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rule. However, some exceptions have been recently
reported. For example, from a study of the wave-
length dependence of the intensity of benzene-sensitized
fluorescence of p-terphenyl, Braun, Kato, and Lipsky*

4 S, Lipsky, C. L. Braun, and S. Kato, J. Chem. Phys. 37, 190
(1962). Additional references in this paper.

concluded that this rule breaks down in the case of
benzene and its alkyl derivatives, suggesting that the
higher excited states of the donor are not converted
quantitatively into the lowest excited state.

A detailed discussion of these results will be pre-
sented elsewhere.
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Separation of the Schrddinger equation for molecular dynamics into sets of variables can sometimes be
performed when separation into individual variables is neither possible nor for certain purposes necesary,
Sufficient conditions for such a separation are derived. They are the same as those found by Stickel for the
corresponding Hamilton-Jacobi problem, with an additional one which is the analog of the Robertson

condition for one-dimensional sets.

Expressions are also derived for operators whose eigenvalues are the separation constants. They provide
a variational property for these constants. For use in aperiodic problems an expression is obtained for the
probability current in curvilinear coordinates in an invariant form. Application of these results to reaction

rate theory is made elsewhere,

INTRODUCTION

N 1891, Stickel obtained the necessary and sufficient
conditions for separation of variables in the Hamil-
ton-Jacobi equation, separating a partial differential
equation for a system of n degrees of freedom into
ordinary differential equations.! Later, Robertson ex-
tended these results to the #z-dimensional Schrédinger
equation, obtaining conditions the same as those found
by Stickel, plus one additional one? The differential
geometric implication of this last condition has been
described by Eisenhart.?
In 1897, Stiickel generalized his earlier work, by
considering the conditions for separation of the Hamil-
ton~Jacobi equation into sets of variables.* His results

* Research performed in part under auspices of the U.S, Atomic
Energy Commission.

1 Visiting Senior Scientist, B.N.L. Present address: Noyes
Chemical Laboratory, University of Hlinois, Urbana, Illinois. This
research was supported in part by a fellowship from the Alfred
P. Sloan Foundation.

1P, Stickel, Habilitationschift, Halle (1891). (I am indebted
to the librarian of Princeton University for a photocopy of this
manuscript.) In deriving the necessary conditions Stickel con-
sidered a general coordinate system; in deriving the sufficient
ones he considered orthogonal systems.

2H, P. Robertson, Math, Ann. 98, 749 (1927). The similarity
of conditions noted refers to those for the only coordinate systems
considered by Robertson, namely, orthogonal ones. Parentheti-
cally, it may be noted that in some non-Euclidean spaces for
which #>>3, it is impossible to find a set of orthogonal coordinates
[e.g. Ref. 7(b) pp. 45 and 1047

4L, P. Eisenhart, Ann. Math. 35, 284 (1934).

4 P, Stickel, Ann. Mat. Pura Appl. Ser. 2A 25, 55 (1897).

reduced to those obtained previously® when each set
consisted of only one coordinate. In the present paper,
this result is extended to the #-dimensional Schrédinger
equation, using arguments paralleling those employed
by Robertson and Stickel. An application to reaction
rate theory is given elsewhere.?

In a subsequent section an expression for the prob-
ability current in curvilinear coordinates is derived by
using the standard expression for the gradient in tensor
calculus. (No separation of variables is assumed.} The
expression has application to aperiodic problems. In a
concluding section of the paper operators are formed
whose eigenvalues are the separation constants. A
variational property of these constants is then derived
for possible use in approximations.

DERIVATION OF SOME CONDITIONS FOR
SEPARATION

The n-dimensional Schrodinger equation has the
form®

> (g)‘*-a—(g*g“?f)%?(m— V=0, (1)

T, gl aqf aq3 ’

where &* equals 2/%% ay is the energy E, V is the poten-

tial energy, and ¥ the wavefunction for the entire

system. g is reciprocal to g-. The latter appear in the
5R. A, Marcus (to be published).

8 E.g., W. Pauli, Jr., Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1958), Vol. 5, p. 39.
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fundamental line element ds in a mass-weighted space
having the ¢” as generalized coordinates and are defined
in (2b)

ds*= 3 grdqdgs. (2a)

7,8=]
If the coordinates ¢" are the ordinary Cartesian
coordinates 7, then g, equals m,d,;, where m, is the
mass of the atom whose coordinates include this &
and where §,, is the Kronecker delta function. If the
coordinates ¢" are any other ones, the corresponding
grs and g™ are then computed from the expressions
dx* dxt 1 d¢" a¢°

gro= D1 = —

- oq a_qs ’ = m; 0xt dxt

(2b)

For example, if the ¢ are mass-weighted Cartesian
coordinates, i.e., if they equal (#,)%, then g,, equals &,.

Robertson considered systems having orthogonal
coordinates {g"=0 if r#5).7 In generalizing to sets of
coordinates, we consider (as did Stickel in 1897)
systems for which any coordinates belonging to differ-
ent sets are orthogonal® and so those for which g
vanishes when » and s belong to different sets.

The pth set is denoted by an index u. Let it contain
h, coordinates and let there be # sets. Then,

mn
Zh,,= .
=l

The coordinates in the uth set are denoted by g
(i=1 to k,) and will be referred to as set u. The Schréd-
inger equation (1) then becomes

(93 25

=11 ]~1

g*g"@“'-—+k2(ax Viv=0. (2)

To find some conditions for the separation, we shall
impose Condition (3) on the g+, Eventually condi-
tions will be found in which (3) plays a role. They will
be shown later to be sufficient to effect separation
rather than to be necessary:

g"ﬂ"‘ig%:f"‘“‘fa,,, (3)
where f*#i depends only on set u and where g, depends
only on coordinates in the remaining m—1 sets. Upon

introduction of (3) and (4), where ¢, depends only on
Set u, (2) yields (5)

Y= ﬁ\t’u (4)

7 (a) More precisely, when the coordinates are orthogonal the
quantltles reciprocal to gre, 8rs, AT diagonal. However, since ggre
is the cofactor of gr, where ¢ Is the nXn determmant of the gy,
and since gr, is diagonal, so is g"*. For example, (b) C. E. Weather-
burn, Riemannian Geometry (Cambridge University Press, New
ank 1957), Eq. {(14), p. 41,

$In this case, by suitable numbering of the coordinates, the
nonvanishing elements in the gre determinant occur in blocks
along the diagonal, one block for each set of coordinates; gy,
vanishes when 7 and s belong to different sets. It can then be
shown that g7 also vanishes for such pairs of » and s.
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(Problems in which there are symmetry or antisym-
metry conditions on ¢”’s drawn from different u sets
are not considered here.)

~4 — — =
s Z_: P =y Wﬁy(ax V)=0. (3)

If Eq. (5) is separated into s partial differential
equations, one for each set y,, there will be m—1
separation constants, oy to a.. Each ¢, will depend on
@y t0 am, and so (5) can be regarded as an identity in
o1 to am, l.e., it is satisfied for arbitrary values of
ay, **+, am (when no boundary conditions are imposed).
It can be differentiated with respect to any of these «,,
noting that V is of course independent of the o’s. One
so obtains m equations

(g) hézauan;' d1s, (6)

where W,, is a function only of the coordinates in the
uth set and of the o,’s:

1 8 &5 1 6 N,
W= = Tpipi— L 7
* k“’ day z,éx Y 6q'” g+ ™
It must be possible to find a value of (aq, +** , om),

say (e, +++, an’), such that det W, in Eq. (7) does
not vanish. (Otherwise, ¥ would depend on less than
m constants «,. Compare Appendix 1.) Let the corre-
sponding value of W,, be denoted by ¢,,’. It depends
no longer on {ay, ** -, an). For this a=0a®, the functions
conjugate to these ¢,,, ¢ exist since the determinant
of the ¢,,’, ¢’, is nonzero. We may write

Zd)’m@‘)\’ = (8)
=1
Comparison with (6) then shows that
¢ =a,/g. (9)

According to (8) ¢'¢"* is the cofactor of ¢, in ¢'.
Since each ¢,,” depends only on the coordinates in the
pth row, the cofactor ¢'¢*” must be independent of
them, as is @, by definition. From (9), it then follows
that ¢’/gt is independent of the coordinates of the uth
set. Since this independence holds for all 1 we have

¢'/¢=K, a constant. (1)
From (3) and (9) we also have
ghiki = gp/lf i, (11

Finally, Eq. (5) can be written as in (10), using (8)
and (9):

1
V= ul( Tuin; )
;1:& cdu’ + oy :/_21 ! Yoga) (1O
The rhs of (10) is only apparently a function of the o’s.
Like V, it must actually be independent of them, and
so is unchanged when the (e, *++, @a) is replaced by
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(ar®, *++, aa®). The corresponding function in paren-
theses is a function of set u alone and will be denoted
by X,/. Thus, a third condition for the separation of

variables is
V=> ¢ X, (111)
M

CONDITIONS (I’) TO (III') ARE SUFFICIENT

Conditions (I') to (III") are sufficient for separation
of the variables into the m sets. The proof is as follows.
Inserting these conditions into the Schrodinger equa-
tion (2), noting that ¢'¢’# is independent of Set u, and
using (8) one obtaing
2 9MY,=0, (11)
N

where

l hu ] f . ia¢“
Yu i1 0@ Ig*

Consider any specified value of all the coordinates in
the system. (¥y, +++, ¥Yu) can then be regarded as a
vector in an m-dimensional space, with components
Yy, ++-, YV, This vector is orthogonal to another
vector (¢!, -+, ¢'™) in this same space. The subspace
orthogonal to any vector (¢, +« -+, ¢™) is m— 1 dimen-
sional. However, there are already m—1 linearly inde-
pendent vectors orthogonal to (¢!, « -+, ¢™), namely
(¢ =+, &dm\), where A=2 to m [cf. Eq. (8)]. It
follows that (¥, +++, ¥,,) must be a linear combination
of them. That is

(a1¢u1,_ XM,) . (12)

=

= -kZZaydw ’

y=2

(13)

where the a, are constants. Equation (13) holds for
any set of specified values of all the coordinates, and
hence over all configuration space.

Equations (12) and (13) yield the separated equa-
tions:

>

‘l]—].a 1)

+k2( Zav(ﬁuv - Xll

6 i v=1

f"‘"" Nu=0. (14)

In summary, one sees that given m? quantities, ¢,,’
such that each is a function only of the set of variables
described by the first index and such that the product
of their determinant with 1/g* is a constant, then a
separation of variables into sets of variables can be
effected when conditions (IT) and (III') are also
fulfilled.

COMPARISON WITH STACKEL AND ROBERTSON

Stickel found that Conditions (I1’) and (IIT') alone
sufficed for separation of the Hamilton-Jacobi equa-
tion. (I’) is the analog of the additional one found by
Robertson for the case where each subspace u is one
dimensional.

For comparison with Robertson’s results and for
application it is convenient to define new quantities

605

Pus, fri#, X, and ¢#:
uv=w' /s,
X,,,z X#l/fn,y

fumi:f’#iuj/]{llm’
#r=a, (15)
where f," is the k,th root of an %Xk, determinant,

hM
det frwivi,

4,3=1

o' /115
o

From (15) ¢ equals

We introduce f,:

hl‘
Ju= (det friri)iity,
i,5=1
which equals f,//K™ The quantities f*#i, f, and ¢,,
are again functions only of the uth set of variables.
From (8) and (15) we also have

hl‘
Z(,bwd)“)‘ = av)u

u=l

With these quantities, Conditions (I’) to (III) be-
come® the following conditions on the g" and on V:

o/e=1/111, &)

w=l

(16)

h
(4 o=,

det (II)
i, 7=
V= Zld*‘lXu- (111)
e

The separated equations become

f_ Zl .(;.q.;fuzu1—1[/ +k°(zay¢py u)‘/’u=01 (17)
B =
where
hl‘

frini= guinif, / ( det grini) b, (18)

4, 7=1

In the special case that all the subspaces u are one-
dimensional there is only one f*# for each u, and so
the latter equals its determinant f,. There is also only
one gt#i for each u, which then equals its determinant.
The conditions and the separated equations then re-
duce to those obtained by Robertson.

Given a set of coordinates which permit a separation
into sets of variables and given some method (not
specified) for determining the Stickel coefficients ¢,,,
Eq. (I) provides the values for the f,’s: Each f, is
the factor in ¢/g* which depends only on set u. Equa-

% To obtain (IT) one first computes a determinant from (II’):

det g"w:— (X DL det Juimi,

t.7=1
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tion (18) is then used to determine the f#i’s, The
separated equations are given by (17).

The problems of determining the systems of subspaces
which permit separation of variables and of determining
the Stickel coefficients remain as separate problems.
Eisenhart solved the one-dimensional analogs of Con-
ditions (I) to (III) and determined thereby all the
coordinate systems in # dimensions which permit
separation of the Schriodinger equation into # one-
dimensional equations.® He has tabulated the Stickel
coefficients for #=3 but not for larger #. Presumably
those for larger » can be derived from various results
in his paper.’? Then again, a study analogous to Eisen-
hart’s but devised for several-dimensional sets rather
than for purely one-dimensional ones would be of
interest here.

To illustrate for later use how a common case falls
within the formalism embodied in Eqs. (I) to (III),
(17) and (18), we consider in Appendix II the separa-
tion of rotation from vibration in a diatomic molecule.

PROBABILITY CURRENT IN CURVILINEAR
COORDINATES

Usually, literature expressions for the probability
current across a surface are given for Cartesian or
spherical polar coordinates, sometimes mass weighted,
more often not.!! By using an expression for the current
in an invariant form and then introducing the standard
form for V in Riemannian geometry one may obtain
the current in curvilinear coordinates. The result is
given by Eq. (23). It reduces to (24) when the surface
being crossed is a coordinate hypersurface. The result
is then used to obtain an expression for the transmission
coefficient.

It will be recalled”? that from the time-dependent
Schrédinger equation, Hy= (#/i)dy/dt, an equation of

_continuity (19) can be derived, where the probability
density p is ¢*J and where I is a vector defined by (20):

(9p/0t) +V-1=0, (19)
I= (7/2i) (P*Vy—yvi™). (20)

According to Green’s theorem in # dimensions, V-1
integrated over some volume V equals I-v integrated
over the area .S enclosing V, v being the unit outward

1 For example, Eq. (1.8) in Ref. 4 can be solved for a quantity
P; knowing the metric tensor. With the aid of (2.1) there, one
finds thereby ¢%s/¢, from which ¢ is immediately calculated: ¢
equals [det(¢®/p)].V®+ ¢;, is then obtained by inversion.
However, a much more direct method of obtaining ¢i, from the
metric tensor can probably be found.

11 However, the expression for a “probability current density”
in curvilinear coordinates is given in Ref. 6, p. 40. It equals Ig?,
aside from a.term of magnetic origin. No use was made of co-
variant and contravariant forms, and so the expression cited does
not emphasize its invariant property. Nevertheless, it would lead
to Eq. (24) when used to calculate J for the current through a
coordinate hypersurface.

2 For example, E. C. Kemble, The Fundomental Principles of
Quantum Mechanics (Dover Publications, Inc., New York, 1958),

p- 31
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drawn vector normal to 5.3 Because of the probability
interpretation of p it then follows from (19) in the
standard way that J, the probability current through
S, is given by (21). It is, of course, a scalar

]=/I-vdo',
s

where do is the area element of .S.
The covariant and contravariant components of ¥
along the coordinate curve ¢’ are 8/9¢7 and

(21)

n gija
= ag*’

respectively.’® The corresponding components of the
vector I are therefore seen from (20) to be

B oy a¢*) NN
= — *— N IJ= ”Ii. 22
U G B

Inasmuch as the inner product I-vis

ZI pi(and Y Ip9) B
=1 j=L
Eq. (21) is equivalent to

J= / i[ Wyido.
S

=1

(23)

Although S is a closed surface, it often happens that
if one considers two bounded portions of S, joined by
some connecting surface, and lets the two bounded
regions increase in size indefinitely, the contributions
of the current through the connecting portions ulti-
mately becomes negligible. For example, this occurs
when ¢ is square integrable over each of the first two
infinite regions. If ¢ describes a wave packet and if we
remove one of the two remaining surfaces to infinity,
only the remaining surface contributes to J in any
finite time.

With these remarks as preliminary we consider the
case that .S represents a single ¢¥-coordinate hyper-
surface, Sy, over which ¢ is square integrable, Only
the vy term in (23) does not vanish' and, as discussed
in Appendix III, »wdo equals

g [1dg’.

=N

B A, J. McConnell, Applications of the Absolute Differential
Calculus (Blackie and Son, Ltd., Glasgow, 1947).

1 If v is the unit normal to Sy, then one can show v;=8§;y/g¥ ¥4,
as follows: Let & be any vector which lies in Sy but which is
otherwise arbitrary. Since S contains all coordinate curves but
that of ¢¥ (each of them is at the intersection of Sy with any
n—2 other coordinate hypersurfaces) we can choose X so that only
the sth component A* does not vanish (V). v-& equals Zy;N,
i.e., »A% Since v is normal to Sy, v-3 vanishes and, therefore, so
does »; (i>N). Since v is a unit normal then g¥¥ypy=1, ie.,
vy=1/gNN4 N equals g¥Npy.
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The probability current J through Sy is therefore

J=| 1vg []dg,

SN i#AN

(24)

where IV is given by (22).
TRANSMISSION COEFFICIENT

As in the usual Cartesian case,'® we take J to be the
probability current when the behavior of the wave
packet is approximated by that of an infinite wave
train (i.e., by an improper eigenfunction). The trans-
mission coefhicient « is defined to be the ratio of trans-
mitted to incident probability current.

Let the wavefunction be given by (4), where

11w

uEN

is square integrable over the coordinate hypersurface
Sn. We consider an open'® coordinate curve ¢V and note
that for large values of ¢™yx has the following asymp-
totic form.” (Set NV is now 1-dimensional.)

Yv— exp(i f xxdg¥ )

+R eXP(—i f xN*qu> / xwif™,

wv——T exp(i [xtde") [ ot (25)
g >+
where
2 YdInfy\* 1&EInfy
== ( Xy, — Xa) — — , (26
XN hz(z?adw ) 4( qu) 2 g (26)

and where the region considered is one where xx is real.
[For large ¢” in the cases we have examined, fy behaves
as a power of ¢¥. Then, the second two terms in (26)
vanish asymptotically.] Solution of the Schrédinger
equation, subject to the boundary conditions (25),
permits the determination of 7. Using (24) and (I)
one also finds

Jirans= [ T |2 9, Jinoz-qy Jinet Jren1= (1_ ] R 12)6,

(27)

B For example, L. D. Landau and E. M. Lifshitz, Quantum
Mechanics (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1958), pp. 54 and 73,

18 For example, a coordinate curve which extends to infinity.
Under certain conditions (25) is also applicable over arcs of
closed coordinate curves such as circles or ellipses.

17 We have applied the method given in Jefireys and Jeffreys,
Methods of Mathematical Physics (Cambridge University Press,
New VYork, 1962), p. 522, by first introducing a change of de-
pendent variable Y y=xxfn* and then obtaining the asymp-
totic solution for ¥ x under the typical conditions of xy real.
Cexp (2= Jixa*dg¥) /fntxnt then describes an infinitely long wave
train]. The x here is ¢x on p. 522.
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where
s=nfos" (w0 ag (28)
w=N =N
By definition, we have
K= ]trans/Jinc:: l T ]2~ (29)

Inasmuch as ¢¢¥! and the remaining factors in (28)
are independent of ¢V (¢¢™! is the cofactor of ¢y; in ¢),
d is independent of ¢¥, and $0 Jine and Jirans are well
defined. « depends only on the constants of the motion.
Conservation of J leads to | T |? being equal to 1— | R |2.

The quantity 9 appears not only in (28) but else-
where, as in Eq. (42) for k=1 (post). Normalization
of wavefunctions of incident particles for which ¢ is
not square integrable over Sy is common in the litera-
ture, the normalization being to unit current density.
In the present case of ¢ square integrable over Sy a
normalization to unit current would seem appropriate.
We therefore set 9=1.

OPERATORS AND A VARIATIONAL PROPERTY FOR
T

oy

For possible applications in approximations, we ob-
tain below the Hermitian operators for which the «,
are eigenvalues, and obtain thereby a stationary ex-
pression for the a,.

a. Case of Discrete Spectrum for «,'s
Upon multiplying the uth equation (17) by
ST w)/TLs
J#u I

summing over u, introducing (I), (II), and (18),
noting that both

Hf,- and @™

JFEu
commute with 8/d¢*, and finally replacing A by »,
one obtains

H(v)¢= av¢, (30)
where
m ¢“y 9 P
() = .1 P T domiuie— )
H fi_:l[ 27L2(g) ¢.“1 aq“g gﬂ u]agﬂi—‘_d,# X”‘] (31)

When » is 1, H® is the Hamiltonian.

One may define an inner product (32), where y4 and
¥p are any acceptable wavefunctions. Equation (33)
follows from (30)

(e ¥0) = [Vavog T T, (32)
= (0 HOW)/(4,9). (39)

The operator H® is Hermitian: Insamuch as ¢**/¢*
equals ¢¢** /o and both ¢¢** and ¢¢*! are independent
of the coordinates of set g, Integration by parts shows
that

(W4, H9Yp) = (H N4, ¥5). (34)

Downloaded 08 Mar 2006 to 131.215.225.174. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



608

Expression (33) has the desired variational property,
it is stationary with respect to variations in ¢, for in
the standard way one finds with the aid of (34):

8d,= {&f, (HY—[ (4, H) / (4, %) W) }

+ complex conjugate. (33)

Upon using (30) and (32) one sees that da, vanishes.
When one sets da,= 0, (35) becomes an equation which
may be solved for any variational parameters in y,
remembering that these occur in the m equations, »=
1 tom,

We note that although H® is defined whether the
Schrodinger equation is separable or not, the other H®
in (31) are defined for the separable case (for only
then are ¢* and X, defined) or for the case that
> "X, vanishes.

b. Continuous Spectrum Case, But All «,’s Discrete
If One o, Prescribed

We consider the behavior in a range of ¢ where the
coordinate ¢V can be treated classically. This situation
is the typical one at large values of ¢¥. Near this ¢V,
Eq. (17) for u=N may be replaced by the classical
equation

v+ Xn= ia@m, (36)

v=1
where py is the momentum conjugate to ¢V (cf.
Appendix I of Ref. 5).

Let us prescribe the value of one a,, call it a;, and
the value of gN We seek a stationary expression for the
remaining a,’s

Let M# be the algebraic complement® of ¢adni—
dudn in the determinant, ¢. (As£%.) Then®

Mrr=gp(¢rNe— iV N) .
From (16) and (37) one deduces the property
2 M= g a0t
wHEN

(37)

(38)

Multiplying the uth equation (17} by
( IL ¢ M= /g™,
4N

summing over all p but NV, using (I), (II), (18), and
(38) and the fact that

H fi and ¢t

I
commute with 8/d¢, and finally replacing A by », one

obtains
HyOY =a/,

=IIv.,

#HEN

(39)
where
(40)

18 M. Bocher, Introduction to Higher Algebra (The Macmillan
Company, New York, 1907), p. 31.

R. A. MARCUS

and where

Hy® = Z M

pAEN WNk

2 ]
X —_—
( RegigM ; aqui5
Introduction of the abbreviation (, )y defined in
(42), where ¢4’ and ¥’ are any two acceptable wave-
functions, multiplication of (39) by

¥*e¢" 111,

=N

e X, g (41)
q 7

and integration over all ¢7 but ¢ leads to (43).

($a', ¢B')Nk=7if¢A'*1//B ‘06 I1( fu qu ), (42)

#F#EN i

o= (', HNY )i/ (W', ') . (43)
One can also show'
(¥a’, Bvp ) we= (HxWa', 48 ) v (44)

When the Stickel coefficients are real, as they are in
the systems discussed by Eisenhart and perhaps in all
systems of interest in molecular dynamics (g™ is real),
one can show from (42) and (43) that the complex
conjugate of @, equals a,, 1.e., a, is real.

Because of (44) and (39), Expression (43) can then
be shown to be stationary in «, for variations in ¢'.

We have refrained from calling (Y4”, ¥&') ¥x an inner
product (and Hyx® Hermitian), for we did not show
its positivity when 4" equals ¥g'. (It has the other
properties® of an inner product.) In some typical cases
of interest this positivity is established in Appendix IV.
However, regardless of the sign of (¥, ¥')m, o, is real
and (43) is an extremum with respect to variations iny/’.

APPENDIX I. NOTE ON det W, NOT VANISHING
IDENTICALLY

Let p, denote

)3 2

f ’ﬂtﬂ}
i,7=1 aqﬂs

8q‘"

The p, are functions of the «, and of the ¢*.. The co-
ordinates ¢* are treated as parameters for our purposes.
If

det dp,/0c,

por=l

vanished identically and if there were # independent
a,’s (on to an) there would be a functional dependence

B Using (I) one sees that the factor multiplying the differential
operator in the integrand is —2 M#/W¢¢slfy. Both M» and
¢p#t are independent of the coordinates in set u, since both are
minors in ¢ not involving the pth row. Equation (44} then fol-
lows upon by integration by parts.

20 B, Friedman, Principles and Technigues of Applied Mathe-
matics (John Wﬂey & Sons, Inc., New York, 1956), p. 6, where
the inner product is called a scalar product.
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between the p,’s,* a dependence which could depend
parametrically on the gi. However, such a dependence
would introduce one between the ¢s. But these are
independent variables, so det dp./da,=%0. On recalling
the definition of W, given in Eq. (7) one sees that
det W,,=E0.

APPENDIX II. ROTATING-VIBRATING DIATOMIC
MOLECULE

As a simple illustration we consider the diatomic
molecule, the results for which are also easily obtained
by standard methods.

If r is the internuclear distance, § and 8 the angles
defining the orientation of the molecular axis, and M
the reduced mass, let u=1 correspond to r (vibration)
and u=2 correspond to the set (8, 8) (rotation). Since
M~ appears in all the g™’s, we merely absorb it in the
k2, so k® becomes 2M /A2 From the Schrédinger equa—
tion for this system one finds gl=g7=1, ght=gl0=y—
= gfB= (¢ sin%9) !, g?2=0), whence gé=7" siné. From
these results one finds®? ¢r=r"2, ¢u= sinfd, ¢= sind.
Hence,

lgy 72
¢= sinf=

b

Recalling that ¢,, is a function only of coordinates in
set u, a solution to (Al) is seen to be: ¢un=1, ¢z =0.

Since ¢/g? equals 72, Eq. (III) is satisfied and one
may write fi=#?%, f;=1. Calculating the f*#i from (18)
and satisfying (II) by writing

(A1)
sinf

V(r’ 8, B>:X1(7)+[X2(0; :8)/’2 SiIlG], (AZ)
the separated equations are
14 d as
gy (7’#14- <a1+;;—X1>\//1=0, (A3)
1 9 e 1 O

6

X,
i — =0, (A4
siné 06 St a9 + ( sin&) ¥2=0, (A4)

sin% 952

where

¢=¢1(7)¢2(05 B)) (AS)

and where the second term in (AZ2) is the only allowed
potential energy term arising from external forces for
which the equation is still separable. When X, vanishes,
the constant of the motion 2Mas becomes the square
of the total angular momentum. To further separate
(A4) into 8 and § equations, it would be necessary that
X2(8, B) be the sum of /;(8)/sind and A2(8) /sind, where
hi(0) and ky(B) are arbitrary functions of  and B,
respectively.

2L . B. Wilson, Advanced Calculus (Ginn and Company, Boston
Massachusetts, 1912) . 133.

2 From Eq. (IT) one ﬁnds that ¢!'=1 and ¢*=1/r2 sinf. Since
¢oll and ¢¢? are the cofactors of ¢ and ¢e in the determinant ¢,
they equal ¢22 and ¢ One thus finds ¢u/¢r2=7? sind. Since g
is a function of (6,8) and ¢ is a function only of r we can set
them equal to sins and 772, respectively. Since ¢p!! equals ¢o, we
then find ¢ =sin6.
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APPENDIX III. MAGNITUDE OF THE AREA ELEMENT

The area element do of Sy is
(g4 I 1dg.
=N
The proof is as follows: do is the “volume element” in

Sy and so equals
( det g;;)* []dg".

i,7#N i#=N

[The volume element contains the determinant of the
coefficients g;; appearing in the expression (2a) for the
line element, ds.?? On Sy all g;; occur in the line element
except those for which ¢ or 7 or both equal N.] Since
the indicated determinant is also the cofactor of gywy
in g, it equals gg"¥V. The value cited for the area ele-
ment follows.

A more instructive proof, perhaps, is obtained by
noting that do equals the n-dimensional volume ele-
ment dr divided by 8, the perpendicular distance be-
tween Sy and another ¢¥-coordinate hypersurface for
which ¢ differs by dg¢V. If 5 is a vector normal to Sy
and having a length § its contravariant component
along ¢¥ must be equal to d¢V, by definition. Some
manipulation then shows that 8=dg¢"/(g"")} The
value cited for do then follows. [The manipulation is
somewhat similar to that®® involved in showing that a
vector normal to SV has a contravariant component
along ¢¥ equal to (g"¥)% if it has unit length.]

APPENDIX IV. THE SIGN OF (¥, ¢')m

The positivity of (', ¥) xx is easily established in at
least a number of cases of physical interest:

(i) k=1:A(, ¢') n1 was shown earlier to be the inci-
dent probability current. Hence, (¢, ¢') a1 is positive.

(ii) % arbitrary: It has been shown elsewhere® that
(8pn/dcn)n equals

f| v g T1da/ onfa (W', 4" ) wes
1#=N

where X is the totality of (discrete) quantum numbers
characterizing y’. The numerator is positive since

gﬂ}dq"

is a volume element. px and (without loss of generality)
fw are also positive. When px is a monotonic function
of oy at a given A, and so has a constant sign, one can
then choose the sign of o, so that (dpx/ax) is positive.

In at least one typical choice of o of physical interest
described elsewhere,® py depends only on one ay;
(3pn/dax)n then equals dpn/dai and, according to
(36), equals ¢ni/pw. In that particular case ¢ni was of
constant sign.

23 Reference 7(b) p. 42.
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