Supporting Information

Probing the Effects of Residues Located Outside the Agonist Binding Site on Drug-Receptor Selectivity in the Nicotinic Receptor

Nyssa L. Puskar[†], Henry A. Lester[‡], Dennis A. Dougherty^{†*}

[†]Division of Chemistry and Chemical Engineering, California Institute of Technology, 164-30, Pasadena, CA USA [‡]Division of Biology, California Institute of Technology, 156-29, Pasadena, CA USA

Contents

1. Supporting Figures

- Figure S1: Unnatural amino acids and α-hydroxy acids used in the present study
- Figure S2: Fluorination plots probing the effect of the α 1 G153K mutation on the muscletype nAChR
- Figure S3: Fluorination plots probing the effect of the α 7 G152K mutation on the (α 7)₅ nAChR
- Figure S4: Fluorination plots probing the effect of the α 4 K158G mutation on the $(\alpha 4)_2(\beta 2)_3$ nAChR
- Figure S5: Bar graph comparing the effect on agonist potency of mutating select residues located outside of the $(\alpha 4)_2(\beta 2)_3$ agonist binding site

2. Supporting Tables

- Table S1: EC₅₀ values (μ M) and Hill coefficients for mutant (α 1)₂ β 1 $\gamma\delta$ nAChRs
- Table S2: EC₅₀ values (μ M) and Hill coefficients for mutant (α 7)₅ nAChRs
- Table S3: EC₅₀ values (μ M) and Hill coefficients for mutant (α 4)₂(β 2)₃ nAChRs
- Table S4: EC_{50} values (μ M) and Hill coefficients for mutant (α 4)₂(β 2)₃ nAChRs probing the
Loop B-Loop C hydrogen bond
- Table S5:Injection ratios of $\alpha 4 \text{ K158G:}\beta 2 \text{ mRNA}$ used to control $\alpha 4\beta 2$ receptor
stoichiometry in *Xenopus* oocytes

Figure S1

Figure S1: Unnatural amino acids and α -hydroxy acids used in the present study. If not indicated, a, b, c, or d group is H. *F-Trp*, 5-fluoro-tryptophan; *F*₂-*Trp*, 5,7-difluoro-tryptophan; *F*₃-*Trp*, 5,6,7-trifluoro-tryptophan; *F*₄-*Trp*, 4,5,6,7-tetrafluoro-tryptophan; *F*₁-*Phe*, 4-flouro-phenylalanine; *F*₃-*Phe*, 3,4,5-triflouro-phenylalanine; *4-Br-Phe*, 4-bromo-phenylalanine; *4-CN-Phe*, 4-cyano-phenylalanine; *4-MeO-Phe*, 4-methoxy-phenylalanine; *Tah*, threonine, α -hydroxy; *Lah*, leucine, α -hydroxy; *Yah*, tyrosine, α -hydroxy.

Figure S2: Fluorination plots probing the effect of the $\alpha 1$ G153K mutation on the muscle-type nAChR. Log[EC₅₀ (mutant)/EC₅₀ (wild type)] is plotted versus quantitative cation- π binding energies (REF). The data are from Supporting Table S1. Fluorination plots are shown for (A) ACh, (B) nicotine, and (C) epibatidine at the TrpB position. Moving to the left corresponds to Trp, F₁-Trp, F₂-Trp, F₃-Trp, and F₄-Trp.

Figure S3: Fluorination plots probing the effect of the α 7 G152K mutation on the (α 7)₅ nAChR. Log[EC₅₀ (mutant)/EC₅₀ (wild type)] is plotted versus quantitative cation- π binding energies (REF). The data are from Supporting Table S2. Fluorination plots are shown for (A) ACh, (B) epibatidine, and (C) nicotine at the TyrC2 position. Moving to the left corresponds to 4-MeO-Phe, Tyr, F₁-Phe, 4-Br-Phe, 4-CN-Phe, F₃-Phe.

Figure S4: Fluorination plots probing the effect of the α 4 K158G mutation on the $(\alpha 4)_2(\beta 2)_3$ nAChR. Log[EC₅₀ (mutant)/EC₅₀ (wild type)] is plotted versus quantitative cation- π binding energies (REF). The data are from Supporting Table S3. Fluorination plots are shown for (A) ACh and (B) nicotine at the TrpB position. Moving to the left corresponds to Trp, F₁-Trp, F₂-Trp, F₃-Trp, and F₄-Trp.

Figure S5

Figure S5: Bar graph comparing the effect on agonist potency of mutating select residues located outside of the $(\alpha 4)_2(\beta 2)_3$ agonist binding site. The data are from Supporting Table S3. For each mutation, the relative shift in agonist potency from the wild type $(\alpha 4)_2(\beta 2)_3$ receptor is shown for ACh (red) and nicotine (blue). The effect of $\alpha 1$ G153K on ACh (green) and nicotine (black) potency for the muscle receptor are shown for reference.

Supporting Tables

Table S1: EC₅₀ values (μ M) and Hill coefficients for mutant (α 1)₂ β 1 $\gamma\delta$ nAChRs. N = number of cells. The EC₅₀ values are ± S.E. ND, not determined; N/A, not available. [‡]Previously reported in Cashin 2005; [†]previously reported in Xiu 2009. All other values in this table were determined in the present work.

	$(\alpha 1)_2\beta 1\gamma\delta$ nAChR											
Mutation	ACh	n _H	Ν	Nicotine	n _H	Ν	Epibatidine	n _H	Ν			
Wild Type	1.2 ± 0.1	1.6 ± 0.1	9	56 ± 4	2.2 ± 0.3	14	$0.83 \pm 0.08^{\ddagger}$	N/A	N/A			
G153K	0.027 ± 0.001	1.5 ± 0.1	12	0.76 ± 0.05	1.6 ± 0.2	13	0.011 ± 0.001	1.5 ± 0.1	10			
G153A	0.029 ± 0.001	1.7 ± 0.1	9	1.2 ± 0.1	1.5 ± 0.1	6	ND	ND	ND			
G153T	0.030 ± 0.001	1.5 ± 0.1	15	1.2 ± 0.1	1.8 ± 0.1	14	ND	ND	ND			
	$(\alpha 1 \text{ G153K})_2\beta 1\gamma\delta - \text{TrpB}(W149)$											
Trp	$0.019 \pm 0.001^{\dagger}$	$1.5 \pm 0.1^{\dagger}$	6	$0.59 \pm 0.04^{\dagger}$	$1.8 \pm 0.2^{\dagger}$	11	0.010 ± 0.001	1.4 ± 0.1	9			
F ₁ -Trp	$0.094 \pm 0.004^{\dagger}$	$1.6 \pm 0.1^{\dagger}$	7	$2.8 \pm 0.1^{\dagger}$	$1.3 \pm 0.1^{\dagger}$	16	0.078 ± 0.001	1.2 ± 0.1	9			
F ₂ -Trp	$0.079 \pm 0.004^{\dagger}$	$1.3 \pm 0.1^{\dagger}$	5	$2.3 \pm 0.1^{\dagger}$	$1.3 \pm 0.1^{\dagger}$	7	0.17 ± 0.01	1.2 ± 0.1	9			
F ₃ -Trp	$1.05 \pm 0.03^{\dagger}$	$1.3 \pm 0.1^{\dagger}$	9	$11 \pm 1^{\dagger}$	$1.5 \pm 0.1^{\dagger}$	10	1.0 ± 0.1	1.3 ± 0.1	13			
F ₄ -Trp	$7.5 \pm 0.5^{\dagger}$	$1.2 \pm 0.1^{\dagger}$	8	$32 \pm 4^{\dagger}$	$1.5 \pm 0.2^{\dagger}$	6	6.8 ± 0.9	1.2 ± 0.1	8			
		()	x1 G1	53K) ₂ β1γδ – Th	r(B+1) (T150))						
Thr	0.024 ± 0.001	1.3 ± 0.1	8	0.62 ± 0.03	1.6 ± 0.1	8	0.012 ± 0.001	1.2 ± 0.1	7			
Tah	0.028 ± 0.002	1.1 ± 0.1	11	9.0 ± 0.6	1.5 ± 0.1	11	0.13 ± 0.01	1.3 ± 0.1	8			

	$(\alpha 7)_5$ nAChR											
Residue	Mutation	ACh	n _H	Ν	Nicotine	n _H	Ν	Epibatidine	n _H	Ν		
Wild type		66 ± 1	2.9 ± 0.1	15	23 ± 1	3.1 ± 0.1	9	0.26 ± 0.01	3.3 ± 0.2	11		
G152K		3.7 ± 0.1	1.8 ± 0.1	12	0.76 ± 0.03	2.4 ± 0.2	10	0.016 ± 0.001	2.9 ± 0.4	10		
				(α7 (G152K) ₅							
TyrA (V02)	Tyr	5.1 ± 0.3	2.1 ± 0.3	6	0.55 ± 0.01	3.3 ± 0.3	12	0.017 ± 0.001	2.8 ± 0.3	9		
ТугА (192)	F ₃ -Phe	240 ± 11	2.9 ± 0.4	10	10 ± 1	2.8 ± 0.5	13	0.47 ± 0.01	3.4 ± 0.2	6		
TrpB (W148)	Trp	4.1 ± 0.2	2.7 ± 0.3	14	0.77 ± 0.03	2.9 ± 0.3	16	0.016 ± 0.001	3.6 ± 0.5	10		
	F ₃ -Trp	9.0 ± 0.3	1.9 ± 0.1	11	1.2 ± 0.1	2.4 ± 0.2	13	0.23 ± 0.02	2.1 ± 0.2	12		
	Tyr	3.9 ± 0.1	3.2 ± 0.2	12	0.61 ± 0.01	3.5 ± 0.3	13	0.015 ± 0.001	3.8 ± 0.2	9		
	F ₁ -Phe	8.0 ± 0.5	1.9 ± 0.2	12	3.5 ± 0.1	2.9 ± 0.1	13	0.079 ± 0.001	3.4 ± 0.2	9		
TyrC2 (V104)	F ₃ -Phe	170 ± 8	2.2 ± 0.2	14	60 ± 2	2.1 ± 0.1	14	2.2 ± 0.1	2.6 ± 0.3	12		
TyrC2 (1194)	4-Br-Phe	3.0 ± 0.2	1.9 ± 0.2	10	1.1 ± 0.1	3.4 ± 0.3	10	0.021 ± 0.001	2.6 ± 0.2	11		
	4-CN-Phe	10 ± 1	2.0 ± 0.2	8	15 ± 1	2.6 ± 0.2	9	0.12 ± 0.01	3.4 ± 0.3	16		
	4-MeO-Phe	6.0 ± 0.4	2.3 ± 0.3	11	2.5 ± 0.1	3.2 ± 0.1	11	0.025 ± 0.001	3.0 ± 0.2	11		
	S149T	1.8 ± 0.1	2.1 ± 0.1	9	0.29 ± 0.01	4.1 ± 0.4	14	0.009 ± 0.001	3.1 ± 0.4	11		
Ser(B+1) (S149)	Thr	1.7 ± 0.1	2.0 ± 0.1	14	0.29 ± 0.01	4.6 ± 0.4	20	0.012 ± 0.001	3.5 ± 0.4	20		
	Tah	0.6 ± 0.1	1.7 ± 0.2	9	2.3 ± 0.1	2.0 ± 0.1	6	0.031 ± 0.002	2.7 ± 0.5	9		

Table S2: EC₅₀ values (μ M) and Hill coefficients for mutant (α 7)₅ nAChRs. N = number of cells. The EC₅₀ values are ± S.E.

	α4β2 nAChR										
Mutation	ACh	n _H	Ν	Nicotine	n _H	Ν	Norm. I (+70mV)	Ν			
$(\alpha 4)_3(\beta 2)_2$	$0.023 \pm 0.001^{\dagger}$	$1.3 \pm 0.1^{\dagger}$	6	$0.01 \pm 0.001^{\dagger}$	$1.7 \pm 0.2^{\dagger}$	3	$0.297 \pm 0.041^{\dagger}$	24			
$(\alpha 4)_2(\beta 2)_3$	$0.42 \pm 0.01^{\dagger}$	$1.2 \pm 0.1^{\dagger}$	12	$0.08 \pm 0.01^{\dagger}$	$1.2 \pm 0.1^{\dagger}$	15	$0.041 \pm 0.005^{\dagger}$	9			
$(\alpha 4)_3(\beta 2)_2 K158G$	0.11 ± 0.01	0.99 ± 0.05	11	0.045 ± 0.001	1.5 ± 0.1	13	0.268 ± 0.015	21			
$(\alpha 4)_2(\beta 2)_3$ K158G	1.3 ± 0.1	1.1 ± 0.1	14	0.30 ± 0.02	1.6 ± 0.1	10	0.015 ± 0.006	20			
$(\alpha 4 \text{ K158G})_2(\beta 2)_3 - \text{TrpB} (W154)$											
Trp	1.3 ± 0.1	1.2 ± 0.1	10	0.27 ± 0.02	1.6 ± 0.2	13	0.014 ± 0.006	17			
F ₁ -Trp	3.7 ± 0.1	1.2 ± 0.1	14	0.50 ± 0.04	1.4 ± 0.1	12	0.034 ± 0.005	23			
F ₂ -Trp	5.4 ± 0.2	1.2 ± 0.1	10	0.67 ± 0.06	1.3 ± 0.1	13	0.024 ± 0.008	19			
F ₃ -Trp	23 ± 1	1.3 ± 0.1	9	2.6 ± 0.2	1.2 ± 0.1	13	0.017 ± 0.009	17			
F ₄ -Trp	25 ± 3	0.99 ± 0.08	8	4.5 ± 0.5	1.2 ± 0.1	6	0.021 ± 0.010	12			
	$(\alpha 4 \text{ K158G})_2(\beta 2)_3 - \text{Thr} (B+1) (T155)$										
Thr	0.99 ± 0.03	1.1 ± 0.1	8	0.25 ± 0.01	1.5 ± 0.1	9	0.023 ± 0.004	13			
Tah	0.53 ± 0.02	1.2 ± 0.1	8	3.4 ± 0.2	1.2 ± 0.1	10	0.024 ± 0.006	16			
	(α4)	$_2(\beta 2)_3$ – Side (Chain N	Autations in the	α4 Subunit						
D157A	0.58 ± 0.02	1.3 ± 0.1	9	0.18 ± 0.01	1.4 ± 0.1	8	0.013 ± 0.009	9			
D157N	0.61 ± 0.03	1.2 ± 0.1	7	0.14 ± 0.01	1.5 ± 0.1	7	0.032 ± 0.004	7			
D157E	0.86 ± 0.02	1.2 ± 0.1	12	0.19 ± 0.01	1.5 ± 0.1	13	0.017 ± 0.005	15			
D157K	6.0 ± 0.2	1.3 ± 0.1	9	0.39 ± 0.01	1.7 ± 0.1	11	-0.023 ± 0.015	7			
K158A	0.57 ± 0.01	1.2 ± 0.1	9	0.21 ± 0.01	1.4 ± 0.1	7	0.032 ± 0.008	10			
K160A	0.37 ± 0.01	1.1 ± 0.1	9	0.081 ± 0.005	1.5 ± 0.1	10	0.039 ± 0.006	9			
E200A	1.1 ± 0.1	1.1 ± 0.1	15	0.44 ± 0.02	1.4 ± 0.1	12	0.037 ± 0.006	12			
E200Q	0.93 ± 0.05	1.3 ± 0.1	6	0.34 ± 0.01	1.5 ± 0.1	9	0.019 ± 0.004	6			
E200D	0.32 ± 0.02	1.2 ± 0.1	11	0.11 ± 0.01	1.5 ± 0.1	12	0.025 ± 0.003	15			
E200K	0.96 ± 0.03	1.2 ± 0.1	11	0.36 ± 0.01	1.5 ± 0.1	11	0.025 ± 0.008	11			
D157AK158A	1.3 ± 0.1	1.2 ± 0.1	12	0.22 ± 0.02	1.4 ± 0.1	7	0.032 ± 0.008	11			
D157AK160A	0.63 ± 0.03	1.3 ± 0.1	12	0.14 ± 0.01	1.4 ± 0.1	10	0.031 ± 0.007	13			
D157AE200A	4.1 ± 0.1	1.3 ± 0.1	10	1.1 ± 0.1	1.4 ± 0.1	10	0.024 ± 0.006	9			
D157NE200Q	1.2 ± 0.1	1.2 ± 0.1	7	0.41 ± 0.03	1.5 ± 0.1	13	0.029 ± 0.010	11			
K158AK160A	0.58 ± 0.02	1.2 ± 0.1	9	0.096 ± 0.004	1.6 ± 0.1	7	0.021 ± 0.004	8			

Table S3: EC₅₀ values (ACh and Nicotine, μ M; Epibatidine, nM) and Hill coefficients for mutant (α 4)₂(β 2)₃ nAChRs. N = number of cells. The EC₅₀ values are ± S.E. [†]Previously reported in Xiu 2009. All other values in this table were determined in the present work.

K158AE200A	1.3 ± 0.1	1.2 ± 0.1	6	0.63 ± 0.03	1.5 ± 0.1	7	0.031 ± 0.004	8		
K160AE200A	1.2 ± 0.1	1.2 ± 0.1	12	0.40 ± 0.02	1.4 ± 0.1	11	0.026 ± 0.003	12		
D157NK158QE200Q	1.1 ± 0.1	1.2 ± 0.1	10	0.31 ± 0.02	1.5 ± 0.1	12	0.049 ± 0.007	13		
D157NK160QE200Q	0.93 ± 0.05	1.3 ± 0.1	9	0.24 ± 0.02	1.5 ± 0.1	6	0.035 ± 0.005	10		
$(\alpha 4)_2(\beta 2)_3 - \text{TrpB} (W154)$										
				Norm. I						
Mutation	±Epibatidine	n _H	Ν	(+70mV)	Ν					
Trp	0.58 ± 0.03	1.6 ± 0.1	13	0.036 ± 0.008	18					
F ₁ -Trp	6.8 ± 1.1	1.1 ± 0.2	12	0.039 ± 0.005	22					
F ₂ -Trp	12.0 ± 1.5	1.1 ± 0.1	11	0.062 ± 0.006	22					
F ₃ -Trp	35.4 ± 2.0	1.1 ± 0.1	14	0.032 ± 0.006	24					
F ₄ -Trp	23.1 ± 1.3	1.0 ± 0.1	8	0.021 ± 0.007	17					
$(\alpha 4)_2(\beta 2)_3 - \text{Thr} (B+1) (T155)$										
Thr	0.67 ± 0.04	1.4 ± 0.1	12	0.022 ± 0.004	24					
Tah	3.7 ± 0.1	1.5 ± 0.1	11	0.026 ± 0.004	13					

$(\alpha 4)_2(\beta 2)_3 - K158$										
Mutation	ACh	n _H	Ν	Nicotine	n _H	Ν	Norm. I (+70mV)	Ν		
K158L	0.13 ± 0.01	1.2 ± 0.1	17	0.035 ± 0.003	1.5 ± 0.1	10	-0.005 ± 0.023	13		
Leu	0.15 ± 0.01	1.3 ± 0.1	8	0.031 ± 0.001	1.3 ± 0.1	11	0.038 ± 0.010	14		
Lah	0.060 ± 0.001	1.2 ± 0.1	11	0.011 ± 0.001	1.3 ± 0.1	10	0.026 ± 0.004	15		
$(\alpha 4)_2(\beta 2)_3 - TyrC2 (Y202)$										
Tyr	0.44 ± 0.01	1.2 ± 0.1	10	0.096 ± 0.006	1.5 ± 0.1	8	0.035 ± 0.007	11		
Yah	0.73 ± 0.03	1.2 ± 0.1	13	0.42 ± 0.03	1.4 ± 0.1	8	-0.008 ± 0.026	5		

Table S4: EC₅₀ values (μ M) and Hill coefficients for mutant (α 4)₂(β 2)₃ nAChRs probing the Loop B-Loop C hydrogen bond. N = number of cells. The EC₅₀ values are ± S.E.

α4 K153G:β2 mRNA Ratios											
Ratio	ACh	n _H	Ν	Nicotine	n _H	Ν	Norm. I (+70mV)	Ν			
100:1	0.11 ± 0.01	1.0 ± 0.1	11	0.045 ± 0.001	1.5 ± 0.1	13	0.268 ± 0.015	21			
30:1	0.08 ± 0.01	1.0 ± 0.1	5	ND	ND	ND	0.248 ± 0.027	9			
10:1	0.35 ± 0.04	0.71 ± 0.05	11	ND	ND	ND	0.242 ± 0.021	13			
6:1	0.49 ± 0.02	0.80 ± 0.02	8	ND	ND	ND	0.215 ± 0.016	17			
3:1	0.68 ± 0.02	1.1 ± 0.1	13	ND	ND	ND	0.045 ± 0.008	11			
1:1	1.3 ± 0.1	1.1 ± 0.1	14	0.30 ± 0.02	1.7 ± 0.2	10	0.015 ± 0.006	20			
1:3	1.1 ± 0.1	1.3 ± 0.1	9	0.26 ± 0.02	2.1 ± 0.3	8	0.059 ± 0.006	17			
1:10	1.0 ± 0.1	1.2 ± 0.1	12	0.26 ± 0.03	1.7 ± 0.3	7	0.043 ± 0.032	6			

Table S5: Injection ratios of $\alpha 4 \text{ K158G}$: $\beta 2 \text{ mRNA}$ used to control $\alpha 4\beta 2$ receptor stoichiometry in *Xenopus* oocytes. N = number of cells. EC₅₀ values (μ M) and Hill coefficients are shown. The EC₅₀ values are ± S.E. ND, not determined.