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dynamics calculations 
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"Adiabatically reduced" coupled equations are derived to obtain an approximate quantum 
mechanical solution for the dynamics of nonstationary states in isolated polyatomic molecules. 
Under suitable conditions, the number of such equations is considerably less than the number of 
coupled equations needed in practice for the exact calculation. The relationship of the present 
technique to several other methods, including the partitioning method, is discussed, and specific 
applications of the present treatment are given. 

I. INTRODUCTION 

In recent years, there has been much experimental and 
theoretical interest in the quantum dynamics of initially pre­
pared nonstationary vibronic, 1•

2 rovibronic, 3 rovibrational, 4 

and vibrational5
-

16 states in isolated polyatomic molecules. 
The richness of the underlying dynamics is evident, e.g., in 
recent experimental results on the evolution of initially pre­
pared vibronic states in anthracene.7

•
8 In these experiments, 

periodic few-state quantum evolution or "beating" was ob­
served at low excess energies, and dissipative17 intramolecu­
lar vibrational energy redistribution (IVR) was detected at 
higher energies. 

Theoretically, the exact treatment of the dynamical evo­
lution of initially prepared zeroth-order states is, in princi­
ple, straightforward (e.g., Refs. 1-16). In practice, it is 
usually quite difficult or not computationally feasible due to 
the large number of states in a typical molecule. 18 For this 
reason, a variety of approximate or phenomenological meth­
ods have been devised to treat these problems, ranging from 
few-level treatments for sparse level densities (e.g., Ref. 7) 
to Bixon-Jortner-like models19 for large level densities. In 
general, it is often assumed that any zeroth-order states cou­
pled weakly to and/or reasonably off-resonant from the ini­
tially prepared state do not significantly affect the subse­
quent evolution ofthat initial state (e.g., Refs. 12 and 14). 
An important exception to this situation is when the weakly 
coupled states provide the only coupling pathway of the ini­
tial state to other resonant states. 15

•
20 This latter effect, 

which has been discussed only recently within the context of 
IVR, 15

•
20 has also been suggested as being particularly im­

portant in the direct multiphoton excitation of few-level 
quantum systems (e.g., Ref. 21). Model calculations, given 
below, also show that weakly coupled/off-resonant 
states22<•> can have an important effect on the dynamical 
evolution of initially prepared states even when there is di­
rect coupling to resonant or nearly resonant states. 

With the advent of increasingly high resolution spec­
troscopy and real~time experiments such as those in Refs. 7 
and 8, the usefulness of detailed and accurate dynamical cal­
culations is apparent. In Sec. II, reduced coupled equations 

•> Contribution No. 7291. 

are derived that allow one to solve for the dynamics of a 
strongly coupled and/or resonant subset of states that in­
cludes the initial state. In suitable circumstances, this treat­
ment considerably reduces the number of coupled equations 
needed in a typical calculation by using an effective Hamil­
tonian. The relationship of this effective Hamiltonian to 
those obtained by several existing techniques is discussed in 
Sec. Ill, and the theory is applied in Sec. IV to some model 
systems. A discussion of the results is given in Sec. V, along 
with concluding remarks in Sec. VI. 

II. THEORY: ADIABATICALLY REDUCED COUPLED 
EQUATIONS 

The general solution I 'II (t)) of the time-dependent 
SchrOdinger equation may be written in terms of a time­
dependent phase factor and a new function l¢'(t)) (with 
li = 1): 

l'l'(t)) = l¢'(t))exp( -i(H)t), (2.1) 

where ( H) is the time-independent mean energy of the non­
stationary state given by 

(H) = ('l'(t) IH l'l'(t)). (2.2) 

This separation of the phase factor exp ( - i ( H ) t) from the 
time-dependent wave function represents a type of interac­
tion representation for a nonstationary state in which the 
phase due to the mean energy of the initial state is removed 
from l'l'(t)). If the second time-dependent factor l¢'(t)) is 
then expanded in terms of some orthonormal zeroth-order 
basis as 

N 

1¢'U)> = L h;U>I~i>. (2.3) 
i=l 

the following coupled equations are obtained: 

dbj(t) . . N 
--=l(H)bj(t) -l L b;(t)~;· (2.4) 

dt i=l 

In Eq. ( 2.4), the coefficients bj (t) are the time-dependent 
amplitudes of the zeroth-order states l~j), ~; equals the 
matrix element (~j IH I~;) of the total Hamiltonian H 
= H0 + V, and I~;) is an eigenstate of H0 • The usefulness of 

a coupled equations approach for determining the dynamics 
of nonstationary states has been discussed recently. 12

•
14 In 

particular, it allows the inclusion of more basis states in the 
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calculations because an internal computer storage of large 
matrices is not required. In addition, the dynamics of the 
zeroth-order states are obtained directly from the ampli­
tudes b1 ( t) rather than from an expansion in terms of the 
eigenstates and eigenvectors of the total Hamiltonian, the 
latter usually being obtained by a previous matrix diagonali­
zation.18 

It is now assumed that the complete set of zeroth-order 
states may usefully be partitioned into a set {19'1 )} 

(j = l, ... ,n) of states nearly resonant (and/or strongly in­
teracting), a linear combination of which constitutes the ini­
tial state, and into a set {ltpk)} (k = n + l, ... ,n + m) of 
states off-resonant and/or weakly coupled22<•> to the mani­
fold {ltp1 )}. (In the simplest case, the initial state is one of 
the 19'1 ) 's.) The coupled equations for the two sets of states 
may be written in vector-matrix notation as 

and 

where bR(t) [b0 (t)] is ann (m)-dimensional column vector 
containing the amplitudes for the resonant (off-resonant) 
states, ( H)1R ( ( H )1°) isannXn (mXm) diagonal matrix 
with the elements ( H)81,., HR (H0

) is the nXn (mXm) 
Hamiltonian matrix for the resonant (off-resonant) states, 23 

and VR 0 (VOR) is an nXm (mXn) matrix composed ofthe 
coupling matrix elements (tp1 IV I'Pk) ( (tpk IV 19'1 )) between 
the two manifolds {ltp1 )} and {ltpk)} (j = l, ... ,n; k = n 
+ l, ... ,n +m). ThesummationlimitNinEq. (2.4) equals 
n+m. 

If the off-resonant/weakly coupled amplitudes b0 (t) re­
main negligible in magnitude throughout the course of the 
dynamics, then the derivative in Eq. (2.6) satisfies 

(2.7) 

Specifically, it is intended that Eq. (2.7) be valid over any 
relevant time scale of interest [e.g., for some fraction of time 
needed for an appreciable change in the resonant amp~itudes 
bR ( t) to occur] . That is, db0 

( t) I dt is, on the average, zero on 
this time scale. 22<b > This approximation is similar in spirit to 
those sometimes used in this study of the dynamics of direct 
multiphoton absorption by multilevel quantum mechanical 
systems. 24 It is also similar to the steady-state approximation 
used in solving reaction rate equations in chemical kinetics. 

By virtue ofEqs. (2.6) and (2.7), the amplitudes b0 (t) 

may be solved for in terms of the amplitudes bR(t) provided 
the matrix ( ( H )1° - UO) is nonsingular. One thereby ob­
tains 

(2.8) 

From Eqs. (2.5) and (2.8), the reduced coupled equations 
for the desired amplitudes bR(t) are thus given by 

= i[ ( H)1R- HR- VR 0 (( H)1°- U0)-1VOR ]bR(t). 
(2.9) 

Equation (2.9) is expected to provide an accurate ap­
proximation to the true dynamics of the manifold of states 
{ltp1)} (j = l, ... ,n) provided the amplitudes b0 (t), as deter­
mined by the exact dynamics, remain small. When the ap­
proximate dynamics are obtained by integrating the reduced 
coupled equations in Eq. (2.9), an a posteriori error estimate 
may be obtained by calculating b0 (t) via Eq. (2.8) [i.e., the 
elements ofb0 

( t) obtained in this way should remain small]. 
The amplitudes b0 

( t) are clearly small, for instance, if all of 
the elements of the matrix ( ( H) 1° - H 0

) -
1 are small. In 

some cases, such a condition may be too restrictive because 
sign variations in these elements, as well as in VOR and bR ( t), 
may lead to some cancellation. 

The reduced coupled equations [Eq. (2.9)] have a par­
ticularly simple form when there is no coupling among the 
states in the off-resonant manifold { I'Pk)}. This would be the 
case, for instance, if the manifold {ltpk)} (k = n + l, ... ,N) 
had been prediagonalized. In that case, the matrix elements 
[ ( ( H)l0

- H 0
)-

1]kk' equal ( (H)- Hkk )-18kk',andthe 
reduced coupled equations for the {ltp1 )} states are given by 

db1 (t) = i( H )b
1 

(t) 
dt 

_; ± (~~ + f J}k vki ) b;(t). 
t=l k=n+l (H) -Hkk 

(2.10) 

If the strongly coupled manifold of states {ltp)} is 
weakly and smoothly coupled to a quasicontinuous back­
ground of states in the { I'Pk)} manifold, the summation over 
the I'Pk) states in Eq. (2.10) may be approximated by an 
integral: 

N VV l~mu I < ; ki ,.... p<a> t<a>da, 
k=n+1 H -Hkk ~ •• 

(2.11) 

where 

f<ll>= J}k <ll> vki <ll>l a, (2.12) 

and the integration limits llmin to llmax span the range of 
energy differences ll== ( H) - Hkk. Equations ( 2.11) and 
( 2.12) lead to a dependence of the coupled equations for the 
{ltp1)} manifold on the density p(ll.) of I'Pk) states. Thus, in 
addition to the possible "dissipative" effect of a background 
quasicontinuum states, 17. the {ltp1)} states can also exper­
ience this added dynamical effect. In the quantum beats 
found experimentally in anthracene, 7·8 the simple dynamics 
observed between the two or three vibronic levels may be due 
either to a very weak, nondissipative interaction with the 
background quasicontinuum of states, or to a direct coupling 
of those few "relevant" levels to each other, or to both. 

In related treatments, 24 a reduction of the original cou­
pled equations [e.g., Eq. (2.4)] to new equations in some 
subspace has sometimes been called "adiabatic elimination" 
or "adiabatic following." The adiabatic connotation in the 
present context is that the perturbation due to the off-reso-
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nant states has distorted the subspace of interest, but its di­
mension (characterized by a set of quantum numbers) re­
mains intact. When the interaction representation given by 
Eq. (2.1) is used, the dynamics describing the coupling of 
the "resonant'' subspace, which includes the initial state, to 
the off-resonant states involves large energy differences and 
hence large frequencies relative those characterizing that 
resonant subspace. In this general way, the separation and 
reduction of the coupled equations can be termed an adiaba­
tic reduction. 

In the next section the relationship of the present meth­
od to several existing quantum mechanical methods is dis­
cussed. For brevity, we have not included a discussion of the 
many useful semiclassical techniques that are present in the 
literature. 

Ill. RELATIONSHIP TO OTHER QUANTUM 
TECHNIQUES 

A. Partitioning methods 

In order to relate the formalism of Sec. II to Hamilton­
ian matrix partitioning methods, the solution of the coupled 
differential equations in Eq. (2.9) is written as 

bR(t) = U exp(- iJ...R t)Ut},R(O), (3.1) 

where 

exp(- iJ...R t) = ut exp( -zH~ t)U. (3.2) 

In Eq. ( 3.2), H~ is the effective Hamiltonian matrix for the 
(resonant) {lfP1)} manifold given from Eq. (2.9) by 

H~ = HR + VR 0( ( H)l0 - H 0)-IVOR- ( H)IR, (3.3) 

and U and J...R are, respectively, the unitary matrix of eigen­
vectors and the diagonal matrix of eigenvalues of H~. 

Several partitioning methods have been used to solve the 
matrix-eigenvalue problem for the time-independent Schro­
dinger equation (e.g., Refs. 25-27). It was shown25 how a 
finite-dimensional Hamiltonian matrix can be formally par­
titioned into a new Hamiltonian for a particular subspace of 
interest (here, the resonant manifold {lfP1 ) }). For the prob­
lem discussed in Sec. II, the exact partitioned Hamiltonian 
would be28 

H!- = HR + VR 0 (El0 - UO)-IVOR. (3.4) 

In an exact treatment of the eigenvalue problem, the secular 
equation 

detiH:xact- EIR I= 0 (3.5) 

is then solved for the eigenvalues J...:xact. Since the expression 
for u:xact [Eq. (3.4)] involves the matrix El0, the solution 
for the roots 11.1 of Eq. ( 3. 5) is still a complicated problem, 
although the reduced dimension of the secular determinant 
may be helpful. As a result, a number of related iterative and 
perturbative schemes have been devised25

•
27·29·30 to simplify 

the solution ofEq. (3.5). For a nondegenerate energy level, 
the matrix H!_ has one element and these methods are 
potentially quite powerful, while for degenerate or nearly 
degenerate levels, approximate approaches based on Eqs. 
(3.4) and (3.5) aremoredifficultandhavemetwith varying 
degrees of success (cf. discussion in Refs. 27 and 30). 

The method developed in the present paper amounts to 
defining an effective Hamiltonian by replacing the matrix 
EI0inEq. (3.4) by the constant matrix ( H)I0• This method 
yields eigenvalues for the { lfP1)} manifold which depend on 
( H) and hence the initial nonstationary state. The correct 
eigenvalues are, of course, independent of the initial condi­
tions. The present choice of (H) in Eq. (3.3) arose from a 
dynamical, rather than a static, analysis and provides an ap­
proximate or "average" representation of the exact eigenso­
lutionsofEq. (3.5). Thedynamicsoftheiaitialstatearethus 
obtained using an effective Hamiltonian [Eq. (3.3)] rather 
than by performing an accurate determination of the roots of 
Eq. (3.5). TheeffectiveHamiltoniangivenbyEq. (3.3) may 
not, therefore, be the method of choice when the primary 
purpose is to obtain highly accurate eigenvalues of the exact 
Hamiltonian [ Eq. ( 3.5)]. However, it is useful in obtaining 
approximate, and simplified, solutions for the dynamics. 

The above partitioning formalism [Eqs. (3.3)-(3.5)] is 
also closely related to a resolvent plus projection operator 
treatment ofthe dynamics. 31 For this purpose, it is useful to 
introduce here the projection operators for the { lfP1 ) } and 
{lfPk)} manifolds: 

n N 

P= L lfPJ) (fPJI· Q= L lfPk) (fPkl· (3.6) 
j=l k=n+l 

These projection operators have the usual properties that 
P 2(Q 2) equals P(Q) and that PQ(QP) equals zero. Using 
N XN matrix representations P and Q of these operators in 
the zeroth-order basis, where the elements ofP for j > n and 
ofQ fork< n + 1 are all zeros, the coupled equations in Eq. 
(2.9) for the states spanned by the operator P may be written 
as 

!{_Pb{t) =i(H)Pb(t) 
dt 

- iP[H + VQ( ( H)I- QHQ)- 1QV]Pb(t), (3.7) 

where Vis the coupling matrix, and all matrices are N-di­
mensional. By inspection of Eq. (3.7), it is seen that the 
dynamics of the amplitudes Pb{t) are determined by the 
effective Hamiltonian32 

Hetr = P[H + VQ( ( H)I- QHQ)- 1QV- (H) ]P. 

(3.8) 

We next compare this result with that based on the re­
solvent operator. Using an earlier partitioning formal­
ism,26·33 the amplitudes Pb(t) for the exact problem have 
been expressed31 in terms of a projection of the resolvent 
operator. These exact amplitudes b1 ( t) are given in terms of 
the resolvent operator G(E) by31 

b1(t) = ~ (dE e-iEt (fP11PG(E)P lfP1), (3.9) 
2m Jc 

where the integration contour C runs from + oo to - oo 
and is infinitesimally above the real energy axis where the 
singularities in G(E) occur; lfP1 ) is taken here as the initial 
state. The partitioned resolvent operator PG(E)P for the 
amplitudes of the {lfP1 )} states may be written as31 

PG(E)P= [E-PH0 P-PR(E)P]- 1P, (3.10) 

where H0 is the zeroth-order Hamiltonian, and R (E) is de-
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fined as the level shift operator,31·33 given by 

R(E)=:V + VQ(E- QHQ)- 1QV. (3.11) 

Equations (3.9)-(3.11) provide an exact expression for the 
amplitudes of the states spanned by the projector P. In this 
formalism, the operator R(E) in Eqs. (3.10) and (3.11) is 
responsible for the shifts and couplings of the energy levels in 
the {ltp1)} manifold, including the contributions from the 
off-resonant { l<l'k)} states. A number of authors [e.g., Refs. 
1 (a) and 1 (c), and references therein] have used this for­
malism to describe formally the competing radiationless and 
radiative decay dynamics of initially prepared vibronic 
states in polyatomic molecules.34 Several authorsH•>·31·33 

have also discussed the smooth energy dependence of R (E) 
when the projection operator P spans oneH•>·33 or two31 

states. In addition, when P spans a number of states, it has 
been suggested [Ref. 1 (a), p. 86] that an effective resolvent 
operator in Eq. (3.9) could be defined by treating R(E) as 
an energy-independent operator evaluated at the average ze­
roth-order energy of those states in P. The perturbation the­
ory based on the projection operator approach (e.g., Ref. 33 
and references cited therein) has also been further devel­
oped35 using an iterative scheme and continued fractions. 

The present approximation, given by Eq. (3.7), may be 
written in terms of a resolvent operator formalism for the 
effective Hamiltonian in Eq. ( 3.8). The approximate ampli­
tudes b1 ( t) for the resonant states are thereby given by 

b1 (t) = 2~ L dE e-t<E- <H>>r (<p11PGefi'(E)P 19'1), (3.12) 

where PG eft' (E)P is the effective resolvent operator for the P 
space: 

PGetr(E)P= [E- PH0 P- PR( ( H))P] -lp, (3.13) 

and the (H) in the exponential term ofEq. (3.12) simply 
describes a constant shift of the energy levels. The relation of 
the approximation developed in Sec. II to this formalism is 
clear: It simplifies the evaluation of the poles of the resolvent 
operator in Eq. (3.9) by evaluating the level shift operator 
R (E) at the mean energy of the nonstationary state 
E = ( H) and hence making it energy independent. 

The present approximation is also complimentary to a 
recent method developed by Schultheis et al. 36 These auth­
ors derive an approximate solution of the time-dependent 
Schrodinger equation based on a partitioning of the Hamil­
tonian and a conversion of the exact Schrooinger equations 
for the P and Q spaces into second order differential equa­
tions. Their method is accurate for short time solutions, in­
cluding those for problems in which the Q space dissipates 
some probability from the P space (i.e., from the subspace of 
interest). The method ofthe present paper, however, relies 
on the fact that the Q space cannot dissipate the P space 
probability because these two spaces are defined as being 
detuned in energy from each other. 22 The method of 
Schultheis et al. 36 has been found useful in treating systems 
where the perturbation acts for a small time duration and 
where it may be desirable to have states in the P space which 
are nearly degenerate with some states in the Q space. Such a 
system was found, e.g., in heavy ion collisions. 36 

B. Van Vleck-like approaches 

As discussed by Killingbeck, 27 the Van Vleck approach 
to degenerate or nearly degenerate perturbation theory (e.g., 
Ref. 37) is based on transformation theory rather than parti­
tioning techniques. The usual procedure is to find a unitary 
transformation of order n that block diagonalizes the Hamil­
tonian to order n and hence leaves an effective Hamiltonian 
for the degenerate or nearly degenerate submatrix of inter­
est. To the extent that such a method is accurate, the effec­
tive Hamiltonian matrix for the resonant { 1<1'1 )} states could 
be used in Eqs. ( 3.1) and ( 3.2) to determine the dynamics of 
that subsystem of interest. However, as noted elsewhere, 25 

this approach relies on expansions in orders of a perturba­
tion parameter, whereas a partitioning approach based on 
Eqs. ( 3.3) or ( 3.4) does not. In particular examples having 
strong couplings in the off-resonant ntanifold of states 
{ltpk)}, we have found that the Van Vleck treatment of the 
dynamics gave qualitatively incorrect results for the initial 
state probabilities in several model systems, whereas the ap­
proach developed in Sec. II and based on Eq. (2.9) contin­
ued to give accurate results. 38 

IV. APPLICATIONS 

A. Coupled Morse oscillator systems: Local mode 
evolution 

Recently, Hutchinson et a/. 15 have discussed the dy­
namics of two-degrees-of-freedom coupled Morse oscillator 
systems. Of particular relevance to the present work is their 
dynamical study of the quantum local mode states in these 
systems in which they gave an approximate numerical solu-

1.0 

00 

0.0 Ti lrlC ( p:--) 11.0 

FIG. 1. Local mode probabilities P o,3 and P3,0 as a function of time for the 
j0,3) and j3,0) zeroth-order coupled Morse oscillator states, respectively, 
of Ref. 15. The exact results are given by the solid lines and the approximate 
results based on Eqs. (4.1) and (4.2) are given by the dashed lines. The 
exact probabilities P1,2 and Pu of the j2,1) and jl,2) zeroth-order states, 
respectively, are shown for comparison with the local mode probabilities. 
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85,-----------------, 

-85-'---------------___J 

States 

FIG. 2. A schematic ofthe model system used in Sec. IV B. Dotted lines 
represent the couplings between the zeroth-order states and 19'1) is the ini­
tial state. 

tion based on time-independent perturbation theory and a 
truncated basis set. Equation (2.9) may be used to solve the 
equations for the dynamics of the zeroth-order Morse oscil­
lator local mode states IO,n) ( ln,O) ), with n quanta initially 
in one bond. For example, in the case ofthe 10,3) state, the 
time-dependent probabilities of these states are given ana­
lytically from Eq. (2.9) by 

P0,3 (t) = cos2 (0t /2); P3,0 (t) = sin2(0t /2), ( 4.1) 

where P0,3 (P3,0 ) is the probability lb1 <tW of being in the 
10,3) <13,0)) state, and the oscillation frequency 0 is given 
by 

fi=2(V4+ (2VI V3a+ V~ V2+ Vi V2)1(a2- V~)]. 
(4.2) 

In Eq. ( 4.2), VI, v2, v3, and v4 equal ( 1 ,21V 10,3 >, 
(1,21 V 12,1), (2, 11 V 10,3) ,and (3,01 V 10,3) ,respectively,and 
a is the zeroth-order detuning between the states 10,3) 
<13,0)) and 11,2) <12,1)). The restricted number of basis 
states used here are the same as those employed in the analy­
sisofRef. 15, and the states 11,2) and 12,1) are treated in the 

formalism of Sec. II as the "off-resonant" { ill'k)} manifold. 
For the values of the above matrix elements and a given in 
Ref. 15, 0 is calculated to be 2.66 cm-I, whereas the exact 
resultl5

•
16

•
39 was reported to be 2.7 cm- 1

• A result for 0 
based on time-independent perturbation theory is given ana­
lytically by15

•
39 

n = 2( v4 + c2v1 v3a + v~ V2 )1a2
] (4.3> 

and equals 2.6 cm- 1
• In Fig. 1, the time dependence ofthe 

exact (solid lines) and adiabatically reduced coupled equa­
tions (dashed lines) probabilities is shown. The probabilities 
of the off-resonant 12,1) and 11,2) states are also shown for 
comparison with the local mode 13,0) and 10,3) probabili­
ties. As is also discussed in Sec. II, it is seen from the P2,1 (t) 

[ P1,2 (t)] plot in Fig. 1 that dP2,1 (t)/dt, and hence db0 (t)/ 
dt [Eq. (2.6)], can oscillate quite rapidly in time but, on the 
average, is equal to zero for the time scale of interest. As a 
result, P2,1 (t), and hence the magnitude ofb0 (t), remains 
small throughout the course of the relevant dynamics. 

B. Model calculations 

Time-dependent calculations were performed for the 
model13-level system depicted schematically in Fig. 2. This 
model is chosen to represent a physically reasonable few­
level quantum dynamical system in a polyatomic molecule. 
Three levels were taken to be nearly degenerate and signifi­
cantly coupled to each other as well as to the initial state 
(shown as lf111) in Fig. 2). Nine other levels were placed 
randomly in a region 30-70 em -t above and below the four­
level subsystem. The elements of the Hamiltonian matrix H 
used in the exact coupled equations [ Eqs. ( 2.4)] for this 
system are given in Table I. Shown in Fig. 3 is the evolution 
of the initial state probability I b 1 ( t) 1

2 for the exact dynamics 
(solid line), the adiabatically reduced coupled equations dy­
namics (dashed line), and the isolated (i.e., neglecting the 
nine off-resonant states) four-state dynamics (dotted line). 
In Fig. 4, the Fourier transform spectrum of the initial state 
amplitude b1 (t) is given. In addition, the evolution of the 
lf111) state probability is shown in Fig. 5 for a somewhat dif­
ferent model system (cf. Table II). This model was chosen 

TABLE I. The Hamiltonian matrix H (in em -•) for the model system in Figs. 2 and 3. • 

sj 2 3 4 5 6 7 8 9 10 II 12 13 

1 65 2 0 0 1 2 2 1 2 1 1 3 3 
2 65 3 5 0 0 0 0 0 0 0 0 0 
3 64.9 0 1 2 2 1 2 1 2 3 1 
4 65.5 1 1 1 2 1 3 3 2 1 
5 2 
6 13 

0 7 15 
8 24 
9 99 

10 111 
II 114 
12 126 
13 131 

• H is a symmetric matrix. 
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1.0 

0.0 

0.0 Time (ps) 126.0 

FIG. 3. The lf11) zeroth-order state probability as a function of time for the 
model system shown in Fig. 2 and given in Table I. The exact results are 
given by the solid line, the results obtained using Eq. (2.9) by the dashed 
line, and the results obtained by integrating the coupled equations [ Eq. 
(2.4)] for the four resonant states while neglecting the nine oft'-resonant 
states are given by the dotted line. 

so that the four states of interest are no longer nearly degen­
erate. In Fig. 6, the I'P1) probability is shown for a model 
system having the same couplings and zeroth-order energies 
as in Table I but with an added diagonal perturbation term 
V11 = 5.0 cm- 1• Here, the solid line is the exact result, the 

0.9 

0.0 

56.2 73 7 

FIG. 4. The Fourier transform spectrum of b1(t) for the model system of 
Figs. 2 and 3 and Table I. The labeling of the lines is the same as in Fig. 3. 
For the two central peaks, the approximate results based 011 Eq. (2.9) 
(dashed lines) essentially coincide with the exact results (solid lines) and 
are hidden by the latter. 
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FIG. 5. The lq~ 1 ) zeroth-order state probability as a function of time for the 
model system in Table II. The labeling of the lines is the same as in Fig. 3. 

dashed line is the result calculated by integrating Eq. (2.9), 
and the dotted line is now the result calculated by equations 
similar to Eq. ( 2. 9) except using the energy E ~ of the ze­
roth-orderstate ltJ11) instead of( H) inEq. (2.9) [i.e., using 
a phase factor exp( - iE~ t) instead of exp( - i( H )t) in 
Eq. ( 2.1) and then solving for the reduced equations as in 
Sec. II based on this choice of phase] . 

V. DISCUSSION 

It is clear from the results shown in Fig. 3 that the off­
resonant states can qualitatively effect the dynamics of the 
initial state and that the approximate coupled equations in 
Eq. (2.9) give accurate results for this system. The influence 
of the off-resonant states in the frequency domain is seen in 
the Fourier transform spectrum of b1 (t) shown in Fig. 4. In 
particular, the relative Fourier amplitude of the two central 
peaks is significantly changed by the presence of the off­
resonant states and hence the time-dependent probability 
amplitude in Fig. 3 is also changed. It is also interesting that 
the frequency components of b 1 ( t) are not as sensitive to the 
off-resonant states as are the Fourier amplitudes. This fact is 
probably due to the zeroth-order near degeneracy of the four 

TABLE II. Hamiltonian submatrix (in em -t) for the model system in Fig. 
5." 

'S! 2 3 4 

I 65 10 0 0 
2 100 11 9 
3 70 0 
4 75 

• The submatrix is for the four strongly interacting states ( cf. discussion in 
Sec. IV B) and is a symmetric matrix. The remainder of the Hamiltonian is 
the same as in Table I. 
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FIG. 6. The ltp1) zeroth-order probability as a function of time for the mod­
el system shown in Fig. 2 and given in Table I, except that a diagonal pertur­
bation V11 = 5.0 em_, is now added to the Hamiltonian. The exact results 
are given by the solid line, the results obtained using Bq. ( 2.9) by the dashed 
line, and the results obtained by using Bqs. (2.1) through (2.9) with a phase 
exp(- iE? t) (cf. discussion in Sees. IV Band V) are given by the dotted 

line. 

resonant states shown in Fig. 2; i.e., the wave functions and 
hence the Fourier amplitudes are quite sensitive to small 
detunings in the energy. The dynamics of the initial state for 
the nondegenerate system (cf. Table II) shown in Fig. 5 is 
less susceptible to the presence of the off-resonant states, but 
those states nevertheless have an important effect. For this 
system, the reduced coupled equations also prove to be accu­
rate. 

In Fig. 6, a comparison of the initial state dynamics for 
two possible choices of the reference or interaction phase in 
Eq. ( 2.1) is shown. In that system, a diagonal perturbation 
V11 of 5 em -• was added to distinguish between the choices 
of E ~ t and ( H) t for the phase. From Fig. 6, one sees that 
the latter choice (dashed line rather than dotted line) is a 
better one for that system, and thus far we have found this 
choice of phase to give the best results in other model calcu­
lations. Other choices for the phase in Eq. (2.1) such as the 
average zeroth-order energy (EJ>av t or the average expec­
tation value ( ( H )1 >av t, where av denotes an arithmetic 
average over the icp1 ) 's, were also tested. In general, they did 
not give as accurate results as did the choice of ( H ) t. How­
ever, as is evident in Fig. 6, the approximate dynamics based 
on Eq. (2.9) were not strongly sensitive to the choice ofthe 
reference phase in Eq. (2.1) (i.e., the results did not differ 
strongly for these different phases). This behavior is a mani­
festation of the smooth energy dependence mentioned pre­
viously by several authors1<•>·31

•
33

•
35 in regard to the level 

shift operator R (E) discussed in Sec. III A. 
For the model systems in the present paper, the approxi­

mate approach based on Eq. (2.9) used approximately eight 
times less computer time than was required for the exact 

calculations in Figs. 3 and 5. In general, when there are 
many off-resonant/weakly coupled states, one can expect a 
considerable savings in computer time by using the reduced 
coupled equations in Eq. (2.9), although the inversion of the 
matrix ( ( H) 1° - Jtl) may require some CPU time. In some 
cases, an approximate approach based on those equations 
may allow a practical treatment of problems that cannot as 
yet be treated by an exact calculation. 

VI. CONCLUDING REMARKS 

Adiabatically reduced coupled equations have been de­
rived for the propagation ofnonstationary states in polyato­
mic molecules. In appropriate cases, the present method al­
lows one to significantly reduce the number of coupled 
equations included in a time-dependent calculation. It was 
found that the adiabatically reduced coupled equations gave 
an accurate approximation to the dynamics for coupled 
Morse oscillator local mode states and for the model systems 
presented in Sec. IV B. Moreover, strong dynamical effects 
due to the presence of off-resonant states were found for 
these model systems. Other model calculations performed 
by us have, in general, exhibited significant dynamical con­
tributions frbm the off-resonant states, and similar results 
have been discussed by Hutchinson et a/. 15

•
20 from a time­

independent point of view. An application of the methods 
presented in this paper to the problem of energy transfer 
between ligands of a heavy atom will be given elsewhere. 40 
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