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Plasma flow to an obstacle is examined using the two-fluid equations. In this model the 
obstacle is assumed to be a two-dimensional strip that extends to infinity in they direction 
(slab g~ometry?. An obstacle inserted into a magnetized plasma will cast a "shadow" along the 
m~gnetlc field hn~s. The natural collection length of such an obstacle is a measure of the length 
of Its sh_adow. This study shows that in a typical fusion tokamak, where c,!Oc;d< 1 (fie;• cs 
are the Ion cyclotron frequency and the ion acoustic speed, respectively, dis the half-width of 
the ~trip), the particle collec_tion length of an obstacle can be approximated as L

11 
= 0.23c5 d 21 

D1, If D1lcsd <1; or0.30d, If D11c,d > 1. For the cases examined in this study, the inclusion 
of the electron-ion collisional drag parallel to B0 changes the solution only by an insignificant 
amount. 

I. INTRODUCTION 

In fusion tokamaks, limiters are used in order to prevent 
the vacuum chamber from being bombarded by energetic 
particles escaping the core plasma, and thereby help reduce 
the level of impurity in the plasma. It is important to know 
the plasma density and velocity profiles inside the limiter­
shadow region, and the particle collection length of the limit­
ers. Also, a common density diagnostic consists of a single or 
an array of Langmuir probes mounted on a probe housing 1 

which, in some cases, changes the characteristics of the plas­
ma. It is important to understand how such obstacles per­
turb the plasma. 

Often a qualitative argument based on particle balance2 

is used to show that a floating obstacle inserted into a magne­
tized plasma will have a particle collection length along the 
magnetic field of the order L 

11 
-d~c5ID1 , where dh and C5 

are the dimension of the obstacle and the ion acoustic speed, 
respectively. This paper presents a numerical and analytical 
study of a simple 2-D model of particle collection by an ob­
stacle. In our model, an obstacle collects ions and electrons 
at the ion acoustic speed.3

-
7 The external magnetic field is 

assumed to be uniform and perpendicular to the obstacle. 
We ignore the effect of an externally applied electric field 
and mass flow far from the obstacle. Our study shows that 
for small perpendicular diffusion coefficients, the particle 
collection length of an obstacle varies directly with the ion 
acoustic speed, quadratically with the obstacle's dimension, 
and inversely with the perpendicular diffusion coefficient. 
For large perpendicular diffusion coefficients, the particle 
collection length varies directly with the obstacle's dimen­
sion and is independent of both the ion acoustic speed and 
the perpendicular diffusion coefficient. The scaling of the 
results of our two-dimensional model agrees with the results 
of the one-dimensional model in Ref. 2 in the limit of small 
perpendicular diffusion coefficients. In addition, we are able 
to obtain the numerical constant. We also discuss the case 
where the perpendicular diffusion coefficient is large, where­
as Ref. 2 did not give a corresponding discussion. 

II. MODEL AND ASSUMPTIONS 

Figure 1 illustrates the geometry used in this study. The 
magnetic field is in the z direction. The obstacle is assumed to 

be infinitely long in they direction. Thus a I ay = 0. Our do­
main of interest is O.;;;x.;;;x0 and O<:z<:z0 • The normal deriva­
tive of the density and the normal component of the current 
J (in the x-z plane) are required to vanish on the boundary 
of the domain (x = 0; x = x0 ; z = 0; z = z0 ). The normal 
component of the velocity (in the x-z plane) is also required 
to vanish on the boundary of the domain except at the obsta­
cle (z = z0, O.;;;x.;;;d). There, the normal component of the 
velocity (the particle collection speed) is taken to be the ion 
acoustic speed. Below is the list of assumptions employed by 
our model. 

(a) The ions are assumed to be singly charged. 
(b) Both the electrons and ions are assumed to be iso­

thermal, and the energy equation is not used. 
(c) The pressure is assumed to be isotropic although it 

may actually be anisotropic due to the presence of an exter­
nally applied magnetic field. 

(d) Since miM< 1 (m, Mare the electron's and ion's 
mass, respectively), the electron inertial term is neglected. 

(e) Collisions with neutrals are neglected. 
(f) Particles lost to the obstacle are replaced by assum­

ing a spatially uniform source. 
(g) The ion Larmor radius is assumed to be small com­

pared to the size of the obstacle. 
(h) The De bye length is assumed to be small and we do 

not treat the sheath regime. 

FIG. I. The density distribution n (x,z) (slab geometry) in the presence of a 
semi-infinite strip with c,/!l6 d = 0.01, D 1 /c,d = y., a

11 
= 0, z0/d = 40, 

and x,/ ~ = 2 is s~own. Here, dis the half-width of the obstacle. See that z,/ 
d descnbes the stze of the plasma column compared to the size of the obsta· 
cle. 
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(i) There is no plasma flow at infinity. 
(j) The effect of viscosity is neglected. It will be the 

subject of a subsequent publication. 
We start with the following set of equations: 

M(av + (v • V)v) = JXBo- T. + T; Vn, 
at n n 

0 = - ne( - V,P + uXB0 ) - T. Vn 

+ mv1 J1 1e + mv11 J 11 1e, 

an - + V • ( nv) = S, at 
V•J=O, 

(1) 

(2) 

(3) 

(4) 

where u and v are the electron and ion velocities, respective­
ly, and J = ne(v- u). Since m <t,M, vis essentially the mass 
velocity. One is tempted to neglect the electron-ion colli­
sional drag parallel to B0 [the last term ofEq. (2)] because 
then, the electrons would obey a Boltzmann relation on any 
given field line. This would simplify the equations and their 
solution significantly. However, a simple estimate shows 
that the ratio of the electron-ion collisional drag to the elec­
tron pressure gradient parallel to B0 is 0[ ( v

11 
lv1 ) ( 1 + T;l 

T. ) ] . Thus it appears necessary to keep the electron-ion 
collisional drag parallel to B0 . 

If the electron-ion collisional drag parallel to B0 were 
neglected, Eqs. (1 )-(3) [with the last term of Eq. (2) re­
moved] would form a closed set of equations, and it would 
have been unnecessary to include Eq. ( 4). However, since 
the electron-ion collisional drag parallel to B0 is included, 
we have introduced an additional unknown, namely J

11 
• 

Thus Eqs. ( 1 )-( 3) no longer form a closed set of equations 
since we now have more unknowns than we do equations. 
Therefore, it is necessary to introduce Eq. ( 4) to close the set 
of equations. 

We define t/J(x,z), the streamfunction for the current J, 
such that Jx = at/flaz and Jz = -at/flax. Equation (4) is 
then automatically satisfied. Since the normal component of 
J (in the x-z plane) is required to vanish on the boundary of 
the domain, t/J is required to be constant on the boundary, 
which we have chosen to be 0. 

By integrating the z component of Eq. ( 2) with respect 
to z, and then differentiating it with respect to x, one obtains 

a,p T. an 
e----

ax n ax 

=ed,P0 _~dn0 _ mv11 _!_ ('Jz(x,z') dz', 
dx no dx e ax Jo n(x,z') 

where t/J0 (x) = f/J(x,O) and n0 (x) = n(x,O). Were it not for 
the v

11 
term, the density would be related to the potential by 

the usual Boltzmann factor, i.e., n(x,z) = n0 (x) 
Xexp[e(f/J(x,z)- t/J0 (x))/Te ]. 

Solving for Jx from the perpendicular components of 
Eq. (2), and making use of the above expression and 
u = v- Jlne, one obtains 
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where a 1 = mv1 leB0 and a 11 = mv11 1eB0 • 

Dividing both sides of the equation immediately above 
by n, differentiating the result with respect to z, and using the 
definition for t/J, we obtain the following Poisson-like equa­
tion for t/J: 

(1 +a~)!..._(.!. at/f)+ a1a11 _!_(.!.at/f) 
az naz ax nax 
a 

=e- (vx +a1vy). 
az 

(5) 

Here, JY can be obtained from the perpendicular compo­
nents ofEq. (2), namely, 

JY = - 1
- (Jx- nevx) = - 1

- (aat/J - nevx). (6) 
a 1 a 1 z 

In summary, we have kept the electron-ion collisional drag 
parallel to the external magnetic field B0 in our Ohm's law 
equation. Since V • J = 0, we have defined a streamfunction 
t/J(x,z) such that Jx = at/flaz and Jz = -at/flax. Our mod­
elthus consists ofEqs. (1 ), (5), ( 6), and (3). 

Ill. DIMENSIONLESS PARAMETERS AND VARIABLES 

For the sake of simplicity and convenience, we will in­
troduce a set of dimensionless parameters and variables. The 
dimensionless parameters areS= dS I cs (normalized ion or 
electron source), p; = cslflc;d, and D1 = D11csd = a 1 p; 
(normalized perpendicular diffusion coefficient), where 
T = T, + T; and c s = ( TIM) 112

• The dimensionless vari­
ables are 

- est 
t=­

d' 
- r r=-, 

d 

IV. NORMALIZED EQUATIONS 

All of the variables (dependent and independent) will 
be written without the tilde hereafter. They are understood 
to be dimensionless. By normalizing Eqs. ( 1 ) , ( 5), ( 6), and 
( 3) one obtains the following set of equations: 

iJv 1 Jxz Vn -+ (v•V)v=----, (7) at p; n n 

2 a ( 1 at/f) a ( 1 at/f) (1 +a1)- -- +a1 a 11 - --
az naz ax nax 

a 
=- (vx + a1vy), 

az 

J = - 1
- (J - nv ) = - 1

- ( at/f - nv ) 
y al X X al az X ' 

an -- + V • (nv) = S, at 

(8) 

(9) 

(10) 

where z is the direction of the external magnetic field B0 . 
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V. ANALYTICAL RESULTS 

We have investigated analytically the scaling of an ob­
stacle's particle collection length with D 1 = a 1p;. We would 
like to emphasize that we only consider cases where the ion 
Larmor radius is small compared to the size of the obstacle. 
In other words, p; = c.f!lc;d <t.l. Otherwise, the two-fluid 
approach is not appropriate. Furthermore, our analytical 
results are valid only for a

11 
= 0 ( v

11 
= 0). With a

11 
= 0, it 

can be shown from Eq. ( 8) that 

Jx = __ n_ [vx + a 1vy- ("'' n(x,z') 
1 + ai Jo 

X [vx (x,z') + a 1 vY (x,z')]dz'(i"'' n(x,z')dz') -l 
(11) 

Since we are interested in how the parallel collection length 
scales with D 1 , we restrict ourselves to the case where z0 is 
sufficiently large that the second term of the rhs of the above 
expression for Jx can be neglected compared to the first 
term. Thus 

(12) 

A. ti1 ~1 

When D1 and p; are much less than unity, it can be 
shown, by using the perpendicular components ofEq. ( 7) in 
steady state (J !at= 0) and Eqs. (9) and ( 12), that 

V1 = D1 (V1 nln)- p;(V1 nln) xz. 
Substituting the x component of the above expression into 
the continuity equation [ Eq. ( 11 ) ] and renormalizing z by a 
factor of D 1 , i.e., letting z* = D 1 z, one can show that L 

11 
, the 

particle collection length, varies directly with the ion acous­
tic speed, quadratically with the size of the obstacle, and 
inversely with the perpendicular diffusion coefficient. Fur­
thermore, the proportionality constant can be estimated in 
the following manner. In steady state, the rate of particle 
collection at the obstacle must balance the rate at which 
particles diffuse across the magnetic field into the collection 
region that, presumably, extends into the plasma by a dis­
tance L 

11 
from the obstacle. 

B. ti1 ~1~p1 
In this limit, a 1 = D 1 I p; ~ 1. Equation (13) becomes 

Jx =0. Thusly =0. Theionmomentumequation [Eq. (7)] 
becomes 

Jv Vn -+ (v•V)v= --. 
at n 

In this limit the equations and the boundary conditions do 
not have any dependence on either D1 or P;· Therefore, the 
particle collection length of an obstacle in this limit is inde­
pendent of both D1 or P;· Furthermore, it varies directly 
with the size of the obstacle. 

VI. NUMERICAL METHOD 

For the numerical solution ofEqs. (7)-( 10) we use the 
corresponding difference equations on an 81 X 81 grid. At 
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the beginning of a time step the streamfunction t/J is comput­
ed using successive over relaxation (SOR) using Eq. (8). 
All time derivatives at the beginning of a time step are evalu­
ated using Eqs. (7) and ( 10). The velocity and density are 
advanced half a time step using the Euler method. The 
streamfunction t/J is computed at the intermediate time step. 
The time derivatives at the intermediate time step are evalu­
ated using Eqs. ( 7) and ( 10). The velocity and density are 
then advanced an entire time step using time central differ­
ences. Equations (7) and ( 10) are advanced until a steady 
state is reached. In this scheme, all spatial derivatives are 
computed using central differences. 

VII. NUMERICAL RESULTS 

We have run our 2-D code to obtain the density distribu­
tion for various values of D1 for both a

11 
= 0 ( v

11 
= 0) and 

a
11 

=a 1 ( v
11 

= v1 ). Figure 1 is a plo!.._ofthe density distribu­
tion n(x,z) (slab geometry) with D1 =ft., p; = 0.01, a

11 

= 0, zof d = 40, and x 0/ d = 2. The density distribution with 
all parameters being the same except a

11 
= a 1 = 6.25 

( v
11 

= v1 ) is ne~ly identical. The density distribution for 
other values of D1 are qualitatively similar. Note that the 
values of zof d and xof d have been chosen large enough that 
the plasma far from the obstacle is undisturbed, i.e., 
n0 (x) = const. 

One can integrate the z component of Eq. (7) with re­
spect to z along x = 0 (where v x = 0) to show that in steady 
state n(x = O,z) = n0 (0)exp( - v;/2). Since the normal­
ized particle collection speed at the obstacle is 1, we have 

n(x = O,z = z0 ) = n0 (0)e- 112 g;;0.6n0 (0). 

We define the particle collection length as the distance 
(along the obstacle's perpendicular bisector, the line x = 0) 
from the obstacle where the density is 0.6n0 (0) to a point 
where the density is 0.8n0 (0). The normalized particle col­
lection length is defined as the particle collection length nor-

12.0 

!:1L 
d 

8.0 

4.0 

20.0 40.0 60.0 80.0 

FIG. 2. Plot of the normalized particle collection length (L 11 /d) of a semi­
infinite strip versus the inverse of the normalized perpendicular diffusion 
coefficient (c,d /D1 ) for cJ!ldd = 0.01. The upper and lower curves cor­
respond to a

11 
= 0 and a

11 
= a 1 (0 and 0, respectively). 
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malized to d, the half-width of the semi-infinite strip. Figure 
2 is a plot of L 

11 
I d (the normalized particle collection length 

of the strip) versus c s dID 1 (the inverse of the normalized 
perpendicular diffusion coefficient), for p; = 0.01. The up­
per and lower curves correspond to a

11 
= 0 and a

11 
= a1 for 

the semi-infinite strip (0 and D, respectively). The analyti­
cal analysis predicts that for D10p; <_!,the plot of L 

11 
ld vs 

c.d ID1 should be a straight line. For D1 > 1 >p;. the predic­
tion is that L 

11 
I d should approach a constant (independent 

of D1 ). The upper curve (a
11 

= 0) shows that this is indeed 
the case, and that for D 1 < 1, the plot of L 

11 
I d vs c s dID 1 

approaches a straight line with a slope of about 0.23. A com­
parison of the upper (a

11 
= 0) and lower (a

11 
= a 1 ) curves 

shows that the inclusion of the electron-ion collisional drag 
parallel to B0 made an insignificant contribution to the solu­
tion. 

VIII. SUMMARY AND CONCLUSIONS 

In this paper we have performed both a numerical and 
analytical study of a simple 2-D model describing plasma 
collection by an obstacle. In our model we ignore the effect of 
an external electric field and mass flow far from the obstacle. 
An obstacle is assumed to collect ions and electrons at the 
ion acoustic speed. The external magnetic field is assumed to 
be uniform and perpendicular to the obstacles. Our study 
shows that in a typical fusion tokamak, where c.fOc;d < 1, 
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the particle collection length of an obstacle can be approxi­
mated as follows: 

{
0.23c.d 2ID1 , if D1/csd< 1, 

Lll= 
0.30d, if DJc,d> 1. 

Our study also shows that, although the electron-ion colli­
sional drag parallel to the external magnetic field B0 can be 
(analytically) shown to be of the order ofthe electron pres­
sure gradient parallel to B0 , its inclusion in the cases we have 
examined only changes the solution by an insignificant 
amount. 

ACKNOWLEDGMENTS 

This work was supported by the U.S. Department of 
Energy, Office of Fusion Energy Grant No. DE-FG03-
85ER53173 and the Magnetic Fusion Science Fellowship 
Program. 

'See, for example, S. J. Zweben and R. W. Gould, Nucl. Fusion 25, 171 
(1985). 

2P. C. Stangeby, J. Phys. D 18, 1547 ( 1985). 
3D. Bohm, in The Characteristics of Electrical Discharges in Magnetic 
Fields, edited by A. Guthrie and R. K. Wakerling (McGraw-Hill, New 
York, 1949), Chap. 3. 

4E. R. Harrison and W. B. Thompson, Proc. Phys. Soc. 74, 145 ( 1959). 
'S. A. Self, Phys. Fluids 6, 1762 ( 1963). 
6 P. C. Stangeby and J. E. Allen, J. Phys. A 3, 304 (1970). 
11. E. Allen, J. Phys. D 9, 2331 ( 1976). 

H. X. Vu and R. W. Gould 71 


