

The quantity fJ appears not only in (28) but else­
where, as in Eq. ( 42) for k= 1 (post). Normalization 
of wavefunctions of incident particles for which if; is 
not square integrable over SN is common in the litera­
ture, the normalization being to unit current density. 
In the present case of if; square integrable over SN a 
normalization to unit current would seem appropriate. 
We therefore set fJ = 1. 

OPERATORS AND A VARIATIONAL PROPERTY FOR 
THE a. 

For possible applications in approximations, we ob­
tain below the Hermitian operators for which the a. 
are eigenvalues, and obtain thereby a stationary ex­
pression for the a •. 

a. Case of Discrete Spectrum for a.'s 

Upon multiplying the J.tth equation (17) by 

cf>!'>-li(fdJ)Ili!J, 

summing over J.!, introducing (I), (II), and (18), 
noting that both 

IIr1 and cficf>i'1 
J,.<!' 

commute with alaq~'', and finally replacing :\ by v, 
one obtains 

(30) 
where 

H<•)= L -lh2(g)-!- -glg!'il'i-+cfi~'•X . m [ cf>i'' a a J 
1'~1 2 cfi~'l aq~'' aq~'i !' 

(31) 

When v is 1, H<•J is the Hamiltonian. 
One may define an inner product (32), where 1/;A and 

1/IB are any acceptable wavefunctions. Equation (33) 
follows from (30) 

(1/;A, 1/;B) = f !/;A *1/;BgftJdqi, (32) 

a,=(if;,H<•lf)l(f,if;). (33) 

The operator H<•J is Hermitian: Insamuch as cp~'' I cf>!'1 

equals cpcp~'' I cpcp~'1 and both cfxt>~'' and cpcf>i'1 are independent 
of the coordinates of set J.!, integration by parts shows 
that 
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Expression (33) has the desired variational property, 
it is stationary with respect to variations in Y,, for in 
the standard way one finds with the aid of (34): 

od.= { oifi, (H<•>y,- [ ( 1/1, H<•lifi) 1 ( 1/1, y,) ]1/1) l 
+complex conjugate. (35) 

Upon using (30) and (32) one sees that oa, vanishes. 
When one sets oa,=O, (35) becomes an equation which 
may be solved for any variational parameters in Y,, 
remembering that these occur in the m equations, v= 
1 tom. 

We note that although HOl is defined whether the 
Schrodinger equation is separable or not, the other H<•l 
in (31) are defined for the separable case (for only 
then are ¢ 14" and XI' defined) or for the case that 
LI'¢~<•XI' vanishes. 

b. Continuous Spectrum Case, But All a.'s Discrete 
If One a, Prescribed 

We consider the behavior in a range of qN where the 
coordinate qN can be treated classically. This situation 
is the typical one at large values of qN. Near this qN, 
Eq. (17) for p.=N may be replaced by the classical 
equation 

m 

!PN2+XN= La.cf>Nv, (36) 
v=l 

where PN is the momentum conjugate to qN (cf. 
Appendix I of Ref. 5). 

Let us prescribe the value of one a,, call it ak, and 
the value of qN. We seek a stationary expression for the 
remaining a.'s. 

Let M~'" be the algebraic complement18 of ¢ 14"Ac/>Nk­
cpl'kc/>m. in the determinant, cp. (t..~k.) Then18 

M~')..= cp(cp~<AcpNk_cpl'kcpN'I\). 

From (16) and (37) one deduces the property 

LM~'xcf>,.p= cf>cf>Nkoi·- cf>cf>N}.op k. 
p.;><N 

Multiplying the p.th equation (17) by 

( II 1/li)M~<XjcpcpNk, 
j;><p.,N 

(37) 

(38) 

summing over all p. but N, using (I), (II), (18), and 
(38) and the fact that 

IIh and ¢¢"1 
ir<l' 

commute with ajaq~'', and finally replacing/.. by v, one 
obtains 

where 
(39) 

(40) 

18 M. Bacher, Introduction to Higher Algebra (The Macmillan 
Company, New York, 1907), p. 31. 

and where 

x(--2- L ~gigl'il'i~+X )+akcf>N•jcpNk, 
n}gt¢1'1 ;,; aq~<' aq~<i ~~-

(41) 

Introduction of the abbreviation ( , ) Nk defined in 
(42), where 1/IA' and ifis' are any two acceptable wave­
functions, multiplication of (39) by 

ifi'*cpcpNk IIJ~~-, 
l'r<N 

and integration over all qi but qN leads to ( 43). 

(if! A', if!s')Nk=hjif!A1*1/Is'cpcpNk II (f,. IIdqi), ( 42) 
l'r<N i;><N 

a,= (1/1', HN<•lifi')Nk/(1/1', 1/I')Nk. (43) 

One can also show19 

(fA', HN<•lif!B')Nk= (HN<•lif!A', fs')Nk· (44) 

When the Stackel coefficients are real, as they are in 
the systems discussed by Eisenhart and perhaps in all 
systems of interest in molecular dynamics (gr• is real), 
one can show from ( 42) and ( 43) that the complex 
conjugate of a, equals a,, i.e., a, is real. 

Because of ( 44) and (39), Expression ( 43) can then 
be shown to be stationary in a, for variations in Y,'. 

We have refrained from calling (1/IA', if!s')Nk an inner 
product (and HN<•l Hermitian), for we did not show 
its positivity when 1/IA' equals 1/IB'· (It has the other 
properties20 of an inner product.) In some typical cases 
of interest this positivity is established in Appendix IV. 
However, regardless of the sign of (1/1', f')Nk, a. is real 
and ( 43) is an extremum with respect to variations in Y,'. 

APPENDIX I. NOTE ON det w •. NOT VANISWNG 
IDENTICALLY 

Let p~' denote 

The p~' are functions of the a, and of the q"'· The co­
ordinates q"; are treated as parameters for our purposes. 
If 

m 

detap"jaa, 
IJ.,P=! 

vanished identically and if there were m independent 
a.'s (a1 to am) there would be a functional dependence 

19 Using (I) one sees that the factor multiplying the differential 
operator in the integrand is -2 MP/h24>cf>~'lfN· Both MP• and 
4><f>"1 are independent of the coordinates in set p,, since both are 
minors in q, not involving the ,uth row. Equation (44) then fol­
lows upon by integration by parts. 

20 B. Friedman, Principles and Techniques of Applied Mathe­
matics {John Wiley & Sons, Inc., New York, 1956), p. 6, where 
the inner product is called a scalar product. 
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between the pp}s,21 a dependence which could depend 
parametrically on the qi. However, such a dependence 
would introduce one between the qi's. But these are 
independent variables, so det ap,.jaa.$0. On recalling 
the definition of W,.. given in Eq. (7) one sees that 
det w,...$0. 

APPENDIX II. ROTATING-VffiRATING DIATOMIC 
MOLECULE 

As a simple illustration we consider the diatomic 
molecule, the results for which are also easily obtained 
by standard methods. 

If r is the internuclear distance, (} and f3 the angles 
defining the orientation of the molecular axis, and M 
the reduced mass, let !J.= 1 correspond to r (vibration) 
and !J.= 2 correspond to the set (e, {3) (rotation). Since 
M-1 appears in all the grs's, we merely absorb it in the 
k2, so k2 becomes 2M/n}. From the Schrodinger equa­
tion for this system one finds g11= grr= 1, g2121=: g66= r-2, 
g2•2•=:gf1f3= (r2 sin2e)-r, g2122 =0, whence g!=r2 sine. From 
these results one finds22 cfl12= r-2, cfl21 = sine, cp= sine. 
Hence, 

I cpu r-2 

cp= sin(}= I 
c/l21 sin(} 

(A1) 

Recalling that cfl~~o• is a function only of coordinates in 
set !J., a solution to (A1) is seen to be: cfln=1, c/l21=0. 

Since cpj g! equals r-2, Eq. (III) is satisfied and one 
may writej1=r2,/2=1. Calculating thejP.iP.i from (18) 
and satisfying (II) by writing 

(A2) 

the separated equations are 

(A3) 

1 a . al/12 1 a2l/12 2M( X2) 
sine ae sme-;w+ sin2(J af32 +Ji2 a 2- sine 1/12= O, (A4) 

where 
(AS) 

and where the second term in (A2) is the only allowed 
potential energy term arising from external forces for 
which the equation is still separable. When X2 vanishes, 
the constant of the motion 2Ma2 becomes the square 
of the total angular momentum. To further separate 
(A4) into(} and {3 equations, it would be necessary that 
X2((J, {3) be the sum of h1((J)/sin(J and h2(f3)/sin(J, where 
h1((}) and h2 (/3) are arbitrary functions of (} and {3, 
respectively. 

21 E. B. Wilson, Advanced Calculus (Ginn and Company, Boston 
Massachusetts, 1912), p. 133. 

22 From Eq. (II) one finds that ct>"= 1 and ¢ 21 = 1/r2 sinO. Since 
q,q,u and q,cp21 are the cofactors of c/>u and q,, in the determinant c/>, 
they equal c/>22 and ¢ 12. One thus finds c/>22/ct>12=r2 sinO. Since c/>22 
is a function of (O,{j) and ¢ 12 is a function only of r we can set 
them equal to sins and r-2, respectively. Since cpcp11 equals c/>22, we 
then find cp=sinll. 

APPENDIX III. MAGNITUDE OF THE AREA ELEMENT 

The area element du of SN is 

(ggNN)i ITdqi. 
ir"N 

The proof is as follows: du is the "volume element" in 
S N and so equals 

[The volume element contains the determinant of the 
coefficients g;j appearing in the expression (2a) for the 
line element, ds.22 On SN all g;j occur in the line element 
except those for which i or j or both equal N.] Since 
the indicated determinant is also the cofactor of gNN 
in g, it equals ggNN. The value cited for the area ele­
ment follows. 

A more instructive proof, perhaps, is obtained by 
noting that du equals the n-dimensional volume ele­
ment dr divided by o, the perpendicular distance be­
tween SN and another qN-coordinate hypersurface for 
which qN differs by dqN. If 0 is a vector normal to SN 
and having a length o its contravariant component 
along qN must be equal to dqN, by definition. Some 
manipulation then shows that o= dqN / (gNN)!. The 
value cited for du then follows. [The manipulation is 
somewhat similar to that13 involved in showing that a 
vector normal to SN has a contravariant component 
along qN equal to (gNN)!, if it has unit length.] 

APPENDIX IV. THE SIGN OF (Y,', Y,')Nk 

The positivity of (1/1', l/f')Nk is easily established in at 
least a number of cases of physical interest: 

( i) k = 1: fi ( l/1', l/1') Nl was shown earlier to be the inci­
dent probability current. Hence, (1/1', l/I')Nt is positive. 

(ii) k arbitrary: It has been shown elsewhere5 that 
(apN/aak)x equals 

f ll/1' 1
2 g! ITdqi/PNfN(l/1', l/I')Nk, 

ir'N 

where A is the totality of (discrete) quantum numbers 
characterizing 1/1'. The numerator is positive since 

is a volume element. PN and (without loss of generality) 
fN are also positive. When PN is a monotonic function 
of ak at a given A, and so has a constant sign, one can 
then choose the sign of ak so that (apN/aak)x is positive. 

In at least one typical choice of ak of physical interest 
described elsewhere,5 PN depends only on one ak; 
(apN/aak)x then equals dpN/dak and, according to 
(36), equals c/lNdPN· In that particular case c/lNk was of 
constant sign. 

•• Reference 7 (b) p. 42. 


