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Abstract

The behaviour of two-dimensional finite blobs of conducting viscous fluid in a Hele-
Shaw cell subject to an electric field is considered. The time-dependent free boundary
problem is studied both analytically using the Schwarz function of the free boundary
and numerically using a boundary integral method.

Various problems are considered including: (i) the behaviour of an initially circular
blob of conducting fluid subject to an electric point charge located arbitrarily within
the blob, (ii) the delay in cusp formation on the free boundary in sink driven flow
due to a strategically placed electric charge and (iii) stability of exact steady solutions
having both hydrodynamic and electric forcing.
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1 Introduction

Hele-Shaw flows involve two-dimensional flow of a viscous Newtonian fluid in a thin gap be-
tween two parallel plates, a set-up first considered in experiments by Hele-Shaw in the late
19th century [7]. Here, it is assumed the fluid is surrounded by a second fluid of negligible
viscosity, such as air, the two fluids are immiscible and there is no surface tension. Hele-Shaw
flows are mathematically analogous to those of groundwater flows, where the governing equa-
tions satisfy Darcy’s law and have practical applications, for example, oil extraction [10, 16].
While straightforward to formulate as a mathematical problem, the free boundary evolution
problem is nonlinear and is, in general, difficult to solve. For example, it is noteworthy that
solutions describing fluid blobs with shrinking area (driven by a hydrodynamic sink) fre-
quently breakdown in finite time owing to cusp formation or self-intersection of the fluid-air
interface [8, 9].

The results presented may find applications in problems involving fluid extraction and in
the theory of fluid flows in microfluidic devices, where the main interest lies in the manipu-
lation of fluid blobs via electric fields. Entov and Etingof [4] raise the idea of Hele-Shaw free
boundary flows and its application in electrokinetics, in which flow is induced by applying
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electric fields, known as ‘electro-osmotic flow’. The introduction of applications of electro-
osmotic flow in microfluidic devices is also mentioned, where flow in narrow gaps or channels
are driven by electric potential fields in [11, 22]. More recently, controlling fluid blobs or
bubbles in advanced microfluidic devices has become an area of interest for the purpose of
bio-chemical processes and also in fluid logical devices [2, 13, 17]. A method known as elec-
trowetting has become a widely used tool through a surge in so called ‘lab-on-chip’ devices
for applications such as DNA analysis and medical diagnostics, where electrowetting, first
introduced by Gabriel Lippmann in 1875 (English translation of paper in [15]), allows the
manipulation of small drops or blobs of fluid on small surfaces, usually surrounded by air.

1.1 Mathematical formulation and the Schwarz function approach

In a Hele-Shaw cell let viscous fluid occupy the two-dimensional finite domain Ω(t) (the fluid
‘blob’) with a fluid-air interface denoted by ∂Ω(t) (the free boundary). The resulting motion
of ∂Ω(t) is determined by the pressure gradient acting at the interface, resulting from hydro-
dynamic forces and any external body forces acting on the fluid, e.g. gravity. Determining
the evolution of Ω(t) is widely known as the Hele-Shaw free boundary problem [6, 16]. The
pressure in the blob satisfies Laplace’s equation and often such problems are referred to as
Laplacian growth problems, where the flow is driven by hydrodynamic singularities located
within Ω(t), and the normal velocity of ∂Ω(t) is given by the normal gradient of a function
satisfying Laplace’s equation. The velocity field averaged over the thin gap between the two
plates is given by

ũ = − h2

12µ
∇p̃+ ρg̃, (1)

where p̃ is the pressure, the coefficient h2/12µ represents the mobility of the fluid (h is the
gap width between the two plates, µ is the viscosity of the fluid), ρ is the density of the fluid
and g̃ represents a body force due to some external field [4]. Here the body force is assumed
to be conservative, i.e.

g̃ = ∇Ψ̃ , (2)

where Ψ̃(x, y) is a scalar potential. Since the fluid is incompressible, conservation of mass
gives

∇ · ũ =
N∑
j=1

Q̃jδ(x− xj, y − yj), (3)

where Q̃j are the strengths of hydrodynamic point sources or sinks within Ω(t) located at
positions xj = (xj, yj). The right hand side of (3) can be appropriately generalised to include
higher order hydrodynamic singularities e.g. dipoles, quadrupoles etc. It has been shown in
[4], after non-dimensionalisation (dropping the tildes), the mathematical formulation of the
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problem can be written as the following free boundary problem:

∇2φ =
N∑
j=1

Qjδ(x− xj, y − yj), (x, y) ∈ Ω(t), (4a)

φ = Ψ(x, y), (x, y) ∈ ∂Ω(t), (4b)

vn =
∂φ

∂n
, (x, y) ∈ ∂Ω(t), (4c)

where the (real) velocity potential satisfies φ(x, y) = −(p−Ψ) and vn is the normal velocity
of the free boundary.

The case of Ψ ≡ 0 is the classical Hele-Shaw free boundary problem, see e.g. [3, 5, 19].
Richardson introduced harmonic moments and showed that they were all conserved during
the flow evolution except the zeroth order moment which, being equivalent to blob area,
changed according to the net mass injected by the hydrodynamic singularities [18]. The
moment description provides a method with which the shape of the evolving free boundary
can be determined, where the problem is reduced to the solution of a system of algebraic
equations.

An alternative approach to finding exact solutions employs the Schwarz function of the
free boundary. In the complex plane z = x+ iy, the Schwarz function of the free boundary
is defined as g(z, t) = z on z ∈ ∂Ω(t), where g is an analytic function in the neighbourhood
of ∂Ω(t). It has been shown that

∂w

∂z
=

1

2

∂g

∂t
+
∂M

∂z
, (5)

holds on the free boundary ∂Ω(t), where

M(z) = Ψ((z + g(z))/2, (z − g(z))/(2i)), (6)

is an analytic function in the neighbourhood of ∂Ω and w(z, t) is the complex potential of
the flow [14]. Since both sides of (5) are analytic in the neighbourhood of ∂Ω(t), analytic
continuation allows for (5) to be valid over the entire fluid domain Ω(t). In the absence of
any background fields (M ≡ 0), (5) reduces to the well-known Schwarz function equation
governing the flow [3, 14].

Some non-trivial steady exact solutions of the problem given by (4) have previously been
found [4, 14]. Such solutions can be derived, as shown in [14], by considering the balance
between the terms ∂w/∂z and ∂M/∂z of (5) as singularities inside Ω(t) are approached.
The stability of the steady solutions found in [4, 14] is an open question and is investigated
numerically in §6.

1.2 Flows driven by external fields

When hydrodynamic singularities within the fluid domain Ω(t) are absent, the free boundary
evolves only under the action of the external field Ψ and satisfies the following free boundary
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problem

∇2φ = 0, (x, y) ∈ Ω(t), (7a)

φ = Ψ(x, y), (x, y) ∈ ∂Ω(t), (7b)

vn =
∂φ

∂n
, (x, y) ∈ ∂Ω(t). (7c)

The task is to find ∂Ω(t) of a fluid blob evolving under the influence of a background po-
tential field given the initial boundary ∂Ω(0). Since there are no hydrodynamic singularities
driving the flow, the derivative of the complex potential ∂w/∂z (= w′(z, t)) has no singular-
ities in the fluid domain Ω(t) and hence the left hand side of (5) is regular. The unknown
boundary ∂Ω(t) is parameterised by a conformal map z = f(ζ, t) from the interior of the
unit ζ-disk to the interior of the fluid blob Ω(t). In general, the map f(ζ, t) is unknown but
can often be “guessed” or deduced up to unknown time-varying parameters. By balancing
singular terms of (5), the aim is to deduce ordinary differential equations for the unknown
time-dependent parameters of the conformal map z = f(ζ, t), and subsequently determine
the evolution of the free boundary ∂Ω(t). This approach is used to investigate the stability
and behaviour of initially circular blobs of fluid for the case when the external field is an
electric point charge.

2 Analytical results

2.1 Steady solution for an initially circular fluid blob with a point
charge at its centre

Consider a circular blob of conducting viscous fluid with radius R centred at the origin
enclosing a point charge located at z = 0, i.e. within the initial fluid domain Ω(0). By
symmetry it is expected that this be an exact steady solution. The external potential owing
to the point charge of strength E centred at z = 0 is given by Ψ = (E/2π) log r = M(z) on
∂Ω(t), where

M =
E

4π
log(zg). (8)

Employing (8), the Schwarz function equation (5) becomes

∂w

∂z
=

1

2

∂g

∂t
+
E

4π

(
1

z
+
gz
g

)
. (9)

The boundary of a circular blob of radius R(t) centred at z = 0 has Schwarz function
g(z, t) = R2/z. Using (9) and considering the singular structure of terms in (9) as z → 0 and
recalling there is no singularity in w since there are no hydrodynamic sources, it follows that
Ṙ = 0. This gives, as expected, a steady solution in which the fluid blob remains circular
with constant radius R0 = R(0), irrespective of the sign of E.
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2.2 Stability of the free boundary subject to an electric point
charge

The stability of the circular blob equilibria is now studied with R0 = 1, where a small
perturbation to the circular boundary is imposed. Consider the conformal map from the
unit ζ-disk to a nearly-circular fluid blob with a small disturbance to the initial boundary,
∂Ω(0), given by (see e.g. [3, 5, 6] )

z = ζ + αζn, (10)

where n is an integer such that n ≥ 2 and α(t) is a real time varying coefficient such that
|α| � 1. In polar coordinates with r = |z| (10) is equivalent to r = 1+α cos(n−1)θ+O(α2),
0 ≤ θ < 2π. Using ζ = ζ−1 and inversion of (10), the Schwarz function behaves like

g(z, t)→ α

zn
+
nα2 + 1

z
+O(zn−2), as z → 0. (11)

Ignoring terms of O(α2) and considering the structure of the singularities of O(z−n) in (9),
the following ordinary differential equation for α(t) is obtained:

α̇ =
E

2π
(n− 1)α, (12)

which has exponentially decaying solution for a negative point charge E. For E > 0, the
amplitude of the disturbances grow exponentially with time, and the assumption of small α
breaks down. Hence, the flow is stable only if the point charge within the fluid domain is
negative. Physically, this stability property owes itself to the following property: anomalous
fluid outside |z| = 1 is attracted inward by a negative point charge, while a fluid deficit
inside |z| = 1 is pushed outward. Together, these processes re-symmetrise a perturbed
circular blob. For a positive point charge an anomaly for |z| = 1 is pushed further outward
leading to instability. This stability prediction is tested numerically in §4.1 (see Figure 1).

It is worth noting that exact time-dependent solutions which combine both hydrodynamic
singularities and point charges have not yet been found. A prime candidate for generating
such solutions is to use maps of the type (10) since these yield explicit solution in the case
driven by hyrodynamic singularities when point charges are absent (e.g. see [3, 6]). However
when combined with point charges this map does not yield solution with, for example, the
correct rate of change of area. Finding a class of maps which admits such exact solutions is
an open question.

2.3 Circular fluid blob with an off-centre point charge

Suppose the circular blob in §2.1 is off-set by a small amount ε so that it is now centred at
z = ε, with the point charge E located at z = 0 which lies within the fluid domain Ω(t).
Without loss of generality ε is assumed to be real. Making the approximation that, to leading
order, the blob remains circular throughout its evolution, consider the conformal map from
the unit ζ-disk to the fluid blob given by

z(ζ, t) = ε+Rζ, (13)
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where ε(t) and R(t) are real time varying coefficients to be found. The validity of the
approximation that the blob remains circular during its evolution is tested by comparing the
analytical results of this section with numerical results in §4.1. The map (13) implies ∂Ω(t)
has the Schwarz function

g(z, t) = ε+
R2

z − ε
. (14)

Expanding (14) for small ε

g(z, t)→ ε+
R2

z
+
R2ε

z2
+O(ε2). (15)

Considering the structure of the singularities of O(z−1) and O(z−2) on both sides of (9), the
following pair of ordinary differential equations are obtained for R(t) and ε(t):

RṘ = 0, (16a)

R2ε̇

2
+ εRṘ− E

4π
ε = 0. (16b)

Hence, (16a) gives R(t) is constant, denoted by R0, the radius of the initial fluid blob, which
is consistent with conservation of mass. Therefore, (16b) gives

ε(t) = ε0 exp

(
E

2R2
0π
t

)
, (17)

where ε0 denotes the abscissa of the centre of the initial circular fluid blob. Again, it is clear
for a negative point charge, E < 0, the resulting flow is stable and the blob moves through
a series near-circular domains Ω(t), until a steady state is achieved where ε(t)→ 0. That is,
the blob approaches a state where it is circular and centre coinciding with the location of the
point charge. In the case for a positive charge, E > 0, the flow is unstable, since ε(t) grows
exponentially and the asymptotic analysis breaks down and it is unlikely the blob remains
near-circular. These predictions are tested numerically in §4.1.

3 Numerical method

3.1 Mathematical formulation

Consider the complex velocity potential w′(z) = u − iv = ∂φ/∂x − i∂φ/∂y, which is an
analytic function of z = x + iy except at hydrodynamic singularities, such as sources and
sinks. In the numerical procedure the fluid velocity (u, v) is to be found on the boundary
∂Ω(t), which is then used to advect the boundary. The Cauchy integral formula for some zm
on the boundary ∂Ω(t) (with positive orientation) gives

1

2πi

∮
∂Ω(t)

w′(z)

z − zm
dz =

1

2
w′(zm) + γ, (18)

where γ =
∑

k [Res (w′(z)/z − zm; zk)] and zk, k = 1, . . . K, represent K hydrodynamic
singularities of w′(z) lying within the fluid domain Ω(t) at locations z = zk. The singular
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behaviour of w′(z) is known when the flow is driven by singularities such as sources or sinks.
In the absence of hydrodynamic singularities γ ≡ 0.

Letting w′(z) = u− iv, the left hand side of (18) is

I =

∮
∂Ω(t)

u− iv
z − zm

dz =

∮
∂Ω(t)

(ux̃m − vỹm)− i(vx̃m + uỹm)

x̃2
m + ỹ2

m

(dx+ idy), (19)

where x̃m = (x− xm) and ỹm = (y − ym). Considering the imaginary part of (18) gives∮
∂Ω(t)

[
−(vx̃m + uỹm)dx+ (ux̃m − vỹm)dy

x̃2
m + ỹ2

m

]
= πu(zm) + ={2πiγ} . (20)

Now, parameterising the free boundary ∂Ω(t) with the arc length s, such that x = x(s, t)
and y = y(s, t), it follows (

∂x

∂s

)2

+

(
∂y

∂s

)2

= 1, (21)

where 0 ≤ s < L(t) and L(t) denotes the total length of ∂Ω(t) at time t. Note, the integral
I can be written as a Cauchy Principal Value integral:

I = PV

∫ L(t)

0

u(s)− iv(s)

z(s)− z(sm)

dz

ds
ds, (22)

where zm = z(sm). Considering (20), on which u and v are also functions of s, then

PV

∫ L(t)

0

[
−(vx̃m + uỹm)dx

ds
+ (ux̃m − vỹm)dy

ds

x̃2
m + ỹ2

m

]
ds = πu(zm) + ={2πiγ} , (23)

where dx/ds and dy/ds denote the derivatives of x and y with respect to s. Hence, given
∂Ω(t), (23) is an integral equation for unknown velocity field (u, v) at time t.

Since the boundary ∂Ω(t) is an equipotential surface given by Φ(x, y, t) = φ(x, y, t) −
Ψ(x, y) = 0, the derivative of Φ with respect to arc length along ∂Ω(t) gives

∂Φ

∂s
=
∂Φ

∂x

∂x

∂s
+
∂Φ

∂y

∂y

∂s
=

(
u− ∂Ψ

∂x

)
∂x

∂s
+

(
v − ∂Ψ

∂y

)
∂y

∂s
= 0, (24)

which is equivalent to the dynamic boundary condition (4b). Solution to (23) and (24)
provide the velocity (u, v) on the boundary for given ∂Ω(t).

Once u and v are found on ∂Ω(t), the evolution of the free boundary is found by using

dx

dt
=u, (25a)

dy

dt
=v, (25b)

which is equivalent to the kinematic boundary condition (4c).
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3.2 Numerical procedure

At a particular time t = tj the numerical solution of the linear integro-differential system
(21), (23), (24) and (25) is considered. The boundary ∂Ω(tj) is parameterised with respect
to arc length s in the anti-clockwise direction, with total arc length L(tj). Equation (23)
applies where N + 1 equispaced mesh points are defined on the interval [0, L(tj)], such that

S1 = 0, (26a)

Si+1 = Si + ∆S, (26b)

for i =, 1 . . . , N, where the equispaced mesh size is given by

∆S =
L(tj)

N
=
SN+1

N
, (27)

and SN+1 = L(tj).
New variables for the quantities of interest on ∂Ω(tj) are introduced:

Xi,j = x(Si, tj), (28a)

Yi,j = y(Si, tj), (28b)

Ui,j = u(Si, tj), (28c)

Vi,j = v(Si, tj), (28d)

for i = 1, . . . , N + 1. Since the boundary ∂Ω(tj) is closed, this enforces the condition

XN+1,j = X1,j, (29a)

YN+1,j = Y1,j, (29b)

UN+1,j = U1,j, (29c)

VN+1,j = V1,j. (29d)

The boundary at the next time-step t = tj+1 is found from (25), which in terms of
variables in (28) gives

x̂i,j+1 = Xi,j + Ui,j∆t, (30a)

ŷi,j+1 = Yi,j + Vi,j∆t. (30b)

The points (x̂i,j+1, ŷi,j+1), i = 1, . . . , N + 1, are then linearly interpolated to an equispaced
mesh with respect to arc length of ∂Ω(tj+1), as described above, to give (Xi,j+1, Yi,j+1).
Accuracy of the time-stepping routine can be increased by using, for example, Runge-Kutta
methods for marching forward in time.

The above procedure is reliant on determining the 2N unknown quantities (Ui,j, Vi,j),
i = 1, . . . , N, by solving the system of equations (23) and (24), which translate, upon dis-
cretisation, to a linear system for the velocity field (u, v) on the boundary. Together, (23)
and (24) provide 2N equations, where the points (xm, ym) = (x(sm, tj), y(sm, tj)) ∈ ∂Ω(tj)
lie at the midpoints of the equispaced mesh, i.e. Xi+ 1

2
,j = x(Si+ 1

2
, tj), Yi+ 1

2
,j = y(Si+ 1

2
, tj),

where Si+ 1
2

= (Si + Si+1) /2 for i = 1, . . . , N .
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Note, since the boundary is closed, there exist N distinct midpoints, as well as mesh
points, on the interval [0, L(tj)]. Choosing the singular points (xm, ym), i.e. zm = xm + iym,
to be at the midpoints of the equispaced mesh invites use of the trapezoidal rule in order to
calculate the integral in (23). The symmetry of the trapezoidal rule and the discretisation
with respect to the singular points of the integrand allow for the evaluation of the integral
by ignoring the singularities with an accuracy no less than that of a non-singular integral
[21]. Hence, the integral in (23) is replaced by a sum and at time t = tj the equation can be
discretised as

N∑
i=1

[
−(Vi,jx̃l,j + Ui,j ỹl,j)

(
dx
ds

)
i,j

+ (Ui,jx̃l,j − Vi,j ỹl,j)
(
dy
ds

)
i,j

x̃2
l,j + ỹ2

l,j

]
∆S =

= πUl+ 1
2
,j + ={2πiΓl,j} ,

(31)

for l = 1, . . . , N , where x̃l,j = Xi,j−Xl+ 1
2
,j and ỹl,j = Yi,j−Yl+ 1

2
,j. The derivatives (dx/ds)i,j

and (dy/ds)i,j are calculated via finite difference, and Γl,j represents the contribution from
the residues due to the K hydrodynamic singularities lying within the contour ∂Ω(tj) at the
lth midpoint. The values Ul+ 1

2
,j are found by interpolating Ul,j at neighbouring mesh points.

Thus (31) represents N equations (l = 1, . . . , N) in 2N unknowns (Ui,j, Vi,j) for i = 1, . . . , N .
Finally, in discrete form, (24) at time t = tj is written as(

Ui,j −
(
dΨ

dx

)
i,j

)(
dx

ds

)
i,j

+

(
Vi,j −

(
dΨ

dy

)
i,j

)(
dy

ds

)
i,j

= 0, (32)

where (dΨ/dx)i,j and (dΨ/dy)i,j are given on ∂Ω(tj) at the mesh points for i = 1, . . . , N .
This gives a further N equations for (Ui,j, Vi,j). Thus, the 2N unknowns (Ui,j, Vi,j), i =
1, . . . , N , are found by solving the set of 2N linear equations given by (31) and (32) as a
2N × 2N matrix system at time t = tj. The linear (matrix) system is solved using Gaussian
elimination via MATLAB’s backslash command.

4 Numerical results

The numerical procedure is checked by comparing numerical results with the trivial solution
of a growing circular blob with a source at the centre, and also for the case where the initial
boundary is given by z = ζ + aζ2, a ∈ R, driven by a source, where the boundary tends
to a circle centred about the source location. This latter case having a well-known exact
solution (e.g. see [3, 6]). Typical choices of discretisation for a blob with O(π) area is
∆s ∼ O(10−2) and ∆t ∼ O(10−3). The numerical results converge with good agreement to
the exact solutions.

4.1 Circular blob subject to an electric point charge

The stability of a circular fluid blob subject to point charge, discussed in §2.2, is tested
numerically. The boundary given by the map (10) is considered, with α = 0.1, n = 6
and an electric point charge is located at the origin. Figure 1a demonstrates stability for a
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Figure 1: Stability of a perturbed circular blob for (a) E = −π and (b) E = π. Initial
boundary (dashed) given by (10) with α = 0.1 and n = 6. Boundary shapes are shown at
later times (solid) given at (a) t = 4 and (b) t = 0.5. Here there are N = 200 mesh points
on the boundary and step-size ∆t = 1.25× 10−4

negative point charge, where disturbances on the boundary are suppressed and the boundary
approaches a circle. Whereas in figure 1b, as predicted, for a positive point charge the
instability is clear where the disturbances on the boundary grow and the solution rapidly
breaks down. For this reason only the stable case of E < 0 is investigated in the following
numerical experiments.

The analytic solutions presented in §2.3 are also compared with numerical results. At
time t = 0, a circular blob with radius R0 = 1 centred at (ε0, 0) is allowed to evolve owing
to a fixed electric point charge at the origin with strength E < 0.

Here, the main interest is in the quantity ε(t) given in (17), i.e. the x-coordinate of
the circular fluid blob. For comparison purpose, the centre of mass ε of the numerically
computed blob is defined

ε(t) =
1

A

∫∫
Ω(t)

x dxdy, (33)

where A is the area of the fluid blob and computed numerically. The analytic solution, ε(t),
is compared with the numerical results for ε(t).

The behaviour of ε̄(t) with t is shown in figure 2 for different values of electric point
charge, E, with N = 125 mesh points on the boundary and step-size ∆t = 1×10−4. Initially
ε0 = 0.1 and E = −π/2, −π and −2π. The numerical and exact solutions are superimposed
in figure 2 and are in excellent agreement. Plots of ∂Ω(t) (not shown) establish that the
boundary remains very close to circular throughout its motion.

The numerical method is used to investigate the evolution of the boundary for larger
choices ε0 for which the analytical result does not necessarily hold (being a small-ε theory).
Figure 3 shows the evolution of the centre of mass, ε(t), compared with prediction from the
analytic solution, ε(t), in the cases ε0 = 0.25 and ε0 = 0.5. It is apparent that there is
no longer excellent agreement between the analytical and numerical solutions, as expected,
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Figure 2: Evolution of the centre of mass, ε(t), superimposed with the analytic solution (17)
for the centre of the circle, ε(t), of a circular fluid blob with initial centre (ε0, 0) such that
ε0 = 0.1 and radius R0 = 1. Three cases for increasing point charge strength are shown: (i)
E = −π/2, (ii) E = −π and (iii) E = −2π.

since the assumption of small ε is made in §2.3. Nevertheless, even in this non-asymptotic
regime the comparison is good. Figures 4 and 5 show snap shots of the evolving boundary
corresponding to the results of figure 3. It is clear the boundary shape remains closely
circular during its evolution and by t = 10 the blob is circular with centre coinciding with
the point charge.

The case in which ε0 is chosen such that the electric point charge is close to the initial
boundary (i.e. ε0 comparable to R0), but still within the fluid domain, is also studied. For
such a set up the evolution of the boundary is shown in figure 6. Initially, a ‘pinching’ of
the boundary can be seen near the point charge (see figure 6b), after which the blob evolves
through a smooth sequence of elliptical and egg-like domains. Finally, for large time the
fluid blob tends to the same steady state as for small ε0. That is, the fluid blob becomes
symmetrised about the location of the point charge, adopting a circle of radius R0 centred
at the origin.

A ‘random’ boundary shape, ∂Ω(0), of area π is generated using [20]. The numerical
procedure is used to compute the evolution of the blob with a negative point charge located
within the closed boundary. The expected symmetrising of the fluid blob to a unit circle
about the point charge is demonstrated in figure 7.
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Figure 3: Evolution of the centre of mass, ε(t), superimposed with the analytic solution
(17) for the centre of the circle, ε(t), of an initially circular fluid blob centred at (ε0, 0) with
radius R0 = 1. Three cases for increasing point charge strength are shown: (i) E = −π/2,
(ii) E = −π and (iii) E = −2π.
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Figure 4: Snapshots of evolving boundary (solid) of initially circular fluid blob (dashed) of
radius R0 = 1 centred at (ε0, 0) with ε0 = 0.25. An electric point charge of strength E = −π
is located at the origin (marked by cross).
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Figure 5: Snapshots of evolving boundary (solid) of initially circular fluid blob (dashed) of
radius R0 = 1 centred centred at (ε0, 0) with ε0 = 0.5. An electric point charge of strength
E = −π is located at the origin (marked by cross).

5 Delaying cusp formation in sink driven flows using

an electric point charge

The formation of cusps in time dependent Hele-Shaw flows have been, and still are, of
particular interest, e.g. see [1, 3, 8, 9]. For example, it aids understanding of practical
applications such as the extraction of oil which can be modelled by a Hele-Shaw flow driven
by a hydrodynamic sink singularity within the oil region [10].

Consider a fluid blob with free boundary, ∂Ω(t), given by the following polynomial map
from the unit ζ-disk:

z = aζ + bζn, (34)

where a(t) and b(t) are real time varying coefficients, with a point sink located at the origin.
For this map it is known that the free boundary evolves through a series of limaçon shapes,
eventually leading to cusp formation (see figure 8a) in finite time, t∗, beyond which the
boundary map no longer remains univalent [3, 6].

Suppose now that an electric point charge of strength E < 0 is placed within the fluid
domain, with the aim of delaying the formation of the cusp on the boundary, thus enabling
a greater proportion of fluid to be withdrawn before the solution breaks down. In §4.2 it is
shown that a negative point charge within the fluid domain provides a symmetrising effect
on the boundary about the point charge. A domain with disturbances on its boundary would
typically produce cusps over time in sink driven flow. On the other hand the point charge,
through its symmetrising effect, would be expected to suppress the development of cusps.

To assess this competition, a fluid blob with initial shape given by (34) with a(0) = 1,
b(0) = 0.1 and n = 2, and a point sink of strength Q = −1 at z = 0 is allowed to evolve
for the two cases when (a) there is no electric charge at z = 0 (analytic solution shown),
and (b) E = −5π. As expected E = 0 leads to a breakdown of the solution after finite time
t∗ ≈ 1.67. For E < 0, the solution lasts far longer (t > 3) enabling most of the fluid to
be withdrawn (see figure 8b). The boundary can be made to enclose an arbitrarily small
region depending on the numerical parameters (time-step, resolution) chosen. Here there
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Figure 6: Snapshots showing the evolution of the free boundary (solid) of an initially circular
fluid blob (dashed) centred at (ε0, 0) with ε0 = 0.9 and radius R0 = 1. An electric point
charge of strength E = −2π is located at the origin (marked by cross).
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Figure 7: An initial ‘random’ boundary shape (dashed) with electric point charge of strength
E = −π located at the origin (marked by cross). Evolution of the boundary is shown at
t = 1.2 (dotted) and t = 22 (solid). Here there are N = 200 mesh points on the boundary
and step-size ∆t = 4.89× 10−4.

are N = 100 mesh points on the boundary and step-size ∆t = 1× 10−4.

6 Stability of previously found steady solutions

Explicit steady solutions of the free boundary problem (4) have previously been found by
Entov & Etingof [4] and McDonald [14] involving combinations of hydrodynamic singularities
and electric point charges. Here, their stability is tested numerically.

Consider the exact steady solution of Entov & Etingof [4] given by the boundary map
from the unit ζ-disk to the blob in the z-plane

z(ζ) =
√
ab

(
1− αζ
1 + αζ

)1/λ

, (35)

where λ = E/2Q and

α =

√
1− (a/b)λ/2

1 + (a/b)λ/2
. (36)

Here the flow is driven by a point source of strength Q located at z = a, a point sink
of strength −Q at z = b (a, b ∈ R, b > a) and an electric point charge of strength E
located at z = 0, which is outside the fluid domain. The stability of the steady solution
is demonstrated numerically for large time (see figure 9a). Simulations are run for t = T ,
where T is a characteristic time scale for the flow calculated as T ∼ L2/Q, where L is taken
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Figure 8: Comparison between time evolution of free boundaries for (a) cusp formation due
to a sink driven flow (analytic solution) with strength Q = −1 (marked by square). A cusp
forms at t∗ ≈ 1.67, the final time shown. (b) Superposition of sink plus electric charge
(numerical solution) with Q = −1 and E = −5π (marked by square and cross respectively).
The final time shown is t = 3.17. In both (a) and (b) the initial boundary (dashed) is given
by the map (34) with a(0) = 1, b(0) = 0.1 and n = 2.

to be the maximum blob width in the x-direction. There is little deviation between initial
and final blob shapes after this long time.

The stability of the free boundary subject to an electric point charge lying within the fluid
domain is analysed in §2.2. Since here the electric point charge lies on the exterior of the fluid
domain, it is expected that the flow is unstable for negative point charge. Reversing the sign
of the source and sink strengths and point charge, the stability of the above steady solution
(which is still a steady solution under change of sign of Q and E) is tested using the time-
dependent numerical solution. Figure 9b shows the rise of instability on the free boundary
close to the electric point charge in much shorter time as compared with the characteristic
time T , and the solution rapidly breaks down. Therefore, the numerical results suggest the
solution given by (35) is only stable for positive point charge strength, E. The change in
stability properties when swapping signs of E and Q is consistent with (5) which implies the
two resulting evolutions are time reversals of each other. Figures 9c and 9d show the free
boundary at time immediately before breakdown of the solution. The numerical breakdown
of the solution could possibly be due to the formation of high curvature or cusp on the free
boundary. Alternatively, the breakdown could result from the numerical formulation, as a
point charge lying on the free boundary, ∂Ω(t), would provide a singularity in (32) if a mesh
point and the point charge were to coincide.

Figures 10 and 11 show instabilities arising on the boundaries for steady solutions given
in [14] by

z(ζ) = −a tanh

(√
−µ
aE

ζ

)
, (37)

for a dipole of strength µ located at z = 0 and electric point charges ±E at z = ±a (a ∈ R),
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(b) te = 4.2496, E = −0.3909.
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(c) te = 4.5696, E = −0.3909.
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(d) Close up of (c) near point charge,
E = −0.3909.

Figure 9: Testing stability of the steady solution boundary shape given by (35) for a = 1
and b = 1.5, where (a) E = 0.3909, Q = 1. In (b), (c) and (d) E = −0.3909, Q = −1.
The initial boundary shape (dashed) and at later time t = te (solid) are shown. The electric
point charge, source and sink are marked by a cross, triangle and square, respectively. Here
there are N = 500 mesh points on the boundary, step-size ∆t = 5× 10−4 and L = 4.9331
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and

z(ζ) = a

√√√√√√ 1− exp
(
−
√

2δ
E

√
a2+b2

ab
ζ2
)

1 + a2

b2
exp

(
−
√

2δ
E

√
a2+b2

ab
ζ2
) , (38)

with a quadrupole of strength δ at z = 0 and electric point charges −E at z = ±a and E
at z = ±ib (a, b ∈ R), respectively. Since in both of these exact steady solutions there are
negative point charges lying outside of the fluid domain, the flow is unstable. It is evident
(within short time) that the instabilities on the free boundary are prominent in regions
closest to the negative point charges. Figures 10c and 10d show the free boundary at time
immediately before breakdown of the solution when a mesh point lying on the horizontal
axis and the point charge coincide. The solution of the free boundary in figure 11 eventually
breaks down in a similar manner.

McDonald [14], also gives a family of exact steady solutions for an electric point charge
of strength E, lying within the fluid domain, super-imposed with a hydrodynamic n-pole of
strength M at z = 0, given by

z(ζ) = βζ exp

(
2M

Eβn
ζn
)
, (39)

for some parameter β. The stability of the solution is demonstrated for negative charge E
in figure 12a, which shows the case for a hydrodynamic dipole (n = 1). The characteristic
time scale for the flow is T ∼ L3/M . The case for positive charge is also tested, and the
solution no longer remains steady, developing instabilities on the free boundary and then the
solution breaks down rapidly, as expected (see figure 12b). This is due to the aforementioned
unstable nature of a positive point charge lying within the fluid blob (c.f. §4.1). Note again
that swapping the signs of the forcing and electric charge changes the stability properties.

7 Discussion

It has been shown for a Hele-Shaw free boundary flow, if a negative electric point charge
lies inside the fluid domain Ω(t0), where its boundary ∂Ω(t0) is a simple, smooth curve such
as a circle, the resulting evolution of the free boundary ∂Ω(t) is stable. Furthermore, the
boundary remains smooth for all time and tends to a steady state which is circular and
centred about the point charge. The family of curves through which the boundary evolves
depends on the location of the point charge relative to the initial boundary, as displayed in
§4.1. It has been shown analytically, in §2.3, if the location of the point charge is sufficiently
close to the centre of a circular fluid blob, the family of curves the boundary evolves through
are approximately circular, for which the numerical results (based on boundary integral
methods) show excellent agreement.

It has been shown that for a positive point charge lying within the fluid domain, the
evolution of the free boundary is unstable. In §6, the stability of some exact solutions were
tested numerically, where electric point charges of strength E lie outside of the fluid domain.
The numerical results suggest for E > 0, the evolution of the boundary is stable, whilst for
E < 0, it is unstable.
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Figure 10: Testing stability of the steady solution boundary shape given by (37) for a = 0.9,
µ = −1 with E = ±1 at z = ±a. Initial boundary shape (dashed) and at time t = te
(solid) are shown. The dipole and electric point charges are marked by a circle and crosses,
respectively. Here there are N = 100 mesh points on the boundary and step-size ∆t =
1.25× 10−5.
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Figure 11: Testing stability of the steady solution boundary shape given by (38) for a = 0.9,
b = 1, δ = 0.5 with E = −1 at z = ±a and E = 1 at z = ±ib. Initial boundary shape
(dashed) and at time t = te (solid) are shown. The quadrupole and electric point charges
are marked by a diamond and crosses, respectively. Here there are N = 100 mesh points on
the boundary and step-size ∆t = 1.25× 10−5.
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(b) te = 9, E = 1.

Figure 12: Testing stability of the steady solution boundary shape given by (39) for β = 2.0,
M = E/2 and n = 1, where (a) E = −1 and (b) E = 1. Initial boundary shape (dashed) and
at later time t = te (solid) are shown. The quadrupole and electric point charge are marked
by a circle and cross, respectively. Here there are N = 500 mesh points on the boundary,
step-size ∆t = 3.33× 10−4 and L = 4.4669.
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For the exact steady solutions given by (35) and (39), numerical results show no instability
on the free boundary after some characteristic time scale, provided the sign of electric charge
is negative within the fluid blob, and positive when lying outside the fluid blob. Although
this does not prove stability or otherwise, by demonstrating that a solution stays close to
the original exact, steady solution on some characteristic time scale, then such solutions are
likely to be stable. It is important to note the solution breaks down in much shorter time
(as compared with the characteristic time) in the corresponding unstable cases.
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A Numerical filtering

In many of the computations a ‘saw-toothed’ appearance of the evolving free boundary,
∂Ω(t), was observed after a sufficient number of time steps. An example is displayed in
figure 13. This phenomenon was also observed in [12], where a similar numerical method is
used to model the time evolution of breaking surface waves. As in [12], the source of these
‘oscillations’ is assumed to arise from the numerical instability of the method employed. In
a similar manner to [12], the following five point filtering formula is applied to remedy the
problem:

X̄i,j =
1

16
(−Xi−2,j + 4Xi−1,j + 10Xi,j + 4Xi+1.j −Xi+2.j), (40a)

Ȳi,j =
1

16
(−Yi−2,j + 4Yi−1,j + 10Yi,j + 4Yi+1,j − Yi+2,j), (40b)

where (X̄i,j, Ȳi,j) are the filtered coordinates lying on ∂Ω(t) at time t = tj. These points
are then re-noded (via linear interpolation) such that the mesh points are equispaced with
respect to arc length, s, and denoted by (Xi,j, Yi,j) for i = 1, . . . , N , as in §3.2. Filtering is
applied every 10 or 20 time-steps for which the numerical solutions are free from spurious
oscillations and in good agreement with existing exact solutions.

As a further test of the effect of filtering on the numerical solutions, consider the poly-
nomial map given in (10), with n = 4 and α = 0.1. Simulations are run with and without
filtering where the boundary is driven by a hydrodynamic source at an arbitrary location
within the fluid domain (see figure 14). Plots in figure 14 verify that filtering has little
affect on numerical results (where both filtered and un-filtered solutions are superimposed).
However, it should be noted that filtering may have a greater impact on boundary shapes
with high curvature, depending on the number of mesh points included.

21



−0.9 −0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7 0.9 1.1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

(a)

−0.85 −0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5 −0.45

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

x

y

(b)

Figure 13: (a) Snapshot of the evolving free boundary at t = 0.0498, for an initially circular
fluid blob in the case ε0 = 0.1, R0 = 1, where the fluid blob is subject to an electric point
charge of strength E = −π located at the origin (marked by a cross). No filtering has been
applied. (b) Magnification of boundary displaying ‘saw-toothed’ effect (solid line) with mesh
points alternately lying either side of the filtered smooth boundary (dashed line). Here there
are N = 100 mesh points and step-size ∆t = 2.5× 10−4.
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(a) Source at z = 0
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(b) Source at z = (1 + i)/4

Figure 14: Superposition of numerical results for filtered (dashed) and un-filtered (solid)
data of an initially non-circular fluid blob whose boundary is driven by a hydrodynamic
source of strength Q = π (marked by triangle), with excellent agreement. Final time shown
in both (a) and (b) is t = 1. Here there are N = 100 mesh points along the boundary and
step-size ∆t = 1× 10−3.
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