
TRUNCATION EFFECTS IN VITERBI DECODING 

Robert J. McEliece and Ivan M. Onyszchuk 

California Institute of Technology, Pasadena, CA 91125 

Abstract 
Practical Viterbi decoders often fall significantly 

short of full maximum likelihood decoding (MLD) 
pe;formance because of survivor truncation efiects. In 
this paper, we study the tradeoff between truncation 
length and performance loss for the two most common 
variations of Viterbi’s algorithm: best state decoding 
(BSD) and fized state decoding (FSD). We find that 
FSD survivors should be about twice as long as BSD 
survivors for comparable performance. 

1. Introduction 
Viterbi decoding is in principle a maximum like- 

lihood decoding (MLD) algorithm for convolutional 
codes. However, in practice, Viterbi decoding falls 
short of full MLD performance for several reasons, 
one of the most important being the need to trun- 
cate survivors. In order to minimize the hardware 
complexity of the path memory section in a Viterbi 
decoder, one must use the shortest possible survivor 
truncation length that does not seriously compromise 
the decoder’s performance. Thus in order to design 
high-performance and cost-effective Viterbi decoders, 
it is essential to know the precise tradeoff between 
truncation length T and performance loss. In this 
paper, we will study this tradeoff for the two most 
common variations of Viterbi’s algorithm: best state 
decoding (BSD) and f i n d  state decoding (FSD). 

For each bit produced by a BSD algorithm, the de- 
coder finds the state with the best accumulated met- 
ric, and outputs the oldest bit in the survivor corre- 
sponding to this state, whereas in FSD algorithms, 
the decoder always outputs the oldest bit in the sur- 
vivor of some fixed state (say the all-zeroes state). It 
is clear that for a given T ,  a BSD algorithm should 
outperform a FSD algorithm. However, finding the 
best state may be prohibitively difficult in high-speed 
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decoders or in decoders with many states. In such 
cases, FSD is preferred despite its need for a larger 
T .  For example, FSD is used in NTT’s one-chip, 20 
Mbit/sec decoder for the NASA standard K=7, rate 
1/2 code [2], and in JPL’s new K=15, rate 1/4, multi- 
chip decoder for the Galileo deep-space mission (31. 

In the next section, a review of Hemmati and 
Costello’s results [l] for best state decoding shows 
that if T is too small, the code’s free distance is de- 
creased. Otherwise, MLD performance is achieved on 
“asymptotically quiet” channels such as an AWGN 
channel with very large bit signal-to-noise ratio Eb/No 
because there is no loss in df,,. A truncation length 
Tl was proposed [l] that results in no asymptotic loss 
and a small loss with respect to MLD for low chan- 
nel noise. We show that there is a truncation length 
Tb > T l ,  such that if T 2 Tb, BSD results in a negligi- 
ble loss from MLD on the unquantized AWGN chan- 
nel (AGC) when the decoded bit error rate (BER) 
is 5 In section 3, we present similar results for 
FSD : a theoretical truncation length T; which causes 
no asymptotic loss on the BSC and actually results in 
near MLD performance. We also estimate a slightly 
larger practical value T f ,  usually about twice Tb, such 
that for T 2 T f ,  FSD performs very close to MLD 
on the AGC. In section 4, we tabulate various trun- 
cation lengths for many rate l /n codes and verify the 
theoretical results by analyzing several simulations. 

2. The Hemmati-Costello Results 
for Best State Viterbi Decoding 

Assume that all zeroes are transmitted by a mem- 
ory m, rate l /n,  binary convolutional encoder. A 
truncation length T decoder stores for each state only 
the most recent T survivor bits. Let be the trellis 
path associated with the survivor for the state with 
best accumulated metric a t  time t + T. A best state 
decoder will output the oldest bit of this survivor. Let 
Li(T) be the set of all long (2 T branches) trellis paths 
from state 0,  never returning to state 0,  into state i 
(Figure 1). L r )  is defined to  be an empty set. 
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A truncation error, defined to be a bit error not made 
by MLD, can occur if C E Uizo Using the union- 
Bhattacharyya bound, the BSD probability of trun- 

channel with output alphabet Y is 

for any s E Si(*). Therefore, 

Pr(@)) < min Pr{p(t) < p ( s ) )  

5 min 2 @ l ( e , 3 ) 7 W ( 0 - W ( 3 )  

cation error [l] on a binary-input discrete memoryless ' E S j T )  LELIT) 

5 Pr(C E U L ! ~ ) )  3ESi(T)  L E ~ j T )  

i#O 

on the BSC by the lemma in the Appendix. Let PiTJd 
be the probability of the analogous event to R Y )  when 
a random codeword is transmitted instead of zeroes. 

Claim. If zeroes and ones are equally likely in the 
input data to the encoder, then 

where G,!')(D) is thc generating function of all paths 
in Li(*) and 7 = CIIEY d m .  Now including 

state deccider is 

1 
zrn 

2 m - 1  

PcJd = - Pr(aj.T)). MLD errors, the BER of a truncation length T ,  best i= l  

The least exponent of D in the above expression for 
Pi:\ is the truncation distance 111 

where w(C) is the number of ones in C. Let T: be 
the least value of T such that d E t  > &ree. Hemmati 
and Costello recommend using truncation length Tl 
because for small 7, PJ*) will be dominated by the 
first term due to MLD errors. Since the union bound 
is sharp for low channel noise, if dEjt  < dfree, there 
will be an Eb/No loss of 10 log,, (dfree/dcs)t) dB with 
respect to MLD. 

3. New Results for Fixed State 
Viterbi Decoders 

Proof: Suppose that the transmitted codeword c 
passes through state j at time t + T .  This will oc- 
cur with probability 2-". At this time, let I$"' be 
the set of trellis paths into (the fixed decoding) state 
i which merge with c only at time 5 t but not after- 
wards. Then Fi(T) + c = Lii;. Similarly, if is the 
set of all trellis paths which go from c into state i in 
less than T branches, then E,!T) + c = S / i j .  Therefore, 
there is a contribution of pr(n!ii.) to Pf2d and thus 

because L r )  and therefore 
is an upper bound on the probability of trun- 

cation error for FSD. Now including MLD errors, the 

are empty sets. 

In FSD, the decoder always outputs the oldest 
bit of the survivor corresponding to  a fixed state i. 

less than T branches from state 0 into state i. A 
truncation error may occur if some path into state i, 
of length 2 T trellis branches, has a better metric ~ ( e )  
than the metric of every s E Si(T). This event may be 

BER of a truncation length T ,  fixed state decoder is 

Let SiT)  be the set of all (short) trellis paths having p p  I a G ( D , N )  (TI 
aN 1N=1.D=7+ Pf ixed-  

The least power of 7 in the expression for is 

Let T; be the least value of T such that d g i d  > dfree. 
Then for FSD with T = T;, P,") will be dominated 
by the first term due to MLD errors on a BSC with 
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small crossover probability. For the AWGN channel, 
a similar calculation to that given in [4] for Pr{p(l) 5 
p(O)} = p ( t , O )  shows that 

This means that [w(t)-w(s)] in dg!d must be replaced 
by (usually smaller) [w(l) - w(s)]’/w(l@ s) to obtain 
the analogous quantity for the AGC. Therefore, fixed 
state decoding requires a longer truncation length on 
the AGC than on the BSC to achieve the same E&/& 
losses with respect to MLD. This is completely unlike 
BSD because dE!t depends only on the code. Since 
we have been unable to  compute &id exactly for the 
AGC, we recommend using Tf such that for the BSC, 
d k h  2 &Ai. The simulations in the next section 
verify that using Ti  for the BSC and Tf for the AGC 
result in negligible losses from MLD. 

4. Truncation Lengths and Simulations 
Table 1 contains truncation lengths for several 

typical rate 1/n codes whose generator polynomial co- 
efficients are listed in octal notation (e.g. 15 means 
x3 + x2 + 1). Tb is the estimated truncation length of 
a best state decoder which requires an &,/No within 
0.1 dB of that for MLD at  BER 5 on the un- 
quantized AWGN channel (AGC). The Tb values were 
obtained by calculating P,‘*) using the first ten terms 
of a generating function. 

Since the m most recent bits of a survivor are the 
associated state number 0 5 i 5 2m -1, there is no 
need to store these-m bits. Therefore, only L = T-m 
physical bits per survivor are required for truncation 
T decoding. If all encoder generator polynomials are 
reversed, then the MLD performance on a memory- 
less channel remains the same, but PL3 or may 
decrease. For example, code with octal generators 23 
and 35 has T; = 15 and Ti = 26 compared to T; = 17 
and T; = 29 for the polynomials 27 and 31. 

The values Lb = 7 bits (only!) for the systematic 
m = 6 code (1,117) and Lb = 29 for JPL’s m = 14 
Galileo code result from trellis paths rapidly accu- 
mulating distance with length away from the all ze- 
roes path. The values in Table 1 indicate that using 
Tb = 4(m + 1) or 5(m + 1) is excessive in many cases 
and not matched to the particular code. Also, it is 
immediately clear that FSD requires about twice as 
many survivor bits than BSD. 

The BER curves in Figure 2 for code with octal 
generators 5 and 7 show that BSD with T; = 8 per- 
forms within 0.25 dB of MLD. All Tb curves for which 

d e !  2 will eventually join the MLD (T = 00) 

curve. It is important to observe that there is a neg- 
ligible gain in using any Tb > 10 or Tf > 17. For 
the AGC, the fact that dKL 3 3.6 < &, = 5 causes 
a large Eb/No loss for Tf = 13. Figure 3 shows the 
the Tb curves are about the same distance away from 
the MLD curve on the BSC as on the AGC (in accor- 
dance with the bound on Pi:{). More importantly, 
Figure 3 verifies that FSD performs better on the 
BSC. For example, there is little loss at Tf = 13 (be- 
cause dEL = 6 > C,, = 5) and Tf = 15 instead of 17 
yields MLD performance. Note that the Tb = 5 de- 
coder performs much worse than the Tb = 6 decoder 
because dLit = 4 whereas dfit = 5 = &ee- 

Figure 4 shows the performance of the NASA code 
(generators 133,171) on the AGC for several trunca- 
tion lengths and decoding methods. In accordance 
with the results in sections 2 and 3, a decoder with 
Tb = 30 or Tf = 52 performs within 0.1 dB of MLD 
for all BER 5 4 x Note that, the Tb = 27 loss is 
only 0.1 dB or less and the Tb = 24 loss is < 0.25 dB 
with respect to MLD for a BER 5 lo-‘. 

FSD performs close to worst state decoding (in 
Figure 4 for T = 40) because the fixed state’s accumu- 
lated metric is usually very far from that of the best 
state. One might expect that any truncation length 
40, practical method of decoding final estimates of 
the information bits, such as a majority vote on all 
the survivors’ oldest bits, would have a BER curve 
between the MLD T = 00 one (virtually the same as 
for Tb = 40) and the worst state curve. 

If FSD is performed with survivors being ex- 
changed between decoder states as in the NTT chip, 
then memory cells near the end of the fixed state’s 
survivor may be eliminated. By examining the code’s 
trellis diagram, it is easliy verified that C2i1(2” - 
2’) = 1 + (rn - 1)2” cells can be deleted, making 
Lf  = Tf - 2m + 1 on average. 
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Appendix 

Lemma. When all zeroes are sent over a binary sym- 
metric channel, the probability that a ML decoder 
chooses codeword l instead of s is 

where dO’(l,s) = I{i : 4 = 0,s; = 1}1 and 7 = 

Proof: Let E be the set of length t received vectors r 
such that Pr(r1l) 2 Pr(r1s). Then when the all zeroes 
codeword is transmitted, 

2 4 m .  

For d”( l ,  s) values of i, 4 = 1 and si = 0,  so the inner 
sum above is 7. For G!”’(l,s) values of i, 4 = 0 and 
si = 1, so the inner sum is 

2 
5 -  

Y 

Otherwise 4 = si and the inner sum is 1. Therefore, 

All zeroes codeword 

state i 

Figure 1. Long and Short Trellis Paths 

TABLE 1. Truncation Lengths for Rate 1/n Codes 

m generators dt  

2 
2 
3 
4 
5 
6 
6 
7 
8 

3 
4 
5 
5 
6 
8 

4 
7 

14 

5, 7 5 
1, 7 4 

23, 35 7 
65, 57 8 

15, 17 6 

1, 117 6 
133, 171 10 
345, 237 10 
561, 753 12 

13, 15, 17 10 
37, 33, 25 12 
1, 75, 67 10 

71, 65, 57 13 
171, 165, 133 15 
557, 663, 711 18 

25, 33, 35, 37 13 
275, 235 18 
313, 357 

46321,51271 35 
63667, 70535 

Tc Tb Lb 
8 10 8 
5 5 3  

10 12  9 
15 18 14 
19 23 18 
12 13 7 
27 30 24 
28 32 25 
33 38 30 

10 13 10 
13 15 11 
11 12 7 
17 2 1  16 
20 24 18 
25 33 25 

9 12  8 
18 25 18 

35 43 29 

T; Tf Lf 
13 16 14 
10 10 8 
17 21 18 
26 32 28 
37 42 37 
27 29 23 
50 52 46 
52 55 48 
64 70 62 

18 22 19 
24 27 23 
20 21 16 
31 36 31 
35 39 33 
47 55 48 

17 20 16 
34 40 33 

67 75 61 
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Figure 2. Performance of the (5,7) Code on the AWGN Channel 

Figure 3. Performance of the (5,7) Code on the BSC 

Figure 4. Performance of the (133,171) NASA 
Code on the Unquantized AWGN Channel 
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