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Abstract

In Bayesian statistics, many problems can be expressed as the evaluation of the
expectation of a quantity of interest with respect to the posterior distribution. Stan-
dard Monte Carlo method is often not applicable because the encountered posterior
distributions cannot be sampled directly. In this case, the most popular strategies
are the importance sampling method, Markov chain Monte Carlo, and annealing. In
this paper, we introduce a new scheme for Bayesian inference, called Asymptotically
Independent Markov Sampling (AIMS), which is based on the above methods. We
derive important ergodic properties of AIMS. In particular, it is shown that, under
certain conditions, the AIMS algorithm produces a uniformly ergodic Markov chain.
The choice of the free parameters of the algorithm is discussed and recommenda-
tions are provided for this choice, both theoretically and heuristically based. The
efficiency of AIMS is demonstrated with three numerical examples, which include
both multi-modal and higher-dimensional target posterior distributions.

KEY WORDS: Markov chain Monte Carlo, Importance Sampling, Simulated Anneal-
ing, Bayesian Inference.

1 Three cornerstones of computational Bayesian inference

In Bayesian statistics, many problems can be expressed as the evaluation of the expecta-
tion of a quantity of interest with respect to the posterior distribution. Standard Monte
Carlo simulation [MU49], where expectations are estimated by sample averages based on
samples drawn independently from the posterior, is often not applicable because the en-
countered posterior distributions are multi-dimensional non-Gaussian distributions that
cannot be explicitly normalized. In this case, the most popular strategies are importance
sampling and Markov chain Monte Carlo methods. We briefly review these two methods
first because they play an important role in the new MCMC method introduced in this
paper.

Importance sampling : This is nearly as old as the Monte Carlo method (see, for
instance, [KM53]), and works as follows. Suppose we want to evaluate Eπ[h] that is an
expectation of a function of interest h : Θ → R under distribution2 π(·) defined on a
parameter space Θ ⊆ R

d,

Eπ[h] =

∫

Θ

h(θ)π(θ)dθ. (1)

Suppose also that we are not able to sample directly from π(·), although we can compute
π(θ) for any θ ∈ Θ to within a proportionality constant. Instead, we sample from some

1 Both authors contributed equally to this work. Corresponding author’s email: zuev@caltech.edu.
2Unless otherwise stated, all probability distributions are assumed to have densities with respect to

Lebesgue measure, π(dθ) = π(θ)dθ. For simplicity, the same symbol will be used to denote both the
distribution and its density, and we write θ ∼ π(·) to denote that θ is distributed according to π(·).
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other distribution q(·) on Θ which is readily computable for any θ ∈ Θ. Let θ(1), . . . , θ(N)

be N i.i.d. samples from q(·), and w(i) = π(θ(i))/q(θ(i)) denote the importance weight of
the ith sample, then we can estimate Eπ[h] by

ĥN =

∑N
i=1w

(i)h(θ(i))
∑N

i=1w
(i)

. (2)

The estimator ĥN converges almost surely as N → ∞ to Eπ[h] by the Strong Law of
Large Numbers for any choice of distribution q(·), provided supp(π) ⊆ supp(q). Note
that the latter condition automatically holds in Bayesian updating using data D where
q(θ) = π0(θ) is the prior density and π(θ) ∝ π0(θ)L(θ) is the posterior p(θ|D), where L
stands for the likelihood function p(D|θ).

The estimator ĥN in (2) generally has a smaller mean square error than a more straight-
forward unbiased importance sampling estimator:

ĥ′
N =

1

N

N
∑

i=1

w(i)h(x(i)). (3)

This is especially clear when h is nearly a constant: if h ≈ c, then ĥN ≈ c, while ĥ′
N has

a larger variation. Although ĥN is biased for any finite N , the bias can be made small
by taking sufficiently large N , and the improvement in variance makes it a preferred
alternative to ĥ′

N [Li01, RC04]. Another major advantage of using ĥN instead of ĥ′
N ,

which is especially important for Bayesian applications, is that in using the former we
need to know π(θ) only up to a multiplicative normalizing constant; whereas in the latter,
this constant must be known exactly.

The accuracy of ĥN depends critically on the choice of the importance sampling dis-
tribution (ISD) q(·), which is also called the instrumental or trial distribution. If q(·) is
chosen carelessly such that the the importance weights w(i) have a large variation, then
ĥN is essentially based only on the few samples θ(i) with the largest weights, yielding
generally a very poor estimate. Hence, for importance sampling to work efficiently, q(·)
must be a good approximation of π(·) — “the importance sampling density should mimic
the posterior density” [Ge89] — so that the variance varq[w] is not large. Since usually the
prior and posterior are quite different, it is, therefore, highly inefficient to use the prior as
the importance sampling distribution. When Θ is high-dimensional, and π(·) is complex,
finding a good importance sampling distribution can be very challenging, limiting the
applicability of the method [AB03].

For the estimator ĥ′
N in (3), it is not difficult to show that the optimal importance

sampling density, i.e., q∗(·) that minimizes the variance of ĥ′
N , is q

∗(θ) ∝ |h(θ)|π(θ). This
result is sometimes attributed to Rubinstein [Ru81], although it was proved earlier by
Kahn and Marshall [KM53]. It is not true, however, that q∗(·) is optimal for the estimator
ĥN . Note also that this optimality result is not useful in practice, since when h(θ) ≥ 0,
the required normalizing constant of q∗(·) is

∫

Θ
h(θ)π(θ)dθ, the integral of interest.

MCMC Sampling : Instead of generating independent samples from an ISD, we could
generate dependent samples by simulating a Markov chain whose state distribution con-
verges to the posterior distribution π(·) as its stationary distribution. Markov chain
Monte Carlo sampling (MCMC) originated in statistical physics, and now is widely used
in solving statistical problems [Ne93, GRS96, Li01, RC04].
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The Metropolis-Hastings algorithm [MR2T253, Ha70], the most popular MCMC tech-
nique, works as follows. Let q(·|θ) be a distribution on Θ, which may or may not
depend on θ ∈ Θ. Assume that q(·|θ) is easy to sample from and it is either com-
putable (up to a multiplicative constant) or symmetric, i.e. q(ξ|θ) = q(θ|ξ). The sam-
pling distribution q(·|θ) is called the proposal distribution. Starting from essentially any
θ(1) ∈ supp(π), the Metropolis-Hastings algorithm proceeds by iterating the following
two steps. First, generate a candidate state ξ from the proposal density q(·|θ(n)). Sec-
ond, either accept ξ as the next state of the Markov chain, θ(n+1) = ξ, with probability

α(ξ|θ(n)) = min
{

1, π(ξ)q(θ(n)|ξ)

π(θ(n))q(ξ|θ(n))

}

; or reject ξ and set θ(n+1) = θ(n) with the remaining

probability 1 − α(ξ|θ(n)). It can be shown (see, for example, [RC04]), that under fairly
weak conditions, π(·) is the stationary distribution of the Markov chain θ(1), θ(2), . . . and

lim
N→∞

1

N

N
∑

i=1

h(θ(i)) =

∫

Θ

h(θ)π(θ)dθ. (4)

Since the chain needs some time (so called “burn-in” period) to converge to stationarity,
in practice, an initial portion of, say, N0 states is usually discarded and

h̃N =
1

N −N0

N
∑

i=N0+1

h(θ(i)) (5)

is used as an estimator for Eπ[h].
The two main special cases of the Metropolis-Hastings algorithm are Independent

Metropolis-Hastings (IMH), where the proposal distribution q(ξ|θ) = qg(ξ) is independent
of θ (so qg is a global proposal), and Random Walk Metropolis-Hastings (RWMH), where
the proposal distribution is of the form q(ξ|θ) = ql(ξ−θ), i.e. a candidate state is proposed
as ξ = θ(n) + ǫn, where ǫn ∼ ql(·) is a random perturbation (so ql is a local proposal). In
both cases, the choice of the proposal distribution strongly affects the efficiency of the
algorithms. For IMH to work well, as with importance sampling, the proposal distribution
must be a good approximation of the target distribution π(·), otherwise a large fraction of
the candidate samples will be rejected and the Markov chain will be too slow in covering
the important regions for π(·). When, however, it is possible to find a proposal qg(·), such
that qg(·) ≈ π(·), IMH should always be preferred to RWMH because of better efficiency,
i.e. better approximations of Eπ[h] for a given number of samples N . Unfortunately, such
a proposal is difficult to construct in the context of Bayesian inference where the posterior
π(·) is often complex and high-dimensional. This limits the applicability of IMH.

Since the random walk proposal ql(·) is local, it is less sensitive to the target distri-
bution. That is why, in practice, RWMH is more robust and used more frequently than
IMH. Nonetheless, there are settings where RWMH also does not work well because of
the complexity of the posterior distribution. Although (4) is true in theory, a potential
problem with RWMH (and, in fact, with any MCMC algorithm) is that the generated
samples θ(1), . . . , θ(N) often consist of highly correlated samples. Therefore, the estima-
tor h̃N in (5) obtained from these samples tends to have a large variance for a modest
amount of samples. This is especially true when the posterior distribution contains sev-
eral widely-separated modes: a chain will move between modes only rarely and it will
take a long time before it reaches stationarity. If this is the case, an estimate produced

3



by h̃N will be very inaccurate. At first glance, it seems natural to generate several in-
dependent Markov chains, starting from different random seeds, and hope that different
chains will get trapped by different modes. However, multiple runs will not in general
generate a sample in which each mode is correctly represented, since the probability of
a chain reaching a mode depends more on the mode’s “basin of attraction” than on the
probability concentrated in the mode [Ne96].

Annealing: The concept of annealing (or tempering), which involves moving from
an easy-to-sample distribution to the target distribution via a sequence of intermediate
distributions, is one of the most effective methods of handling multiple isolated modes.
Together with importance sampling and MCMC, annealing constitutes the third corner-
stone of computational Bayesian inference.

The idea of using the RWMH algorithm in conjunction with annealing was introduced
independently in [KGV83] and [Če85] for solving difficult optimization problems. The
resulting algorithm, called Simulated Annealing, works as follows. Suppose we want to
find the global minimum of a function of interest h : Θ → R. This is equivalent to finding
the global maximum of fT (θ) = exp(−h(θ)/T ) for any given T > 0. By analogy with the
Gibbs distribution in statistical mechanics, T is called the temperature parameter. Let
T0 > T1 > . . . be a sequence of monotonically decreasing temperatures, in which T0 is
large enough so that the probability distribution π0(θ) ∝ fT0(θ) is close to uniform, and
limj→∞ Tj = 0. At each temperature Tj, the Simulated Annealing method generates a
Markov chain with πj(θ) ∝ exp(−h(θ)/Tj) as its stationary distribution. The final state
of the Markov chain at simulation level j is used as the initial state for the chain at level
j + 1. The key observation is that for any function h such that

∫

Θ
exp(−h(θ)/T )dθ < ∞

for all T > 0, distribution πj(·), as j increases, puts more and more of its probability mass
(converging to 1) into a neighborhood of the global minimum of h. Therefore, a sample
drawn from πj(·) would almost surely be in a vicinity of the global minimum of h when
Tj is close to zero.

The success of Simulated Annealing in finding the global minimum crucially depends
on the schedule of temperatures used in the simulation. It was proved in [GG84] that if
a logarithmic schedule Tj = T0/ log(j + 1) is used, then, under certain conditions, there
exists a value for T0 such that use of this schedule guarantees that the global minimum
of h will be reached almost surely. In practice, however, such a slow annealing schedule
is not computationally efficient. It is more common to use either a geometric schedule,
Tj+1 = γTj with 0 < γ < 1, or some adaptive schedule, which defines the temperature for
the next annealing level based on characteristics of the samples observed at earlier levels.
For examples of adaptive annealing schedules, see, for instance, [Ne93].

In Bayesian inference problems, the idea of annealing is typically employed in the
following way. First, we construct (in advance or adaptively) a sequence of distributions
π0(·), . . . , πm(·) interpolating between the prior distribution π0(·) and the posterior distri-

bution π(·) ≡ πm(·). Next, we generate i.i.d. samples θ
(1)
0 , . . . , θ

(N)
0 from the prior, which

is assumed to be readily sampled. Then, at each annealing level j, using some MCMC
algorithm and samples θ

(1)
j−1, . . . , θ

(N)
j−1 from the previous level j − 1, we generate samples

θ
(1)
j , . . . , θ

(N)
j which are approximately distributed according to πj(·). We proceed sequen-

tially in this way, until the posterior distribution has been sampled. The rationale behind
this strategy is that sampling from the multi-modal and, perhaps, high-dimensional pos-
terior in such a way is likely to be more efficient than a straightforward MCMC sampling
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of the posterior.
The problem of sampling a complex distribution is encountered in statistical mechan-

ics, computational Bayesian inference, scientific computing, machine learning, and other
fields. As a result, many different efficient algorithms have been recently developed, e.g.
the method of Simulated Tempering [MP92, GT95], the Tempered Transition method
[Ne96], Annealed Importance Sampling [Ne01], the Adaptive Metropolis-Hastings algo-
rithm [BA02], Transitional Markov Chain Monte Carlo method [CC07], to name a few.

In this paper we introduce a new MCMC scheme for Bayesian inference, called Asymp-
totically Independent Markov Sampling (AIMS), which combines the three approaches
described above — importance sampling, MCMC, and annealing — in the following way.
Importance sampling with πj−1(·) as the ISD is used for a construction of an approxima-

tion π̂N
j (·) of πj(·), which is based on samples θ

(1)
j−1, . . . , θ

(N)
j−1 ∼ πj−1(·). This approximation

is then employed as the independent (global) proposal distribution for sampling from πj(·)
by the IMH algorithm. Intermediate distributions π0(·), . . . , πm(·) interpolating between
prior and posterior are constructed adaptively, using the essential sample size (ESS) to
measure how much πj−1(·) differs from πj(·). When the number of samples N → ∞, the
approximation π̂N

j (·) converges to πj(·), providing the optimal proposal distribution. In
other words, when N → ∞, the corresponding MCMC sampler produces independent
samples, hence the name of the algorithm.

Remark 1. The term “Markov sampling” has several different meanings. In this paper it
is used as synonymous to “MCMC sampling”.

In this introductory section, we have described all the main ingredients that we will
need in the subsequent sections. The rest of the paper is organized as follows. In Section 2,
the AIMS algorithm is described. The ergodic properties of AIMS are derived in Section
3. The efficiency of AIMS is illustrated in Section 4 with three numerical examples
that include both multi-modal and high-dimensional posterior distributions. Concluding
remarks are made in Section 5.

2 Asymptotically Independent Markov Sampling

Let π0(·) and π(·) be the prior and the posterior distributions defined on a parameter
space Θ, respectively, so that, according to Bayes’ Theorem, π(θ) ∝ π0(θ)L(θ), where L
denotes the likelihood function for data D. Our ultimate goal is to draw samples that are
distributed according to π(·).

In Asymptotically Independent Markov Sampling (AIMS), we sequentially generate
samples from intermediate distributions π0(·), . . . , πm(·) interpolating between the prior
π0(·) and the posterior π(·) ≡ πm(·). The sequence of distributions could be specially
constructed for a given problem but the following scheme [Ne01, CC07] generally yields
good efficiency:

πj(θ) ∝ π0(θ)L(θ)
βj , (6)

where 0 = β0 < β1 < . . . < βm = 1. We will refer to j and βj as the annealing level and
the annealing parameter at level j, respectively. In the next subsection, we assume that
βj is given and therefore the intermediate distribution πj(·) is also known. In Subsection
2.2, we describe how to choose the annealing parameters adaptively.
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2.1 AIMS at annealing level j

Our first goal is to describe how AIMS generates sample θ
(1)
j , . . . , θ

(Nj)
j from πj(·) based

on the sample θ
(1)
j−1, . . . , θ

(Nj−1)
j−1 ∼ πj−1(·) obtained at the previous annealing level. We

start with an informal motivating discussion that leads to the simulation algorithm. In
Section 3, we rigorously prove that the corresponding algorithm indeed generates samples
which are asymptotically distributed according to πj(·), as the sample size Nj → ∞.

Moreover, the larger Nj−1, the less correlated generated samples θ
(1)
j , . . . , θ

(Nj)
j are — a

very desirable, yet rarely affordable, property for any MCMC algorithm.
Let Kj(·|·) be any transition kernel such that πj(·) is a stationary distribution with

respect to Kj(·|·). By definition, this means that

πj(θ)dθ =

∫

Θ

Kj(dθ|ξ)πj(ξ)dξ (7)

Applying importance sampling with the sampling density πj−1(·) to integral (7), we have:

πj(θ)dθ =

∫

Θ

Kj(dθ|ξ)
πj(ξ)

πj−1(ξ)
πj−1(ξ)dξ

≈
Nj−1
∑

i=1

Kj(dθ|θ(i)j−1)w̄
(i)
j−1

def
= π̂

Nj−1

j (dθ),

(8)

where π̂
Nj−1

j (·) will be used as the global proposal distribution in the Independent Metropolis-
Hastings algorithm, and

w
(i)
j−1 =

πj(θ
(i)
j−1)

πj−1(θ
(i)
j−1)

∝ L(θ
(i)
j−1)

βj−βj−1 and w̄
(i)
j−1 =

w
(i)
j−1

∑Nj−1

k=1 w
(k)
j−1

(9)

are the importance weights and normalized importance weights, respectively. Note that
to calculate w̄

(i)
j−1, we do not need to know the normalizing constants of πj−1(·) and πj(·).

If adjacent intermediate distributions πj−1(·) and πj(·) are sufficiently close (in other
words, if ∆βj = βj −βj−1 is small enough), then the importance weights (9) will not vary
wildly, and, therefore, we can expect that, for reasonably large Nj−1, approximation (8)
is accurate.

Remark 2. In [CB10], the stationary condition (7) was used for an analytical approxima-
tion of the target PDF to evaluate the evidence (marginal likelihood) for a model.

Remark 3. Note that for any finite Nj−1, distribution π̂
Nj−1

j (·) will usually have both
continuous and discrete parts. This follows from the fact that the transition kernel in
Markov chain simulation usually has the following form: K(dθ|ξ) = k(θ|ξ)dθ+r(ξ)δξ(dθ),
where k(·|·) describes the continuous part of the transition kernel, δξ(·) denotes the Dirac
mass at ξ, and r(ξ) = 1−

∫

Θ
k(θ|ξ)dθ. This is the form, for example, for the Metropolis-

Hastings algorithm. Therefore, (8) must be understood as the approximate equality
of distributions, not densities. In other words, (8) means that E

π̂
Nj−1
j

[h] ≈ Eπj
[h] and

E
π̂
Nj−1
j

[h] → Eπj
[h], when Nj−1 → ∞, for all integrable functions h. See also Example 2.1

below.
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From now on, we consider a special case where Kj(·|·) is the random walk Metropolis-
Hastings (RWMH) transition kernel. In this case, it can be written as follows:

Kj(dθ|ξ) = qj(θ|ξ)min

{

1,
πj(θ)

πj(ξ)

}

dθ + (1− aj(ξ))δξ(dθ), (10)

where qj(·|ξ) is a symmetric local proposal density, and aj(ξ) is the probability of having
a proper transition ξ to Θ \ {ξ}:

aj(ξ) =

∫

Θ

qj(θ|ξ)min

{

1,
πj(θ)

πj(ξ)

}

dθ (11)

Example 2.1. As a simple illustration of (8), consider the case when πj(·) = N (·|0, 1),
πj−1(·) = N (·|0, 2), and qj(·|ξ) = N (·|ξ, 1/2), where N (·|µ, σ2) denotes the Gaussian

density with mean µ and variance σ2. The approximation π̂
Nj−1

j (·) based on the samples

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1 ∼ N (·|0, 2) is shown in the top panels of Figure 1, for Nj−1 = 5 and

Nj−1 = 50. Suppose that h1(θ) = θ and h2(θ) = θ2 are the functions of interest. Then
Eπj

[h1] = 0 and Eπj
[h2] = 1. The convergence of h∗

1(Nj−1) = E
π̂
Nj−1
j

[h1] and h∗
2(Nj−1) =

E
π̂
Nj−1
j

[h2] is shown in the bottom panel of Figure 1.

For sampling from πj(·), we will use the Independent Metropolis-Hastings algorithm

(IMH) with the global proposal distribution π̂
Nj−1

j (·). To accomplish this, we have to be

able to calculate the ratio π̂
Nj−1

j (θ)/π̂
Nj−1

j (ξ) for any θ, ξ ∈ Θ as a part of the expression

for the acceptance probability αj(ξ|θ) = min

{

1,
πj(ξ)π̂

Nj−1
j (θ)

πj(θ)π̂
Nj−1
j (ξ)

}

. However, as it has been

already mentioned, the distribution π̂
Nj−1

j (·) does not have a density since it has both

continuous and discrete components, and, therefore, the ratio π̂
Nj−1

j (θ)/π̂
Nj−1

j (ξ) makes
no sense. To overcome this “lack-of-continuity problem”, taking into account (8) and
(10), let us formally define the global proposal distribution over Θ as:

π̂
Nj−1

j (θ)
def
=

Nj−1
∑

i=1

w̄
(i)
j−1qj(θ|θ(i)j−1)min

{

1,
πj(θ)

πj(θ
(i)
j−1)

}

, (12)

if θ /∈
{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}

, and

π̂
Nj−1

j (θ
(k)
j−1)

def
= ∞ (13)

Note that π̂
Nj−1

j (·) is a distribution on Θ, but it does not have a density. However, π̂
Nj−1

j (·)
induces another distribution on Θ \

{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}

which does have a density, given

by the r.h.s. of (12). This motivates (12).

Now, using (12) and (13), we can calculate the ratio π̂
Nj−1

j (θ)/π̂
Nj−1

j (ξ) as follows:

I. If θ, ξ /∈
{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}

, then

π̂
Nj−1

j (θ)

π̂
Nj−1

j (ξ)
=

∑Nj−1

i=1 w̄
(i)
j−1qj(θ|θ(i)j−1)min

{

1,
πj(θ)

πj(θ
(i)
j−1)

}

∑Nj−1

i=1 w̄
(i)
j−1qj(ξ|θ(i)j−1)min

{

1,
πj(ξ)

πj(θ
(i)
j−1)

} (14)

7



II. If θ /∈
{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}

and ξ = θ
(k)
j−1, then

π̂
Nj−1

j (θ)

π̂
Nj−1

j (ξ)
= 0 and αj(ξ|θ) = 0 (15)

III. If θ = θ
(k)
j−1 and ξ /∈

{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}

, then

π̂
Nj−1

j (θ)

π̂
Nj−1

j (ξ)
= ∞ and αj(ξ|θ) = 1 (16)

IV. If θ = θ
(k)
j−1 and ξ = θ

(l)
j−1, then

π̂
Nj−1
j (θ)

π̂
Nj−1
j

(ξ)
is not defined.

Notice that in the first three cases the ratio π̂
Nj−1

j (θ)/π̂
Nj−1

j (ξ) is readily computable,
while in Case IV, it is not even defined. Therefore, it is very desirable to avoid Case
IV. The key observation that allows us to do this is the following: suppose that the

initial state θ
(1)
j of the Markov chain that is generated is such that θ

(1)
j ∈ Θ∗

j

def
= Θ \

{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}

, then θ
(i)
j ∈ Θ∗

j for all i ≥ 1. Indeed, the only way for the chain to

enter the set
{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}

is to generate a candidate state ξ ∈
{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}

;

however, according to Case II, such a candidate will always be rejected. Thus, by replacing
the state space Θ by Θ∗

j and using (14) and (15) for evaluation of π̂
Nj−1

j (θ)/π̂
Nj−1

j (ξ), we

are able to calculate the acceptance probability αj(ξ|θ) = min

{

1,
πj(ξ)π̂

Nj−1
j (θ)

πj(θ)π̂
Nj−1
j (ξ)

}

involved

in the IMH algorithm. It is clear that the replacement of Θ by Θ∗
j is harmless for the

ergodic properties of the Markov chain when Θ ⊆ R
d.

Remark 4. One may wonder why not just use the continuous part of π̂
Nj−1

j (·) as the
global proposal density within the IMH algorithm. In other words, why not use the
density π̂

Nj−1

j,cont(·), which is proportional to the function defined by (12), as the proposal
density. Indeed, in this case we would not have any difficulties with calculating the ratio
π̂
Nj−1

j (θ)/π̂
Nj−1

j (ξ). The problem is that it is not clear how to sample from π̂
Nj−1

j,cont(·), while
sampling from π̂

Nj−1

j (dθ) =
∑Nj−1

i=1 w̄
(i)
j−1Kj(dθ|θ(i)j−1) is straightforward.

The above discussion leads to the following algorithm for sampling from the distribu-
tion πj(·):

AIMS at annealing level j
Input:

⊲ θ
(1)
j−1, . . . , θ

(Nj−1)
j−1 ∼ πj−1(·), samples generated at annealing level j − 1;

⊲ θ
(1)
j ∈ Θ∗

j = Θ \
{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}

, initial state of a Markov chain;

⊲ qj(·|ξ), symmetric proposal density associated with the RWMH kernel;
⊲ Nj , total number of Markov chain states to be generated.

Algorithm:

for i = 1, . . . , Nj − 1 do

1) Generate a global candidate state ξg ∼ π̂
Nj−1

j (·) as follows:
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a. Select k from {1, . . . , Nj−1} with probabilities w̄
(i)
j−1 given by (9).

b. Generate a local candidate ξl ∼ qj(·|θ(k)j−1).
c. Accept or reject ξl by setting

ξg =







ξl, with probability min

{

1,
πj(ξl)

πj(θ
(k)
j−1)

}

;

θ
(k)
j−1, with the remaining probability.

(17)

2) Update θ
(i)
j → θ

(i+1)
j by accepting or rejecting ξg as follows:

if ξg = θ
(k)
j−1

Set θ
(i+1)
j = θ

(i)
j

else

Set

θ
(i+1)
j =







ξg, with probability min

{

1,
πj(ξg)π̂

Nj−1
j (θ

(i)
j )

πj(θ
(i)
j )π̂

Nj−1
j (ξg)

}

;

θ
(i)
j , with the remaining probability.

(18)

end if

end for

Output:

◮ θ
(1)
j , . . . , θ

(Nj)
j , Nj states of a Markov chain with a stationary distribution πj(·)

Schematically, the AIMS algorithm at annealing level j is shown in Figure 2. The
proof that πj(·) is indeed a stationary distribution for the Markov chain generated by
AIMS is given in Section 3.

Remark 5. As usually for MCMC algorithms, the fact of convergence of a Markov chain
to its stationary distribution does not depend on the initial state; however, the speed of
convergence does. One reasonable way to chose the initial state θ

(1)
j ∈ Θ∗

j in practical

applications is the following: generate θ
(1)
j ∼ qj(·|θ(k

∗)
j−1 ), where k∗ = argmaxk w̄

(k)
j−1, i.e.

θ
(k∗)
j−1 has the largest normalized importance weight.

2.2 The full AIMS procedure

At the zeroth annealing level, j = 0, we generate prior samples θ
(1)
0 , . . . , θ

(N0)
0 , which usu-

ally can be readily drawn directly by a suitable choice of the prior distribution π0(·).
Then, using the algorithm described in the previous subsection, we generate samples
θ
(1)
1 , . . . , θ

(N1)
1 , which are approximately distributed according to intermediate distribu-

tion π1(θ) ∝ π0(θ)L(θ)
β1 . We proceed like this until the posterior distribution πm(θ) ∝

π0(θ)L(θ)
βm (βm = 1) has been sampled. To make the description of AIMS complete, we

have to explain how to choose the annealing parameters βj , for j = 2, . . . , m− 1.
It is clear that the choice of the annealing parameters is very important, since, for

instance, it affects the accuracy of the importance sampling approximation (8) and, there-
fore, the efficiency of the whole AIMS procedure. At the same time, it is difficult to make
a rational choice of the βj-values in advance, since this requires some prior knowledge
about the posterior distribution, which is often not available. For this reason, we propose
an adaptive way of choosing the annealing scheme.
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In importance sampling, a useful measure of degeneracy of the method is the effective
sample size (ESS) N eff introduced in [KLW94] and [Li96]. The ESS measures how similar
the importance sampling distribution πj−1(·) is to the target distribution πj(·). Suppose
Nj−1 independent samples θ

(1)
j−1, . . . , θ

(Nj−1)
j−1 are generated from πj−1(·), then the ESS of

these samples is defined as

N eff
j−1 =

Nj−1

1 + varπj−1
[w]

=
Nj−1

Eπj−1
[w2]

, (19)

where w(θ) = πj(θ)/πj−1(θ). The ESS can be interpreted as implying that Nj−1 weighted

samples (θ
(1)
j−1, w

(1)
j−1), . . . , (θ

(Nj−1)
j−1 , w

(Nj−1)
j−1 ) are worth N eff

j−1(≤ Nj−1) i.i.d. samples drawn
from the target distribution πj(·). One cannot evaluate the ESS exactly but an estimate

N̂ eff
j−1 of N eff

j−1 is given by

N̂ eff
j−1(w̄j−1) =

1
∑Nj−1

i=1 (w̄
(i)
j−1)

2
, (20)

where w̄j−1 = (w̄
(1)
j−1, . . . , w̄

(Nj−1)
j−1 ) and w̄

(i)
j−1 is the normalized importance weight of θ

(i)
j−1.

At annealing level j, when βj−1 is already known, the problem is to define βj . Let

γ = N̂ eff
j−1/Nj−1 ∈ (0, 1) be a prescribed threshold that characterizes the “quality” of the

weighted sample (the larger γ is, the “better” the weighted sample is). Then we obtain
the following equation:

Nj−1
∑

i=1

(w̄
(i)
j−1)

2 =
1

γNj−1

(21)

Observe that this equation can be expressed as an equation for βj by using (9):

∑Nj−1

i=1 L(θ
(i)
j−1)

2(βj−βj−1)

(

∑Nj−1

i=1 L(θ
(i)
j−1)

βj−βj−1

)2 =
1

γNj−1

(22)

Solving this equation for βj gives us the value of the annealing parameter at level j.

Remark 6. Note that when j ≥ 2, the θ
(1)
j−1, . . . , θ

(Nj−1)
j−1 are generated by the Markov chain

sampler described in the previous subsection and therefore are not independent. This
means that, because of the autocorrelations produced by the Markov chain used, the
“true” ESS of this sample is, in fact, smaller than the one given by (19). This is useful to
remember when choosing γ. Also, this is another reason to select the prior distribution
π0(·) so that samples can be generated independently at the start of each AIMS run.

Combining the AIMS algorithm at a given annealing level with the described adaptive
annealing scheme gives rise to the following procedure.

The AIMS procedure
Input:

⊲ γ, threshold for the effective sample size (ESS);
⊲ N0, N1, . . ., where Nj is the total number of Markov chain states to be generated

at annealing level j;
⊲ q1(·|ξ), q2(·|ξ), . . ., where qj(·|ξ) is the symmetric proposal density associated with

the RWMH kernel at annealing level j.
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Algorithm:

Set j = 0, current annealing level.
Set β0 = 0, current annealing parameter.

Sample θ
(1)
0 , . . . , θ

(N0)
0

i.i.d∼ π0(·).
Calculate W̄

(i)
0 =

L(θ
(i)
0 )1−β0

∑N0
i=1 L(θ

(i)
0 )1−β0

, i = 1, . . . , N0.

Calculate the ESS N̂ eff
0 = N̂ eff

0 (W̄0) using (20), which measures how similar the
prior distribution π0(·) is to the target posterior distribution π(·).
while N̂ eff

j /Nj < γ do

Find βj+1 from equation (22).

Calculate normalized importance weights w̄
(i)
j , i = 1, . . . , Nj using (9).

Generate a Markov chain θ
(1)
j+1, . . . , θ

(Nj+1)
j+1 with the stationary distribution

πj+1(·) using the AIMS algorithm at annealing level j + 1.

Calculate W̄
(i)
j+1 =

L(θ
(i)
j+1)

1−βj+1

∑Nj+1
i=1 L(θ

(i)
j+1)

1−βj+1
, i = 1, . . . , Nj+1.

Calculate the ESS N̂ eff
j+1 = N̂ eff

j+1(W̄j+1) using (20), which measures how
similar the intermediate distribution πj+1(·) is to the posterior π(·).
Increment j to j + 1.

end while

Set βj+1 = 1, current annealing parameter.
Set m = j + 1, the total number of distributions in the annealing scheme.
Set w̄

(i)
m−1 = W̄

(i)
m−1, i = 1, . . . , Nm−1.

Generate a Markov chain θ
(1)
m , . . . , θ

(Nm)
m with the stationary distribution

πm(·) = π(·) using the AIMS algorithm at annealing level m.
Output:

◮ θ
(1)
m , . . . , θ

(Nm)
m ∼̇π(·), samples that are approximately distributed according

to the posterior distribution.

2.3 Implementation issues

As it follows from the description, the AIMS procedure has the following parameters: γ,
the threshold for the effective sample size; Nj, the length of a Markov chain generated at
annealing level j = 1, . . . , m; and qj(·|ξ), the symmetric proposal density associated with
the RWMH kernel at level j = 1, . . . , m. Here, we discuss the choice of these parameters
and how this choice affects the efficiency of AIMS.

First of all, it is absolutely clear that, as for any Monte Carlo method, the larger the
number of generated samples is, the more accurate the corresponding estimates of (1) are.
However, we would like to highlight the difference between the roles of Nj−1 and Nj at

annealing level j. While Nj is directly related to the convergence of the chain θ
(1)
j , . . . , θ

(Nj)
j

to its stationary distribution πj(·), Nj−1 affects this convergence implicitly through the

global proposal distribution π̂
Nj−1

j (·): the larger Nj−1, the more accurate approximation

(8) is, and, therefore, the less correlated θ
(1)
j , . . . , θ

(Nj)
j are. When Nj−1 → ∞, samples

θ
(1)
j , . . . , θ

(Nj)
j become independent draws from πj(·), hence the name of the algorithm.

Thus, if we increase N = Nj−1 = Nj, the effect is twofold: first, the sample size increases
thereby increasing the effective number of independent samples at the jth level (typical for
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any Monte Carlo method); second, the samples become less correlated (a useful feature of
AIMS), again increasing the effective number of independent samples. As a result of these
two effects, increasing N has a strong influence on the effective number of independent
posterior samples and so strongly reduces the variance of the estimator for (1).

Suppose now that we are at the last annealing level and generating a Markov chain
θ
(1)
m , . . . , θ

(Nm)
m with the stationary distribution πm(·) = π(·). We will refer to this chain

as the posterior Markov chain. A critical question faced by users of MCMC methods is
how to determine when it is safe to stop sampling from the posterior distribution and
use samples θ

(1)
m , . . . , θ

(Nm)
m for estimation. In other words, how large should Nm be? One

possible solution of this “convergence assessment problem” is to use one of the numer-
ous published diagnostic techniques; for example, see [CC96] for a comparative review of
MCMC convergence diagnostics. Unfortunately, none of the published diagnostics allows
one to say with certainty that a finite sample from an MCMC algorithm is representa-
tive of an underlying stationary distribution. A more empirical approach for assessing
convergence is to run several posterior Markov chains θ

(1)
k,m, . . . , θ

(Nm)
k,m , k = 1, . . . , K, in

parallel and monitor the corresponding estimators ĥ1, . . . , ĥK of Eπ[h]. A stopping rule
for convergence is then

max
1≤i<j≤K

|ĥi − ĥj | < ε, (23)

where ε is a minimum precision requirement. It is important to emphasise, though, that
rule (23), although easy-to-understand and easy-to-implement, does not assure conver-
gence of the chains (especially if π(·) is multi-modal): “the potential for problems with
multiple modes exists whenever there is no theoretical guarantee that the distribution is
unimodal” [Ne01].

The threshold γ affects the speed of annealing. If γ is very small, i.e. close to zero,
then AIMS will have very few intermediate distributions interpolating between the prior
and posterior distributions, and this will lead to inaccurate results for a moderate number
of samples. On the other hand, if γ is very large, i.e. close to one, then AIMS will have
too many intermediate distributions, which will make the algorithm computationally very
expensive.

The proposed method for finding βj-values is based on the ESS, and βj is defined
from equation (21) (or, equivalently, from (22)). A similar adaptive approach for defining
an annealing scheme was proposed in [CC07]. It is based on the coefficient of variation
(COV) of the importance weights (9). More precisely, the equation for βj is given by

√

1
Nj−1

∑Nj−1

i=1

(

w
(i)
j−1 − 1

Nj−1

∑Nj−1

i=1 w
(i)
j−1

)2

1
Nj−1

∑Nj−1

i=1 w
(i)
j−1

= δ, (24)

where δ > 0 is a prescribed threshold. It is easy to show that the ESS-criterion (21) and
the COV-criterion (24) are mathematically equivalent; in fact, N̂ eff

j−1 = Nj−1/(1+ δ2). We
prefer to use the former criterion since γ has a clear meaning: it is the factor by which the
(essential) sample size of the weighted sample is reduced as a penalty for sampling from
the importance sampling density instead of the target distribution. It has been found in
[CC07] that δ = 1 is usually a reasonable choice of the threshold. This corresponds to
γ = 1/2. Our simulation results (see Section 4) also show that annealing schemes with γ
around 1/2 yield good efficiency.
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The choice of the local proposal density qj(·|ξ) associated with the RWMH kernel deter-
mines the ergodic properties of the Markov chain generated by AIMS at level j; it also de-

termines how efficiently the chain explores local neighborhoods of samples θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

generated at the previous level. This makes the choice of qj(·|ξ) very important.
It has been observed by many researchers that the efficiency of Metropolis-Hastings

based MCMC methods is not sensitive to the type of the proposal density; however, it
strongly depends on its variance (e.g. [GRG96, AB01]). For this reason, we suggest using
a Gaussian density as the local proposal:

qj(θ|ξ) = N (θ|ξ, c2jI), (25)

where ξ and c2jI are the mean and diagonal covariance matrix, respectively. The scaling
parameter c2j determines the “spread” of the local proposal distribution. In Section 3,
we prove (Theorem 3) that, under certain conditions, the acceptance rate Āj (i.e. the

expected probability of having a proper Markov transition θ
(i)
j to θ

(i+1)
j 6= θ

(i)
j ) satisfies

Āj ≥ 1
M
, where constant M depends on qj(·|ξ) and, therefore, on c2j . This result can

be potentially used for finding an optimal c2j that would minimize M . Alternatively,
a more empirical way of choosing the scaling factor consists of adjusting c2j based on
the estimated acceptance rate. This works as follows: first, choose an initial value for
the scaling factor, c2j,0, and estimate the corresponding acceptance rate Āj(c

2
j,0) based

on Nj generated Markov states, then modify c2j,0 to obtain an increase in Āj. Whether
this optimization in c2j is useful depends on whether the accuracy of the estimator that
is achieved compensates for the additional computational cost. Finally, note that our
simulation results show (see Section 4) that, as j increases, the corresponding optimal
scaling factor c2j decreases slightly. This observation coincides with intuition, since when
j increases, the intermediate distributions πj(·) become more concentrated.

In the following section we establish the ergodic properties of the Markov chains gen-
erated by AIMS.

3 Ergodic properties of AIMS

Since the discussion in Subsection 2.1, which motivated AIMS at annealing level j, in-
volved delta functions and formal equalities (12) and (13), we cannot simply rely on the
convergence of the IMH algorithm in verification of AIMS; a rigorous proof is needed.
First we prove that the described algorithm indeed generates a Markov chain with a
stationary distribution πj(·). We also explain that when the proposal density qj(·|ξ) is
reasonably chosen, πj(·) is the unique (and, therefore, limiting) stationary distribution of
the corresponding Markov chain.

Theorem 1. Let θ
(1)
j , θ

(2)
j , . . . be the Markov chain on Θ∗

j = Θ \
{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}

gen-

erated by the AIMS algorithm at annealing level j, then πj(·) is a stationary distribution
of the Markov chain.

Proof. Let Kj(·|·) denote the transition kernel of the Markov chain generated by AIMS
at annealing level j. From the discription of the algorithm it follows that Kj(·|·) has the
following form:
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Kj(dξ|θ) =
Nj−1
∑

i=1

w̄
(i)
j−1qj(ξ|θ(i)j−1)min

{

1,
πj(ξ)

πj(θ
(i)
j−1)

}

min

{

1,
πj(ξ)π̂

Nj−1

j (θ)

πj(θ)π̂
Nj−1

j (ξ)

}

dξ

+ (1−Aj(θ))δθ(dξ),

(26)

where Aj(θ) is the probability of having a proper transition θ to Θ∗
j \ {θ}:

Aj(θ) =

∫

Θ∗

j

Nj−1
∑

i=1

w̄
(i)
j−1qj(ξ|θ(i)j−1)min

{

1,
πj(ξ)

πj(θ
(i)
j−1)

}

min

{

1,
πj(ξ)π̂

Nj−1

j (θ)

πj(θ)π̂
Nj−1

j (ξ)

}

dξ (27)

A sufficient condition for πj(·) to be a stationary distribution is for Kj(·|·) to satisfy
the detailed balance condition:

πj(dθ)Kj(dξ|θ) = πj(dξ)Kj(dθ|ξ) (28)

Without loss of generality, we assume that θ 6= ξ, since otherwise (28) is trivial. In this
case Kj(dξ|θ) is given by the first term in (26), since the second term vanishes. Thus, all
we need to prove is that function

E(θ, ξ) def
= πj(θ)

Nj−1
∑

i=1

w̄
(i)
j−1qj(ξ|θ(i)j−1)min

{

1,
πj(ξ)

πj(θ
(i)
j−1)

}

min

{

1,
πj(ξ)π̂

Nj−1

j (θ)

πj(θ)π̂
Nj−1

j (ξ)

}

(29)

is symmetric with respect to permutation θ ↔ ξ, for all θ, ξ ∈ Θ∗
j . Taking into account

(12) and a simple fact that amin{1, b/a} = bmin{1, a/b} for all a, b > 0, we have:

E(θ, ξ) = πj(θ)π̂
Nj−1

j (ξ)min

{

1,
πj(ξ)π̂

Nj−1

j (θ)

πj(θ)π̂
Nj−1

j (ξ)

}

= πj(ξ)π̂
Nj−1

j (θ)min

{

1,
πj(θ)π̂

Nj−1

j (ξ)

πj(ξ)π̂
Nj−1

j (θ)

}

= E(ξ, θ)
(30)

This proves that πj(·) is a stationary distribution of the AIMS Markov chain.

A stationary distribution is unique and is the limiting distribution for a Markov chain,
if the chain is aperiodic and irreducible (see, for example, [Ti94]). In the case of AIMS,
aperiodicity is guaranteed by the fact that the probability of having a repeated sample
θ
(i+1)
j = θ

(i)
j is not zero: for example, if the local candidate state ξl is rejected in step 1c,

then we automatically have θ
(i+1)
j = θ

(i)
j . A Markov chain with stationary distribution

π(·) is irreducible if, for any initial state, it has positive probability of entering any set to
which π(·) assigns positive probability. It is clear that if the proposal distribution qj(·|ξ) is
“standard” (e.g. Gaussian, uniform, log-normal, etc), then AIMS generates an irreducible
Markov chain. In this case, πj(·) is therefore the unique stationary distribution of the
AIMS Markov chain, and for every θ ∈ Θ∗

j

lim
n→∞

‖Kn
j (·|θ)− πj(·)‖TV = 0, (31)
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with ‖ · ‖TV denoting the total variation distance. Recall that the total variation dis-
tance between two measures µ1(·) and µ2(·) on Θ is defined as ‖µ1(·) − µ1(·)‖TV =
supA⊂Θ |µ1(A) − µ2(A)|. In a simulation setup, the most important consequence of con-
vergence property (31) is, of course, that the sample mean converges to the expectation
of a measurable function of interest almost surely:

lim
Nj→∞

1

Nj

Nj
∑

i=1

h(θ
(i)
j ) =

∫

Θ

h(θ)πj(θ)dθ (32)

Convergence (31) ensures the proper behavior of the AIMS chain θ
(1)
j , θ

(2)
j , . . . regardless

of the initial state θ
(1)
j . A more detailed description of convergence properties involves

the study of the speed of convergence of Kn
j (·|θ) to πj(·). Evaluation (or estimation) of

this speed is very important for any MCMC algorithm, since it relates to a stopping rule
for this algorithm: the higher the speed of convergence Kn

j (·|θ) → πj(·), the less samples
are need to obtain an accurate estimate in (32). Recall, following [MT09], that a chain
θ(1), θ(2), . . . is called uniformly ergodic if

lim
n→∞

sup
θ∈Θ

‖Kn(·|θ)− π(·)‖TV = 0 (33)

The property of uniform ergodicity is stronger than (31), since it guarantees that the speed
of convergence is uniform over the whole space. Moreover, a Markov chain is uniformly
ergodic if and only if there exist r > 1 and R < ∞ such that for all θ ∈ Θ

‖Kn(·|θ)− π(·)‖TV ≤ Rr−n, (34)

that is, the convergence in (33) takes place at uniform geometric rate [MT09].

Theorem 2. If there exists a constant M such that for all θ ∈ Θ∗
j

πj(θ) ≤ Mπ̂
Nj−1

j (θ), (35)

then the AIMS algorithm at annealing level j produces a uniformly ergodic chain and

‖Kn
j (·|θ)− πj(·)‖TV ≤

(

1− 1

M

)n

(36)

Proof. To prove the first part of the theorem we will need the notion of a small set [MT09].
A set A ⊂ Θ is called a small set if there exists an integer m > 0 and a non-trivial measure
µm on Θ, such that for all θ ∈ A, B ⊂ Θ:

Km(B|θ) ≥ µm(B) (37)

In this case we say that A is µm-small. It can be shown [MT09] that a Markov chain is
uniformly ergodic if and only if its state space is µm-small for some m. Thus, to prove
the theorem, it is enough to show that Θ∗

j is a small set.
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If (35) is satisfied, than the following holds for transition kernel (26) for θ ∈ Θ∗
j and

B ⊂ Θ∗
j :

Kj(B|θ) ≥
∫

B

Nj−1
∑

i=1

w̄
(i)
j−1qj(ξ|θ(i)j−1)min

{

1,
πj(ξ)

πj(θ
(i)
j−1)

}

min

{

1,
πj(ξ)π̂

Nj−1

j (θ)

πj(θ)π̂
Nj−1

j (ξ)

}

dξ

=

∫

B

π̂
Nj−1

j (ξ)min

{

1,
πj(ξ)π̂

Nj−1

j (θ)

πj(θ)π̂
Nj−1

j (ξ)

}

dξ

=

∫

B

min

{

π̂
Nj−1

j (ξ), πj(ξ)
π̂
Nj−1

j (θ)

πj(θ)

}

dξ

≥
∫

B

min

{

π̂
Nj−1

j (ξ),
πj(ξ)

M

}

dξ =
1

M

∫

B

πj(ξ)dξ =
1

M
πj(B)

(38)

The sample space Θ∗
j is therefore

πj

M
-small, and the corresponding Markov chain is uni-

formly ergodic.
To prove bound (36), first observe, using (38), that

‖Kj(·|θ)− πj(·)‖TV = sup
A

|Kj(A|θ)− πj(A)| ≤ sup
A

|πj(A)−
1

M
πj(A)| = 1− 1

M
(39)

For n > 1, using the Chapman-Kolmogorov equation Km+n(A|θ) =
∫

Θ
Km(A|ξ)Kn(dξ|θ)

and stationarity of πj(·) with respect to Kj(·|·), we have:

‖Kn
j (·|θ)− πj(·)‖TV = sup

A

|Kn
j (A|θ)− πj(A)|

= sup
A

∣

∣

∣

∣

∣

∫

Θ∗

j

Kj(A|ξ)Kn−1
j (dξ|θ)−

∫

Θ∗

j

Kj(A|ξ)πj(ξ)dξ

∣

∣

∣

∣

∣

= sup
A

∣

∣

∣

∣

∣

∫

Θ∗

j

Kj(A|ξ)
[

Kn−1
j (dξ|θ)− πj(ξ)dξ

]

∣

∣

∣

∣

∣

= sup
A

∣

∣

∣

∣

∣

∫

Θ∗

j

[Kj(A|ξ)− πj(A)]
[

Kn−1
j (dξ|θ)− πj(ξ)dξ

]

∣

∣

∣

∣

∣

,

(40)

where the last equality follows from the fact that
∫

Θ∗

j
Kn−1

j (dξ|θ) =
∫

Θ∗

j
πj(ξ)dξ = 1.

Finally, we obtain:

‖Kn
j (·|θ)− πj(·)‖TV ≤ sup

B

sup
A

∣

∣

∣

∣

∫

B

[Kj(A|ξ)− πj(A)]
[

Kn−1
j (dξ|θ)− πj(ξ)dξ

]

∣

∣

∣

∣

≤ sup
B

∣

∣

∣

∣

∫

B

sup
A

|Kj(A|ξ)− πj(A)|
[

Kn−1
j (dξ|θ)− πj(ξ)dξ

]

∣

∣

∣

∣

= ‖Kj(·|θ)− πj(·)‖TV · ‖Kn−1
j (·|θ)− πj(·)‖TV ≤

(

1− 1

M

)n

(41)

Remark 7. Note that if there exists a constant M such that (35) holds for all θ ∈ Θ∗
j ,

then M > 1 automatically.
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Corollary 1. If Θ ⊂ R
d is a compact set and qj(·|ξ) is a Gaussian distribution centered

at ξ, then the AIMS algorithm at annealing level j produces a uniformly ergodic chain and
(36) holds with M given by

M =





Nj−1
∑

i=1

w̄
(i)
j−1

minθ∈Θ qj(θ|θ(i)j−1)

maxθ∈Θ πj(θ)





−1

(42)

Proof. Let us show that in this case condition (35) is always fulfilled. For any θ ∈ Θ∗
j we

have:

π̂
Nj−1

j (θ) =

Nj−1
∑

i=1

w̄
(i)
j−1qj(θ|θ(i)j−1)min

{

1,
πj(θ)

πj(θ
(i)
j−1)

}

=

Nj−1
∑

i=1

w̄
(i)
j−1qj(θ|θ(i)j−1)

πj(θ)

πj(θ
(i)
j−1)

min

{

1,
πj(θ

(i)
j−1)

πj(θ)

}

≥ πj(θ)

Nj−1
∑

i=1

w̄
(i)
j−1

minθ∈Θ qj(θ|θ(i)j−1)

πj(θ
(i)
j−1)

min

{

1,
πj(θ

(i)
j−1)

maxθ∈Θ πj(θ)

}

= πj(θ)

Nj−1
∑

i=1

w̄
(i)
j−1

minθ∈Θ qj(θ|θ(i)j−1)

maxθ∈Θ πj(θ)

(43)

Thus, (35) holds with M given by (42).

Remark 8. Note than the assumption of compactness of the sample space Θ is not very
restrictive and is typically satisfied in most Bayesian statistics problems. Indeed, to fulfill
this condition, it is enough to take a prior distribution π0(·) with compact support. Next,
it is clear from the proof, that the conclusion of Corollary 1 holds for different “reasonable”
(not only Gaussian) proposal distributions qj(·|ξ). Therefore, the AIMS algorithm will
produce a uniformly ergodic Markov chain in many practical cases.

It has been recognized for a long time that, when using an MCMC algorithm, it is
useful to monitor its acceptance rate Ā, i.e. expected probability of having a proper
Markov jump θ(i) to θ(i+1) 6= θ(i). While in the case of the RWMH algorithm, the finding
of the optimal acceptance rate is a difficult problem: neither high nor low Ā is good
[GRG96]; for IMH the picture is rather simple: the higher Ā, the better [RC04]. Since
AIMS is based on the IMH algorithm, their properties are very similar. In particular, one
should aim for the highest possible acceptance rate of the global candidate state ξg when
implementing AIMS.

We finish this section with a result that provides bounds for the acceptance rate of the
AIMS algorithms. These bounds can be useful for finding the optimal implementation
parameters.

Theorem 3. Let Āj be the expected probability of having a proper Markov transition
associated with the AIMS algorithm at annealing level j. Then

Āj ≤
Nj−1
∑

i=1

w̄
(i)
j−1aj(θ

(i)
j−1), (44)
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where aj(θ
(i)
j−1) is probability (11) associated with having a proper transition under the

RWMH transition kernel (10). If (35) holds, then

Āj ≥
1

M
(45)

Proof. For every θ ∈ Θ∗
j , the probability Aj(θ) of transition θ to Θ∗

j \{θ} is given by (27).
For its expected value we have:

Āj =

∫

Θ∗

j

πj(θ)Aj(θ)dθ

=

∫

Θ∗

j

∫

Θ∗

j

πj(θ)

Nj−1
∑

i=1

w̄
(i)
j−1qj(ξ|θ(i)j−1)min

{

1,
πj(ξ)

πj(θ
(i)
j−1)

}

min

{

1,
πj(ξ)π̂

Nj−1

j (θ)

πj(θ)π̂
Nj−1

j (ξ)

}

dξdθ

≤
∫

Θ∗

j

∫

Θ∗

j

πj(θ)

Nj−1
∑

i=1

w̄
(i)
j−1qj(ξ|θ(i)j−1)min

{

1,
πj(ξ)

πj(θ
(i)
j−1)

}

dξdθ

=

∫

Θ∗

j

πj(θ)

Nj−1
∑

i=1

w̄
(i)
j−1aj(θ

(i)
j−1)dθ =

Nj−1
∑

i=1

w̄
(i)
j−1aj(θ

(i)
j−1)

(46)

To prove the lower bound (45), we use (12) in the equation defining Āj:

Āj =

∫

Θ∗

j

∫

Θ∗

j

πj(θ)π̂
Nj−1

j (ξ)min

{

1,
πj(ξ)π̂

Nj−1

j (θ)

πj(θ)π̂
Nj−1

j (ξ)

}

dξdθ

=

∫

Θ∗

j

∫

Θ∗

j

πj(θ)π̂
Nj−1

j (ξ)I

(

πj(ξ)π̂
Nj−1

j (θ)

πj(θ)π̂
Nj−1

j (ξ)
≥ 1

)

dξdθ

+

∫

Θ∗

j

∫

Θ∗

j

πj(θ)π̂
Nj−1

j (ξ)I

(

πj(θ)π̂
Nj−1

j (ξ)

πj(ξ)π̂
Nj−1

j (θ)
≥ 1

)

πj(ξ)π̂
Nj−1

j (θ)

πj(θ)π̂
Nj−1

j (ξ)
dξdθ

= 2

∫

Θ∗

j

∫

Θ∗

j

πj(θ)π̂
Nj−1

j (ξ)I

(

πj(ξ)π̂
Nj−1

j (θ)

πj(θ)π̂
Nj−1

j (ξ)
≥ 1

)

dξdθ

≥ 2

∫

Θ∗

j

∫

Θ∗

j

πj(θ)
πj(ξ)

M
I

(

πj(ξ)

π̂
Nj−1

j (ξ)
≥ πj(θ)

π̂
Nj−1

j (θ)

)

dξdθ

=
2

M
P

(

πj(ξ)

π̂
Nj−1

j (ξ)
≥ πj(θ)

π̂
Nj−1

j (θ)

)

=
1

M
,

(47)

where the last probability is equal to 1/2, because θ and ξ are i.i.d. according to πj(·),
and hence the result.

Remark 9. The AIMS algorithm at annealing level j has two accept/reject steps: one is
for the local candidate ξl (step 1c) and another is for the global candidate ξg (step 2).
The right-hand side of (44) is nothing else but the local acceptance rate, i.e. expected

probability of generating a proper local candidate state ξl /∈ {θ(1)j−1, . . . , θ
(Nj−1)
j−1 }. Basically,

(44) says that the global acceptance rate Āj can never exceed the local acceptance rate.
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In fact, it can be deduced directly from the description of the algorithm, since if the local
candidate ξl is rejected, then the global candidate ξg is automatically rejected and we

have a repeated sample θ
(i+1)
j = θ

(i)
j .

4 Illustrative Examples

In this section we illustrate the use of AIMS with three examples: 1) mixture of ten
Gaussian distributions in two dimensions (a multi-modal case); 2) sum of two multivariate
Gaussian distributions in higher dimensions; and 3) Bayesian updating of a neural network
model.

4.1 Multi-modal mixture of Gaussians in 2D

To demonstrate the efficiency of AIMS for sampling from multi-modal distributions, con-
sider simulation from a truncated two-dimensional mixture of M Gaussian densities:

π(θ) ∝ π0(θ) · L(θ) = U[0,a]×[0,a](θ) ·
M
∑

i=1

wiN (θ|µi, σ
2
I2), (48)

where U[0,a]×[0,a](·) denotes the uniform distribution on the square [0, a] × [0, a]. In this
example, a = 10, M = 10, σ = 0.1, w1 = . . . = w10 = 0.1, and the mean vectors
µ1, . . . , µ10 are drawn uniformly from the square [0, 10]× [0, 10]. Because of our interest
in Bayesian updating, we refer to π(·) in (48) as a posterior distribution.

Figure 3(a) displays the scatterplot of 103 posterior samples obtained from AIMS. No-
tice there are two clusters of samples that overlap significantly near θ = (4, 4) that reflect
two closely spaced Gaussian densities but the other 8 clusters are widely spaced. The
parameters of the algorithm were chosen as follows: sample size N = 103 per annealing
level; the threshold for the ESS γ = 1/2; the local proposal density qj(·|ξ) = N (·|ξ, c2I2),
with c = 0.2. The trajectory of the corresponding posterior Markov chain, i.e. the chain
generated at the last annealing level with stationary distribution π(·), is shown in Fig-
ure 3(b). Black crosses × represent the mean vectors µ1, . . . , µ10. As expected, the chain
does not exhibit a local random walk behavior and it moves freely between well-separated
modes of the posterior distribution.

The described implementation of AIMS leads to a total number of m = 6 intermediate
distributions in the annealing scheme. Figure 4 shows how annealing parameter βj changes
as a function of j for 50 independent runs of the algorithm. It is found that in all considered
examples, βj grows exponentially with j.

Let us now compare the performance of AIMS with the Random Walk Metropolis-
Hastings algorithm. For a fair comparison, the Metropolis-Hastings algorithm was imple-
mented as follows. First, a sample of N0 = 103 points θ

(1)
0 , . . . , θ

(N0)
0 was drawn from the

prior distribution π0(·) = U[0,a]×[0,a](·) and the corresponding values of the likelihood func-

tion L(θ) =
∑M

i=1wiN (θ|µi, σ
2
I2) were calculated, Li = L(θ

(i)
0 ). Then, starting from the

point with the largest likelihood, θ(1) = θ
(k)
0 , k = argmaxLi, a Markov chain θ(1), . . . , θ(N),

with stationary distribution π(·) was generated using the Metropolis-Hastings algorithm.
The proposal distribution used was q(·|ξ) = N(·|ξ, c2I2) with c = 0.2, and the length of
the chain was N = 5 · 103. Thus, the total number of samples used in both AIMS and
RWMH was Nt = 6 · 103. The scatterplot of posterior samples obtained from RWMH

19



and the trajectory of the corresponding Markov chain are show in Figures 3(c) and 3(d),
respectively. While the AIMS algorithm successfully sampled all 10 modes with the ap-
proximately correct proportion of total samples, RWHM completely missed 7 modes.

Suppose that we are interested in estimating the posterior mean vector, µπ = (µπ
1 , µ

π
2),

and the components (σπ
1 )

2, (σπ
2 )

2, σπ
12 of the posterior covariance matrix Σπ. Their true

values are given in Table 1 along with the AIMS estimates in terms of their means and co-
efficients of variation averaged over 50 independent simulations, all based on 103 posterior
samples.

Figure 5 displays the mean square error (MSE) of the AIMS estimator for the posterior
mean and covariance matrix for different values of the scaling factor c. The MSE was
estimated based on 50 independent runs of the algorithm. An interesting observation is
that the MSE as a function of c is nearly flat around the optimal, copt ≈ 0.15, i.e. the one
that minimizes the MSE.

4.2 Mixture of two higher-dimensional Gaussians

To demonstrate the efficiency of AIMS for higher dimensionality, consider simulation from
a truncated sum of two multivariate Gaussian densities:

πd(θ) ∝ πd
0(θ) · Ld(θ) = U[−a,a]d(θ) ·

(

N (θ|µ1, σ
2
Id) +N (θ|µ2, σ

2
Id)
)

, (49)

where a = 2, µ1 = (0.5, . . . , 0.5), µ2 = (−0.5, . . . ,−0.5), and σ = 0.5. Thus, πd(·)
is a bimodal distribution on a d-dimensional cube [−a, a]d. Suppose that a quantity
of interest is the function h : [−a, a]d → [−a, a] that gives the largest component of
θ = (θ1, . . . , θd) ∈ [−a, a]d :

h(θ) = max{θ1, . . . , θd} (50)

and we want to estimate its expectation with respect to πd(·) using posterior samples
θ(1), . . . , θ(N) ∼ πd(·) as follows:

h̄ = Eπd [h] ≈ ĥN =
1

N

N
∑

i=1

h(θ(i)) (51)

This example is taken from [CC07], where the Transitional Markov chain Monte Carlo
method (TMCMC) for sampling from posterior densities was introduced.

Here, we consider five cases: d = 2, 4, 6, 10, and 20. The performance of TMCMC
was examined for only the first three cases in [CC07]. The last two cases are higher
dimensional, and, therefore, more challenging.

The details of implementation and simulation results from 50 independent runs are
summarized in Table 2. First of all, observe that AIMS outperforms TMCMC, when
d = 2, 4, 6. Both methods are capable of generating samples from both modes of the
posterior; however, the probabilities of the modes (each is 1/2 in this example) are found
more accurately by AIMS.

Remark 10. In addition to the first three cases, five other scenarios with different prob-
abilities of modes and different values of σ were examined in [CC07]. It is found that
AIMS outperforms TMCMC in all these cases too.
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Results presented in Table 2 help to shed some light on the properties of the optimal
scaling parameter copt for the proposal density qj(·|ξ) = N (·|ξ, c2Id). It appears copt
depends not only on the dimension d, which is expected, but also on N , the number of
samples used per each annealing level. The latter dependence is explained by the fact
that the global proposal distribution π̂N

j (·) for the AIMS Markov chain depends both on
N and c: π̂N

j (·) is a weighted sum of N RWMH transition kernels with Gaussian proposal
distributions, whose spread is controlled by c. When N is fixed, copt is a monotonically
increasing function of d, since in higher dimensions, for optimal local exploration of the
neighborhoods of θ

(1)
j−1, . . . , θ

(N)
j−1, we have to be able to make larger local jumps from θ

(k)
j−1

to ξl. When d is fixed, copt is a monotonically decreasing function of N , since the more

samples θ
(1)
j−1, . . . , θ

(N)
j−1 that have been generated at the previous level, the more we can

focus on local exploration of their neighborhoods without worrying too much about regions
that lie far away. If we think of the support of qj(·|θ(k)j−1) = N (·|θ(k)j−1, c

2
Id) as lying mostly

in a d-dimensional ball of radius c centered at θ
(k)
j−1, then we can explain the dependence

of copt on N as follows: the more d-dimensional balls of radius c we have, the smaller c
we can use for covering the sample space.

It is interesting to look at how the local and global acceptance rates (see Remark 9)
depend on the scaling parameter c. Figures 6, 7, and 8 display these acceptance rates
along with the coefficient of variation δ of the AIMS estimator for the first three cases:
d = 2, 4 and 6, based on 50 independent runs. As expected, the global acceptance rate is
always smaller than the local acceptance rate, and the minimum value of δ corresponds
to the maximum value of the global acceptance rate. Observe also that the peak of the
global acceptance rate slides to the left, when j increases. This suggests that it is more
efficient to use smaller values of c at higher annealing levels. Indeed, it is natural to
expect that coptj > coptj+1, since the intermediate distribution πj+1(·) is more concentrated
than πj(·).

Finally, we draw attention to Case 4 in Table 2 where d = 10 with N = 103 and
N = 2 · 103 samples per annealing level. Usually for Monte Carlo based methods, the
coefficient of variation δ of the estimator is proportional to 1/

√
Nt, where Nt is the total

number of samples. Thus, the doubling of sample size will result in the reduction of δ by
the factor of 1/

√
2 ≈ 0.71. For AIMS, however, the decrease of δ is more significant: from

δ = 26.7% to δ = 12.2%, i.e. approximately by the factor of 0.46. This is because, as
explained in Subsection 2.3, the increase of N affects not only the total sample size, but
also improves the global proposal distribution π̂N

j (·). This improvement of π̂N
j (·) results

in the generation of less correlated samples at each annealing level and, therefore, leads
to an additional reduction of the coefficient of variation δ.

4.3 Bayesian updating of a neural network

To illustrate the use of AIMS for Bayesian updating, consider its application to a feed-
forward neural network model, one of the most popular and most widely used models
for function approximation. The goal is to approximate a (potentially highly nonlinear)
function f : X → R, where X ⊂ R

p is a compact set, based on a finite number of
measurements yi = f(xi), i = 1, . . . , n, by using a finite sum of the form

f̂(x, θ) =

M
∑

j=1

αjΨ(〈x, βj〉+ γj) (52)
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where θ denotes the model parameters αj , γj ∈ R and βj ∈ R
p, 〈·, ·〉 is the standard scalar

product in R
p, and Ψ is a sigmoidal function, the typical choice being either the logistic

function or the tanh function that is used in this example:

Ψ(z) =
ez − e−z

ez + e−z
. (53)

Model (52) is called a feed-forward neural network (FFNN) with activation function (53),
p input units, one hidden layer withM hidden units, and one output unit. The parameters
βj and αj are called the connection weights from the input units to the hidden unit j and
the connection weights from the hidden unit j to the output unit, respectively. The term
γj is a designated bias of the hidden unit j and it can be viewed as a connection weight
from an additional constant unit input. Schematically, the FFNN model is shown in
Figure 9.

The rationale behind the FFNN approximation method follows from the universal
approximation property of FFNN models [Cy89, HSW89]; that is, a FFNN with sufficient
number of hidden units and properly adjusted connection weights can approximate most
functions arbitrarily well. More precisely, finite sums (52) over all positive integers M are
dense in the set of real continuous functions on the p-dimensional unit cube.

Let A denote the FFNN architecture, i.e. the input-output model (52) together with
information about the type of activation function Ψ, number of input units p, and number
of hidden units M . In this example, we use p = 1, M = 2, and Ψ is given by (53), so the
model parameters θ = (α1, α2, β1, β2, γ1, γ2) ∈ Θ = R

6.
Deterministic model A of function f given by f̂(x, θ) in (52) can be used to construct

a Bayesian (stochastic) model M of function f by stochastic embedding (see the details in
[Be08, Be10]). Recall, that by definition, a Bayesian modelM consists of two components:

1. An input-output probability model y ∼ p(y|x, θ,M), which is obtained by intro-
ducing the prediction-error

ε = y − f̂(x, θ), (54)

which is the difference between the true output y = f(x) and the deterministic model
output f̂(x, θ). A probability model for ε is introduced by using the Principle of
Maximum Entropy [Ja57, Ja03], which states that the probability model should be
selected to produce the most uncertainty subject to constraints that we wish to
impose (the selection of any other probability model would lead to an unjustified
reduction in the prediction uncertainty). In this example, we impose the following
constraints: E[ε] = 0 and var[ε] = σ2 with ε unbounded. The maximum entropy
PDF for the prediction-error is then ε ∼ N (0, σ2). This leads to the following
input-output probability model:

p(y|x, θ,M) = N
(

y | f̂(x, θ), σ2
)

(55)

Here, the prediction-error variance σ2 is included in the set of model parameters
where, for convenience, we define θ7 = log σ−2, so the parameter space is now
Θ = R

7.

2. A prior PDF π0(θ|M) over the parameter space which is chosen to quantify the
initial relative plausibility of each value of θ in Θ. In this example, the prior distri-
butions are assumed to be:

αj ∼ N (0, σ2
α), βj ∼ N (0, σ2

β), γj ∼ N (0, σ2
γ), θ7 = log σ−2 ∼ N (0, σ2

θ7
), (56)
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with σα = σβ = σγ = σθ7 = 5. Thus, the prior PDF in our case is

π0(θ|M) = N (θ7|0, σ2
θ7
)

M
∏

j=1

N (αj|0, σ2
α)N (βj|0, σ2

β)N (γj|0, σ2
γ). (57)

Let D denote the training data, D = {(x1, y1), . . . , (xn, yn)}, treated as independent
samples, then the likelihood function which expresses the probability of getting data D
based on the probability model (55) is given by

L(θ) = p(D|θ,M) =
n
∏

i=1

p(yi|xi, θ,M) (58)

In this example, data are synthetically generated from (55) with α1 = 5, α2 = −5,
β1 = −1, β2 = −3, γ1 = 5, γ2 = 2, σ = 0.1, and the input xi = i/10, for i = 1, . . . , n = 100.

Finally, using Bayes’ theorem, we can write the posterior PDF π(θ|D,M) for the
uncertain model parameters:

π(θ|D,M) ∝ π0(θ|M) · L(θ)

= N (θ7|0, σ2
θ7
)

M
∏

j=1

N (αj|0, σ2
α)N (βj|0, σ2

β)N (γj|0, σ2
γ) ·

n
∏

i=1

p(yi|xi, θ,M)
(59)

Under the Bayesian framework, the mean prediction of y = f(x) from observable x
can be obtained by integrating out the nuisance parameters:

Eπ[y|x,D,M] =

∫

Θ

f̂(x, θ)π(θ|D,M)dθ (60)

To demonstrate the efficiency of AIMS for the mean prediction problem, we use it to
sample from the posterior PDF (59) and use Monte Carlo simulation in (60). The param-
eters of the AIMS algorithm are chosen as follows: sample size N = 3×103 per annealing
level; the threshold for the ESS γ = 1/2; the proposal density qj(·|ξ) = N (·|ξ, c2I7), with
c = 0.5. This implementation of AIMS leads to a total number of m = 10 intermediate
distributions in the annealing scheme. The obtained posterior samples θ

(1)
m , . . . , θ

(1)
m are

then used to approximate the integral on the right-hand side of (60):

∫

Θ

f̂(x, θ)π(θ|D,M)dθ ≈ 1

N

N
∑

i=1

f̂(x, θ(i)m )
def
=

¯̂
fm(x) (61)

The true function y = f(x) as well as its AIMS approximation
¯̂
fm(x) are shown in Fig-

ure 10. A few “intermediate approximations”
¯̂
fj(x), which are based on θ

(1)
j , . . . , θ

(1)
j ∼ πj,

are plotted to show how
¯̂
fj(x) approaches f(x) when j → m. To visualize the uncertainty

for the AIMS approximation, we plot its 5th and 95th percentiles in Figure 11.

5 Concluding Remarks

In this paper, a new scheme for sampling from posterior distributions, called Asymptot-
ically Independent Markov Sampling (AIMS), is introduced. The algorithm is based on
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three well-established and widely-used stochastic simulation methods: importance sam-
pling, MCMC, and simulated annealing. The key idea behind AIMS is to use N samples
drawn from πj−1(·) as an importance sampling density to construct an approximation
π̂N
j (·) of πj(·), where π0(·), . . . , πm(·) is a sequence of intermediate distributions interpo-

lating between the prior π0(·) and posterior π(·) = πm(·). This approximation is then
employed as the independent proposal distribution for sampling from πj(·) by the inde-
pendent Metropolis-Hastings algorithm. When N → ∞, the AIMS sampler generates
independent draws from the target distribution, hence the name of the algorithm.

Important ergodic properties of AIMS are derived. In particular, it is shown that,
under certain conditions (that are often fulfilled in practice), the AIMS algorithm produces
a uniformly ergodic Markov chain. The choice of the free parameters of the algorithm
is discussed and recommendations are provide for their values, both theoretically and
heuristically based. The efficiency of AIMS is demonstrated with three examples, which
include both multi-modal and higher-dimensional target posterior distributions.
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Parameter µπ
1 µπ

2 (σπ
1 )

2 (σπ
2 )

2 σπ
12

True value 5.23 5.75 4.51 3.37 -1.30
AIMS mean 5.20 5.73 4.56 3.32 -1.25
AIMS cov 2.4% 2.0% 8.2% 8.2% 27.7%

Table 1: True values of the posterior parameters and the AIMS estimates in terms of their means and
coefficients of variation averaged over 50 simulations [Example 4.1].

Case d h̄ TMCMC: ĥN , (δ) AIMS: ĥN , (δ) N γ copt m̄
1 2 0.29 0.28 (12.3%) 0.29 (8.8%) 103 1/2 0.2 3
2 4 0.51 0.54 (10.0%) 0.51 (6.9%) 103 1/2 0.4 4
3 6 0.64 0.65 (15.7%) 0.64 (10.4%) 103 1/2 0.6 4.95
4 10 0.76 — 0.76 (26.7%) 103 1/2 0.7 5.84

10 0.76 — 0.76 (12.2%) 2 · 103 1/2 0.6 5.98
5 20 0.92 — 0.95 (42.1%) 4 · 103 1/2 0.5 5.58

Table 2: Summary of the simulation results: d is the dimension of the sample space; h̄ and ĥN are the
exact value of Eπd [h] and its estimated value, respectively; δ in parentheses is the corresponding coefficient
of variation; N , γ, copt, and m̄ are the number of samples used per annealing level, the threshold for
the ESS, the (nearly) optimal value of the scaling parameter, and the average number of distributions in
the annealing scheme, respectively. The AIMS results are based on 50 independent runs. The TMCMC
results are taken from [CC07] and are based on 50 independent runs [Example 4.2].
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Figure 1: The top panels show the distribution πj(·) (solid lines) and its approximation π̂
Nj−1

j (·), for
Nj−1 = 5 (left) and Nj−1 = 50 (right). Dashed lines and bars correspond to the continuous and discrete

parts of π̂
Nj−1

j (·), respectively. The bottom panel shows the convergence of h∗

1(Nj−1) = E
π̂
Nj−1

j

[h1] and

h∗

2(Nj−1) = E
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j

[h2] to the true values, 0 and 1, respectively [Example 2.1].
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Figure 2: AIMS at annealing level j: disks • and circles ◦ represent θ
(1)
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j−1 and θ
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j , . . . , θ
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respectively; concentric circles show the correspondence between θ
(k)
j−1 that has been chosen in step 1a and

the corresponding local candidate ξl ∼ q(·|θ(k)j−1) that has been generated in step 1b. In this schematic
picture, all shown candidate states are accepted as new states of the Markov chain.
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Figure 3: (a) Scatterplots of 103 posterior samples; (b) the trajectories of the corresponding posterior
Markov chain obtained from AIMS; and (c), (d) corresponding plots from RWMH. Black crosses ×
represent the modes µ1, . . . , µ10 of π(·) [Example 4.1].
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Figure 6: Coefficient of variation δ of the AIMS estimate (top panel), global acceptance rate (middle
panel), and local acceptance rate (bottom panel) as functions of c for Case 1 (d = 2) [Example 4.2].
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Figure 7: Coefficient of variation δ of the AIMS estimate (top panel), global acceptance rate (middle
panel), and local acceptance rate (bottom panel) as functions of c for Case 2 (d = 4) [Example 4.2].
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Figure 8: Coefficient of variation δ of the AIMS estimate (top panel), global acceptance rate (middle
panel), and local acceptance rate (bottom panel) as functions of c for Case 3 (d = 6) [Example 4.2].
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Figure 9: The feed-forward neural network model with one hidden layer (shown by hatching) [Exam-
ple 4.3].
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Figure 10: The true function f(x) (solid curve), its posterior approximation
¯̂
f10(x) (dashed curve)

which is constructed using AIMS, and “intermediate annealing approximations”:
¯̂
f0(x) (dotted curve)

which is based on prior samples,
¯̂
f2(x) and

¯̂
f3(x) (dashed-dotted curves) [Example 4.3].
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Figure 11: The true function f(x) (solid curve), its AIMS approximation
¯̂
f10(x) (dashed curve), and

5th and 95th percentiles of
¯̂
f10(x) (dotted curves) [Example 4.3].
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