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Abstract
Arginases catalyze the divalent cation-dependent hydrolysis of L-arginine to urea and L-ornithine.
There is significant interest in using arginase as a therapeutic anti-neogenic agent against L-
arginine auxotrophic tumors and in enzyme replacement therapy for treating hyperargininemia.
Both therapeutic applications require enzymes with sufficient stability under physiological
conditions. To explore sequence elements that contribute to arginase stability we used SCHEMA-
guided recombination to design a library of chimeric enzymes composed of sequence fragments
from the two human isozymes Arginase I and II. We then developed a novel active learning
algorithm that selects sequences from this library that are both highly informative and functional.
Using high-throughput gene synthesis and our two-step active learning algorithm, we were able to
rapidly create a small but highly informative set of seven enzymatically active chimeras that had
an average variant distance of 40 mutations from the closest parent arginase. Within this set of
sequences, linear regression was used to identify the sequence elements that contribute to the long-
term stability of human arginase under physiological conditions. This approach revealed a striking
correlation between the isoelectric point and the long-term stability of the enzyme to deactivation
under physiological conditions.
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Humans produce two arginase isozymes (EC 3.5.3.1) that catalyze the hydrolysis of L-
arginine (L-Arg) to urea and L-ornithine (L-Orn). The Arginase I (hArgI) gene is located on
chromosome 6 (6q.23), is highly expressed in the cytosol of hepatocytes, and functions in
nitrogen removal as the final step of the urea cycle. The Arginase II (hArg II) gene is found
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on chromosome 14 (14q.24.1). Arginase II is localized in the mitochondria in tissues such as
kidney, brain, and skeletal muscle, where it is thought to provide a supply of L-ornithine (L-
Orn) for L-proline and polyamine biosynthesis (1). The two enzymes share 61% amino acid
sequence identity and adopt a homo-trimeric structure composed of an α/β fold consisting of
a parallel eight-stranded β–sheet surrounded by several helices. These enzymes contain a di-
nuclear metal cluster that generates a hydroxide for nucleophilic attack on the guanidinium
carbon of L-arginine (2, 3). In eukaryotes and the vast majority of prokaryotes, the native
metal cofactor in arginase is believed to be Mn2+.

There is significant interest in applying arginases as cancer chemotherapeutic agents. A
number of high morbidity tumors such as hepatocellular carcinomas (HCCs), melanomas,
renal cell, and prostate carcinomas (4-6) are deficient in the urea cycle enzyme
argininosuccinate synthase (ASS) and thus are sensitive to L-arginine (L-Arg) depletion. Non-
malignant cells typically enter into quiescence (G0) when deprived of L-Arg and remain
viable for several weeks. However, ASS-deficient tumor cells experience cell cycle defects
that lead to the re-initiation of DNA synthesis even though protein synthesis is inhibited, in
turn resulting in major imbalances that lead to rapid cell death (7, 8). The selective toxicity
of L-Arg depletion for HCC, melanoma, and other urea-cycle enzyme deficient cancer cells
has been extensively demonstrated in vitro, in xenograft animal models, and in clinical trials
(4, 5, 7, 9).

Additionally, rare, autosomal recessive mutations in hArgI can cause hyperargininemia,
which results in hyperammonemia, spasticity, seizures, and failure to thrive (10). Dietary
management in combination with oral phenylbutyrate is often successful in controlling
hyperammonemia, but the underlying hyperargininemia can persist, which can result in L-
Arginine-associated neurotoxicity (11). Red blood cell replacement, which provides
supplemental hArgI within red blood cells, has shown promise in treating hyperargininemia
as evidenced by reduced serum L-Arg levels and improved clinical outcomes (12, 13).

To function as a therapeutic agent, arginase must efficiently degrade L-Arg to very low
levels (< 5 μM) under physiological conditions (~100 μM L-Arg, 37 °C, and pH 7.4).
Unfortunately, hArgI and hArgII display low enzymatic activity at physiological pH and are
rapidly inactivated in serum, with half-lives of only a few hours. Arnold and coworkers have
demonstrated the utility of SCHEMA-guided recombination for generating libraries of
chimeric proteins between low-homology sequences (14, 15). In an effort to understand the
sequence determinants of arginase that are important for long-term stability we designed a
SCHEMA-guided recombination library composed of sequence fragments from the human
arginases hArgI and hArgII (Figure 1). By coupling this SCHEMA library with a novel
active learning algorithm we efficiently identified a diverse set of enzymatically active
chimeric arginases. These chimeras highlighted an important correlation between isoelectric
point and long-term stability, providing a key insight into how these enzymes might be
further optimized for stability.

RESULTS AND DISCUSSION
SCHEMA library design

When homologous proteins are recombined, new interactions between structural fragments
are often deleterious to protein function. The presence of these interactions within a
chimeric protein can be estimated from the SCHEMA disruption, which counts interactions
that are not observed in the parents (16). A chimera’s SCHEMA disruption is calculated
from the parent sequences and a residue-residue contact map representation of the protein
structure. Large combinatorial libraries of chimeric proteins can be designed using the
Recombination as a Shortest-Path Problem (RASPP) algorithm, which identifies the library
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that minimizes the average SCHEMA disruption with constraints on the number and size of
sequence fragments (17).

Human Arginase I (hArgI) and human Arginase II (hArgII) share 61% amino acid sequence
identity (64% nucleotide identity) and were chosen as parents for a SCHEMA
recombination library. The trimeric structure of hArgII (PDB ID: 1PQ3) was used to prepare
the contact map, which included both intra- and intersubunit contacts. The RASPP algorithm
was used to design a library of chimeric sequences having seven recombination sites (eight
sequence blocks).

The chimera blocks chosen for the arginase recombination library are illustrated in Figure 2.
Within each monomer’s central β-sheet, seven of eight strands came from different blocks,
while the trimer interface was formed from blocks 5, 6, and 8. Substrate recognition in
arginase is achieved by several loops that flank the active site and numerous water-mediated
hydrogen bonds (18). Within the chimera library, each of these “specificity” loops was
located in different blocks. We believed these design choices should provide multiple
opportunities for identifying more functional catalysts, especially since the residues that
coordinate the catalytic binuclear manganese cluster were conserved within the library,
while the surrounding, second-shell residues came from different parental combinations of
blocks 3,4,7, and 8.

The sequences within the designed chimera library were diverse: on average, chimeras
differed from one another by 60 mutations (as few as 6 and as many as 120). These chimeras
were also novel: the average mutational distance between a chimera and a parent arginase
was 40.3 mutations. Nonetheless, based on results from earlier studies (14, 15) and the
average SCHEMA disruption score for the designed library (⟨ E ⟩ = 16), it was predicted
that approximately half of the chimeras would be functional arginases.

Rational generation of an informative set of chimeras
While the SCHEMA algorithm limits the protein sequence space that must be explored in
order to identify functional variants, the problem of deciding which proteins to construct and
assay is still a challenging one. For example, in the current library there were 256 (28)
possible chimeric arginases, and synthesis and characterization of all these possibilities
would have been daunting. Systematically chosen chimera sets are more effective than
randomly chosen ones (19), but the criterion for selection are very much open to discussion.
Selecting chimeras that equalize the representation of each parent at each block position will
not generate a maximally informative set of proteins (15), primarily because of the
significant proportion of nonfunctional sequences that provide no information about
functional properties. Such nonfunctional sequences can be avoided by making single block
perturbations, which better avoid major, disruptive interactions. However, these one-factor-
at-a-time designs closely resemble the wild-type parents, and thus limit the sequence and
functional diversity of the data sets produced (20). To balance these considerations, we
developed a two-step active learning algorithm that efficiently identifies an informative set
of functional chimeras by first training a model that can predict if a chimera will form a
functional protein, and then using this functional status classifier to guide an experimental
design.

The first step of the algorithm involved finding an informative set of chimeras for a logistic
regression classifier that models the probability that a chimera will form a functional
protein. Here, we quantify the ‘informativeness’ of a set of chimeras as the mutual
information between that set and the remainder of the library (see Methods). Intuitively, this
mutual information measures how much observing a given set of chimeras reduces the
uncertainty (Shannon entropy) of prediction for the remainder of the library. Based on these
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criteria, we initially chose to study a set of eight arginase chimeras that maximized this
mutual information criterion. The genes encoding these eight chimeras (Table 1, SCHEMA
A-H) were synthesized and expressed (see Methods). As expected, approximately half (3/8)
of the sequences produced functional arginases. With the functional status of these
sequences now defined, it proved possible to train a Bayesian logistic regression model to
predict the probability of functioning for all chimeras within the library.

The second step of the algorithm then consisted of finding a highly informative set of
functional chimeric arginases. We used the predictions from the logistic regression model to
select sequences that maximized the expected value of the mutual information between the
chosen set and the remainder of the library (see Methods). This criterion should have
simultaneously identified sequences that were both informative and had a high probability of
being functional. A set of four additional chimeras was chosen that maximized the expected
value of the mutual information. Significantly, when these gene sequences were synthesized
and expressed they were all found to encode functional enzymes that hydrolyzed L-Arg at
significant rates (Table 1, SCHEMA I-L).

Overall, the active learning algorithm efficiently identified a highly informative set of nine
functional arginases (two parents and seven chimeras). Within this set of chimeric
sequences, each parent at each block was typically observed multiple times, and 103 of the
112 possible sequence block pairs were observed. Some blocks (such as block 4 parent 1)
were under-represented, presumably because they contributed to loss of function and were
therefore avoided in the second step of the sequence selection algorithm.

Regression model for long-term stability
We used the highly informative set of chimeras to explore sequence-function relationships
within the arginase library. In particular, the temporal inactivation of all nine enzymes
within the designed set of sequences was measured (see Methods). Because the chimeras
displayed either exponential, sigmodial, or biphasic decay of activity, for ease of comparison
we derived each chimera’s normalized area under the inactivation curve (AUC), which
provides a measure of a chimera’s overall kinetic stability (Table 1). A Bayesian linear
regression model was used to correlate sequence fragments with the experimentally
measured AUC values (see Methods). This model resulted in an excellent fit (r = 0.98,
Figure 3A), and the block regression parameters are given in Table 2.

To validate the linear regression model we designed two additional chimeric arginases
(SCHEMA M and N) that were predicted to have enhanced long-term stability. These
sequences were synthesized and characterized. The regression model showed good
predictive ability (Figure 3A), and both sequences were more stable than 80% of the other
chimeric arginases.

From the regression analysis, the most stabilizing sequence element was found to be block
3, where substituting hArgI for hArgII is estimated to increase the AUC by almost 50%.
Closer inspection of the amino acid sequences for this important chimera block revealed an
abundance of charged residues. Consistent with this observation, we found the estimated
isoelectric point (21, 22) of the chimeras to show a striking negative correlation (r = −0.74, p
= 0.004) with the AUC, Figure 3B. Thus, chimeras with greatest net negative charge under
the assay conditions (pH 7.4 and 37 °C) were the most stable, while those closer to their
isoelectric point exhibited faster inactivation.

Metal dependence of stability
To test if metal binding affected thermal unfolding, the melting temperature (Tm) for all
sequences was measured in the presence and absence of a chelator (see Methods; Table 1).
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The melting temperatures showed no significant correlation with long-term stability (r =
−0.30, p = 0.31). However, as expected the addition of EDTA resulted in lower
thermodynamic stability for all enzymes, with an average decrease in Tm values of 15 ± 5
°C, in close agreement with results of similar chelation experiments with beef liver and
Saccharomyces cerevisiae arginases (23, 24). This highlights that bound Mn2+ stabilizes the
correctly folded state under thermal equilibrium conditions. To determine if metal chelation
is also a key factor in long-term kinetic stability at thermodynamically stable conditions, we
measured stability in the presence of excess manganese (500 μM MnCl2) (AUC_Mn in
Table 1) at 37 °C, far below the average Tm of 74 ± 6 °C. In accord with the denaturation
data, excess manganese was shown to increase long-term stability while maintaining the
overall trend in long-term stability as a function of isoelectric point. These findings indicate
that the enzymes may be stabilized by excess charge as a function of pI, and that metal
stabilizes the correctly folded form of the enzyme. As activity is dependent on active-site
bound metal, it is clear that excess manganese will drive the equilibrium toward the metal-
bound (active), folded state and delay irreversible inactivation. A possible mechanism of
inactivation is depicted in Figure 4. Here, arginase is irreversibly inactivated by loss of
metal followed by protein unfolding/aggregation.

For all chimeric arginases, we performed Michaelis-Menten kinetic measurements (see
Methods) and calculated the resulting catalytic efficiencies (kcat/KM) (Table 1). Intriguingly,
the fold stabilization upon addition of 500 μM MnCl2 (AUCMn/AUC) displayed a linear
relationship with catalytic efficiency (r = 0.85, p = 0.02), Figure 5. A similar trend has been
observed within a set of Cu2+ complexes (25). In that study, the authors found the stability
of a Cu2+ complex to be inversely related to its rate of glycine methyl ester hydrolysis,
indicating that more stable complexes lower the Lewis acidity of the Cu2+ ion. Likewise,
arginases that bind Mn2+ more tightly (i.e., that are not as dependent on an excess of Mn2+

for long term activity) may have reduced Lewis acidity for coordinating substrate or water
ligands, and therefore diminished catalytic efficiency.

Summary and conclusions
The combination of structure-guided SCHEMA recombination and an efficient active
learning procedure were used to generate a highly informative set of catalytically active
chimeric arginases. Site-directed recombination libraries between low homology parental
genes provide unique data sets for probing sequence-function relationships, offering distinct
advantages over sets of point mutants or naturally existing proteins. The effects of point
mutations are frequently too small to resolve experimentally, while the large numbers of
neutral mutations in naturally existing proteins make it difficult to pinpoint the basis of
functional differences. In contrast, libraries of chimeric proteins contain an intermediate
level of sequence diversity, and mutational changes are observed in multiple sequence
backgrounds.

The resulting set of chimeric human arginases displays measurable variation, and the
sequence basis of this variation can be efficiently identified using linear regression. The high
level of sequence diversity within the hArg chimeras translates into extraordinary functional
diversity, as evidenced by the fact that many of the measured properties were outside the
range displayed by the two parents (Table 1). For example, recombination of hArgI and
hArgII (pI = 6.8 and 5.7, respectively) generated a set of functional chimeras with isoelectric
points ranging from 5.5 to 7.5. A linear regression model helped identify a strong negative
relationship between a chimeric arginase’s isoelectric point and its long-term stability (r =
−0.74, p = 0.004). Since the long-term stability experiments were performed at physiological
pH (7.4), chimeras with the greatest net charge (low pI) displayed the greatest stability.
Similar relationships between a protein’s net charge and its stability has been observed
previously; for example, a large survey across multiple protein families found many proteins
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to be less stable near their isoelectric point (26). Similarly, engineered ribonuclease variants
show decreased solubility and increased aggregation near their isoelectric point (27, 28).

The relationships ferreted out in this study have practical consequences for protein
engineering. Arginase inactivation is strongly linked to the loss of the metal center of
arginase, as activity as well as structural/thermal stability are metal-dependent. Given the
mechanism of inactivation depicted in Figure 4, it might be further hypothesized that
stability issues could be resolved by: (a) Engineering proteins with increased numbers of
negative surface charges (29); (b) Increasing the concentration of metal (likely
therapeutically intractable); or (c) Introducing a different metal that might lead to improved
binding and hence stability.

With respect to the latter hypothesis, it is noteworthy that we have recently reported that
Co2+-substituted hArgI (Co-hArgI) displays a dramatically reduced KM for L-Arg relative to
the native Mn+2-containing enzyme, and has a 12-fold increase in kcat/KM. More
importantly, Co-hArgI is significantly more stable in serum, with an inactivation half-life of
more than 30 hours (30). The improved pharmacological properties of Co-hArgI have been
shown to mediate potent tumor cytoxicity against numerous cancer cell lines in vitro, and to
lead to the inhibition of hepatocellular and pancreatic carcinomas in the mouse xenograft
model (30, 31).

In the case of arginase replacement therapy to treat hyperargininemia, it would be preferred
to reduce elevated serum L-Arg levels that range from 600-900 μM (32) to normal reference
values of 50-150 μM (33), rather than completely eliminate the amino acid from the
bloodstream. The ideal enzyme for this application would have exceptional long-term
stability, but not necessarily the increased efficiency that the Co-substituted enzyme shows.
The SCHEMA J variant (Blocks 11222112) identified in this study has a stable linear decay
rate of only 1% per hour and thus may hold promise for therapeutic purposes. A simple
kinetic model based on substrate hydrolysis rates, inactivation rates, and L-Arg
replenishment estimates suggests that a single dose of SCHEMA J could maintain L-Arg
levels in hyperargininemia patients within the normal range for five days longer than a
single dose of the more active but less stable Co2+-loaded hArgI (34, 35).

Such a treatment option is especially interesting for a number of reasons. As the SCHEMA J
variant is comprised of two human arginases, only the three chimeric junctions represent
potential new T-cell epitopes. Using software from the Immune Epitope Database Analysis
Resource (36-38), we analyzed each of these sequence junctions for any significant changes
in predicted epitope binding relative to the parent sequences for the eight most common
HLA alleles (see Methods). Calculations for the HLA-DRB1*15:01 allele for the second
junction suggested a 3- and 3.5-fold increase in binding affinity relative to hArgI and
hArgII, respectively; all other junctions and alleles did not show a significant change
relative to the parental sequences, suggesting that SCHEMA J is not likely to be highly
immunogenic. Moreover, since hArgI has been under investigation as an antineoplastic
agent, its serum retention time has already been pharmacologically optimized via
PEGylation, resulting in dose dependent L-Arg depletion in rats for up to days at a time (39),
and thus methods for further extending the lifetime of the chimera may already exist.

Overall, the ability to design enzymes that are customized to specific reaction conditions is
of significant interest to biomedical science. SCHEMA recombination coupled with an
active learning algorithm provided a diverse and efficient sampling of the protein fitness
landscape, revealing features that could not be observed by traditional biochemical methods.
These data sets therefore provide a unique opportunity to explore the relationships between
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protein sequence and protein function, quickly yielding fundamental principles that can be
used to engineer highly-optimized protein sequences.

METHODS
Active learning algorithm

The active learning algorithm consists of a two-step experimental design. The first step
involves finding an informative set of chimeras for a logistic regression functional status
model. Here, we would like to find the set of sequences that maximize the mutual
information between the chosen set of chimeras S and the remainder of the library L\S,
which is given by

where H(L\S) is the Shannon entropy of library L excluding the chimeras in subset S and
H(L\S|S) is the entropy of the same sequences after the chimeras in S have been observed.
We approximate the intractable entropy of the Bayesian logistic regression model by
replacing the logistic response with a Gaussian likelihood. With this approximation, the
properties of collections of sequences and their relationships can be represented with a
multivariate Gaussian distribution, and their Shannon entropy can be calculated from the
determinant of the covariance matrix. Gaussian mutual information is a submodular set
function (40) and therefore can be efficiently maximized using a greedy approximation
algorithm (41). We used a greedy algorithm to find a set of sequences S with maximized
mutual information. The functional status of the resulting sequences was then used to train a
Bayesian logistic regression model that can predict the probability of functioning for all
chimeras in the library.

The second step of the algorithm consists of finding a highly informative set of functional
chimeric arginases. Here, we want to find the set of chimeras S which maximize the
expected value of the mutual information

where the sum is over all subsets A in the power set of S and pc is the predicted probability
of being functional for chimera c from the logistic regression model. This objective is
chosen to simultaneously find sequences that are informative and have a high probability of
being functional, similar to the most informative positive (MIP) active learning algorithm
(42). Since sub-modular functions are closed under positive linear combinations, the
expected value of the Gaussian mutual information is also submodular and therefore greedy
maximization provides strong performance guarantees. The covariance between sequences
was calculated using the chimera-block coding scheme described in the regression analysis
section (below). All experimental designs were performed with the Submodular Function
Optimization Matlab Toolbox (43).

Gene synthesis and cloning
Genes encoding the SCHEMA designed arginase chimeras were synthesized from
oligonucleotides as described previously(44). In brief, long DNA oligonucleotides (99
bases) were synthesized in-house and assembled into two 560-base pair fragments using
inside-out PCR. These primary fragments were combined without purification in a
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secondary overlap-extension reaction that formed the final desired 1086-base pair product.
Custom software directed the assembly schemes and the efficient re-use of oligonucleotides
across multiple related sequences. 32-base pair overlaps were designed between adjacent
oligonucleotides and a 35-base pair overlap was designed between the two primary
fragments. Genes were synthesized with an N-terminal 6x His tag followed by a tobacco
etch virus protease cleavage site and NcoI and EcoRI restriction sites as described
previously (30). These genes were cloned into a pET28a expression vector and the
sequences were verified using DNA sequencing.

Two variants (SCHEMA O and SCHEMA P) were not designed by the algorithm, but were
chosen from preliminary experiments based upon regions of sequence homology. These
chimeras were constructed by overlap extension PCR and are included in this study as they
contain SCHEMA identified blocks from hArgI and hArgII.

Expression and Purification
E.coli cells expressing arginase variants were grown at 37 °C in minimal media to an OD600
of 0.8–1. Cells were collected by centrifugation, re-suspended in fresh minimal media
containing 0.5 mM IPTG and 100 μM MnSO4, and incubated for an additional 8–12 hours
at 37 °C with shaking. After protein expression, cells were collected by centrifugation, lysed
using a French pressure cell, and centrifuged at 14,000xg for 20 min at 4 °C. The clarified
cell lysate was applied to a nickel IMAC column, washed with 10-20 column volumes of
IMAC buffer and the purified arginases were eluted with IMAC elution buffer (50 mM
NaPO4, 250 mM imidazole, 300 mM NaCl, pH 8). The purified arginases were buffer
exchanged several times into PBS, 10 % glycerol, pH 7.4 using a 10,000 MWCO centrifugal
filter device (Amicon). Aliquots of purified arginase variants were then flash frozen in liquid
nitrogen and stored at −80 °C.

Enzyme Kinetics
Michaelis-Menten kinetics for L-Arg hydrolysis were determined in 100 mM HEPES buffer
at 37 °C, pH 7.4 as previously described (30).

Long-term stability
The long-term stability of the arginase chimeras was measured in 100 mM HEPES buffer,
pH 7.4 at 37°C, with or without 500 μM MnCl2. Proteins were diluted to 2 μM with 100
mM HEPES, pH 7.4 and placed at 37°C. Aliquots of 30 - 50 μL were taken at different time
points (typically t = 0, 0.5, 3, 24, 48, and 72 hours). The activity at each time point was
immediately measured using 1 mM L-Arg, as described previously (30). The data were
plotted as percent activity as a function of time, and the area under this inactivation curve
(AUC) was calculated using Kaleidagraph. The data was also fit to various models to
calculate the rates of decay of activity over time: (i) for biphasic decay:

 where t = time, amp = amplitude of the first decay,
k = the rate of exponential decay, hs= hill slope, and T0.5 = the half-life of the sigmoidal

decay; for sigmoidal decay:  and finally a single exponential decay
model was used for some enzymes as described in the results section.

Thermal stability
Arginase variants (20-40 μM) in PBS, pH 7.4 with or without EDTA (10 mM final
concentration) were incubated in 96-well low-profile PCR plates (Fisher Scientific,
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Rockford, IL) on ice for 30 min. SYPRO orange dye (Life Technologies, Grand Island NY)
was added into each well immediately before placing the plate in an RT (real-time)–PCR
machine (LightCycler 480, Roche, Mannheim Germany). The temperature dependence of
protein unfolding between 20-95 °C was measured in at least duplicate experiments. TM
values were derived from the monophasic melting curves curves. To determine the circular
dichroic spectra, a 6 μM sample of hArgII in a 100 mM phosphate buffer, pH 7.4 was
analyzed on a Jasco J-815 CD spectropolarimeter. The change in molar ellipticity at 222 nm
(θ222) was monitored from 25 to 90 °C. The fraction of denatured protein at each
temperature was calculated by the ratio of [θ222]/[θ222]d where [θ222]d is the molar
ellipticity of the completely unfolded protein. The resulting data were fit to a modified
logistic equation to determine the thermal transition midpoint.

Regression analysis
For regression models, the independent variable corresponded to chimera sequences and is
represented with a binary vector x, where xi indicates the parent identity at block i. Because
of limited our data, we used Bayesian parameter estimation, which outperforms maximum
likelihood estimation for small data sets.

A chimera’s binary functional status was modeled with a Bayesian logistic regression
model, which contains a Bernoulli likelihood function and a zero-mean, isotropic Gaussian
prior on coefficients (45). The resulting posterior distribution was approximated using
Laplace’s method and prior variance was estimated from the data by maximizing the
marginal likelihood function. Using Newton’s method, we found the maximum a posteriori
(MAP) estimates for each chimera block’s contribution to functionality. The probability that
a chimera is functional was estimated by applying the MAP parameter estimates to the
logistic model.

The logarithm of a chimera’s long-term stability (AUC) was modeled with a Bayesian linear
regression model, which consists of a Gaussian likelihood function with a zero-mean,
isotropic Gaussian prior on coefficients (45). The measurement noise and prior variance
were estimated from the data by maximizing the marginal likelihood function. With these
hyperparameters, MAP estimates for each chimera block’s contribution to long-term
stability were found in closed-form.

Immunogenicity Calculations
We used software from the Immune Epitope Database (IEDB) (consensus method for
MHC(II) binding) (46) to evaluate peptides spanning 15 residues on either side of the hArgI
and hArgII junctions of the SCHEMA J variant (Blocks 11222112) to compare with the
corresponding sequences from the hArgI and hArgII parents. Using the predicted binding
constants for the 8 most common HLA alleles as reported previously (47) we then calculated
the ratio of the predicted binding values for each (hArgI/SCHEMA J and hArgII/SCHEMA
J) peptide for each HLA allele to assess any significant changes relative to both parents.
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Abbreviations

L-Arg L-arginine

L-Orn L-ornithine

hArgI human Arginase I

hArgII human Arginase II

Tm Melting temperature

pI isoelectric point

AUC area under the curve
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Figure 1.
Overview of method. (A) Starting with the two parent arginases, we used SCHEMA
(structure-guided recombination) to identify optimal recombination sites. (B) Next, a two-
step active learning algorithm was used to identify a highly informative subset of this
SCHEMA library. The first step of this algorithm efficiently learns which sequence elements
contribute to loss-of-function. The second step then uses this information to design a set of
chimeras that are highly informative and functional. (C) With experimental data on chimeric
arginases, regression analysis can be used to make predictions across the entire library, or to
understand how each sequence element contributes to arginase properties.
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Figure 2.
Arginase chimera library block boundaries. (A) Arginase three-dimensional structure with
blocks represented by different colors. The trimer interface is shown as a transparent
surface. (B) Contact map displaying residue-residue contacts that could be broken upon
recombination. The colored squares correspond to the block divisions of the library. (C)
Secondary structure diagram showing the chimera library block divisions.
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Figure 3.
Arginase long-term stability. (A) Bayesian linear regression model for AUC. Green and blue
circles correspond to the parents and chimeras (respectively) within the initial data set (r =
0.98 and p = 9e-7). Red stars represent the model’s predictions on the validation set. (B)
Correlation between isoelectric point and AUC for all chimeras tested (r = −0.74 and p =
0.004).
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Figure 4.
Schematic of potential arginase inactivation mechanisms. (A) loss of first equivalent of
bound metal and decrease of some activity, (B) loss of second equivalent of bound metal
and loss of all activity, (C) equilibrium between folded and unfolded states, (D) probably
irreversible precipitation/aggregation.
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Figure 5.
Correlation between fold change in long-term stability (AUCMn /AUC) and catalytic
efficiency (kcat/KM), r = 0.85 and p = 0.02.
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Table 2

Regression model parameters. The parameters specify how substituting parent 2 for parent 1 at a given block
changes the logarithm of the AUC. The most significant substitution occurs at block 3, which is highlighted in
grey.

Parameter
name log(AUC)

Reference 7.76

B1P2 −0.23

B2P2 0.00

B3P2 0.39

B4P2 0.02

B5P2 0.07

B6P2 0.32

B7P2 −0.26

B8P2 0.20
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