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Abstract

It is increasingly clear that simple decisions are made by computing decision values (DV) for the
options under consideration, and then comparing these values to make a choice. Computational
models of this process suggest that it involves the accumulation of information over time, but little
is know about the temporal course of valuation in the brain. To examine this, we manipulated the
available decision time and observed the consequences in the brain and behavioral correlates of
choice. Participants were scanned with functional magnetic resonance imaging while they chose to
eat or not eat basic food items, in two conditions differing in the amount of time provided for
choice. After identifying valuation-related regions with unbiased whole-brain general linear
models, we analyzed two regions of interest: ventromedial prefrontal cortex (VMPFC) and
dorsolateral prefrontal cortex (DLPFC). Finite impulse response models of the upsampled
estimated neural activity from those regions allowed us to examine the onset, duration, and
termination of decision value signals, and to compare across regions. We found evidence for the
immediate onset of value computation in both regions, but an extended duration with longer
decision time. However, this was not accompanied by behavioral changes in either the accuracy or
determinants of choice. Finally there was modest evidence that DLPFC computation correlated
with, but lagged behind VMPFC computation, suggesting the sharing of information across these
regions. These findings have important implications for models of decision value computation and
choice.
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INTRODUCTION

There is a growing consensus that the brain makes simple decisions by assigning a decision
value (DV) to the options under consideration, and then comparing these values to make a
choice (Rangel and Hare, 2010; Padoa-Schioppa, 2011; Rushworth et al., 2011). In this
framework, understanding the DVs’ properties is critical, because they affect the choices
that are eventually made. For example, if DVs are noisy when decisions are made under
time pressure, then so are choices (Milosavljevic et al., 2010; Milosavljevic et al., 2011).
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A considerable amount has been learned about the computational and neurobiological
properties of the DV signals. A large number of studies, utilizing different species and
techniques, consistently link activity in the ventromedial prefrontal cortex (VMPFC) with
the computation of DVs at the time of choice (Rangel and Hare, 2010; Wallis and
Kennerley, 2010; Padoa-Schioppa, 2011). Activity in dorsolateral prefrontal cortex
(DLPFC) also frequently correlates with DVs, though less consistently (Kable and
Glimcher, 2007; Plassmann et al., 2007; Litt et al., 2010; Plassmann et al., 2010). In several
decision tasks involving self-control, the DV signals in VMPFC seem to be constructed
using inputs from DLPFC areas that do not encode for DVs themselves (Hare et al., 2009;
Figner et al., 2010; Baumgartner et al., 2011; Hare et al., 2011a). Finally, recent studies
have shown that similar areas of VMPFC and DLPFC are part of the network involved in
comparing DVs to make a choice (Basten et al., 2010; Hare et al., 2011b).

Although these findings have established the critical role of VMPFC and DLPFC in the
computation of DVs at the time of choice, the nature of the DV signals encoded, as well as
how they relate to choices, have not been systematically investigated. Four questions are of
particular interest. First, does the available decision time affect the duration and quality of
decision value signals in VMPFC and DLPFC? Second, do the changes in the DV signals
have an effect on the quality of choices? Third, are there differences between regions in how
decision value signals evolve over time within decision episodes? And fourth, are there
differences in the stimulus information that is used to compute the decision value signals in
VMPFC and DLPFC (e.g., taste versus health attributes for foods)?

The answers to these questions are important because they have direct bearing on the
properties and quality of the decision-making circuitry, and how it is affected by
environmental variables such as time pressure or distraction. For example, it is not known if
the brain keeps refining its estimates of DV if given extra decision time, or if stops
computing them as soon as the estimate is satisfactory, even if extra time remains (Kiani et
al., 2008). In the former case extra decision time could have a positive impact on the quality
of choices, but in the latter it is just wasted time. The relationship between the two DV
signals is also poorly understood. Some have argued that VMPFC signals serve as
precursors to DLPFC signals, which eventually drive choices (Wallis and Miller, 2003). In
contrast, in other decision paradigms the influence appears to go in the other direction (Hare
et al., 2009; Baumgartner et al., 2011).

Here we describe the results of an fMRI experiment in which participants were asked to
make consumption decisions about snack foods under two externally controlled decision
speeds: fast (1s) and slow (4s) choices. The results of the experiment allow us to
systematically test specific hypotheses associated with each of these three questions (see
Results section for details).

METHODS

Participants

Twenty-eight participants completed both sessions of the study (8 females, mean age [SD] =
22.4 [0.6] years). Of these, six participants were excluded from data analysis: one due to
scanner malfunction during the study, two for excess head motion during scanning (total
translation greater than 3mm or total rotation greater than 2.45 degrees in any single
volume), and three due to highly atypical behavioral responses that suggested that they were
not taking the task seriously (i.e. responding without considering the stimuli, as evidenced
by having identical consecutive responses in more than 50% of trials). Twenty-two
participants were used in the analyses (6 females, mean age [SD] = 22.6 [0.6] years). All
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participants gave written informed consent, and all procedures were approved by Caltech’s
Institutional Review Board.

The experiment took place over two sessions, separated by one to four days. On day 1, we
collected basic subject specific information about the stimuli used in the experiment. On day
2, participants performed an in-scanner choice task.

Day 1—For the first behavior-only session, participants were asked to fast for at least four
hours prior to the experiment. Participation in the task was contingent on signing a statement
affirming that they had not eaten or drunk anything except water for the past 4 hours, and
reporting no food allergies or intolerances. During this session, participants rated 249 color
images of different appetitive and aversive snack food items (e.g. Kit-Kat bar, apple slices,
Spam; see Supplementary Materials for a complete list) on three different 5-point scales:
Liking (Strongly Dislike to Strongly Like), Tastiness (Very Bad to Very Good), and
Healthiness (Very Unhealthy to Very Healthy). Ratings were blocked, so that all ratings of a
given type were completed before moving onto ratings of a different type. Liking ratings for
all foods were assessed first, randomly followed by ratings of Healthiness and Tastiness
(order counterbalanced across participants).

On every trial, participants were shown one of the food items for 1s, with a white box
around it, during which they could not respond. Immediately after the box disappeared,
participants entered ratings at their own pace. Their response was followed by a 1s feedback
screen displaying the rating they had selected. Trials were separated by a uniform random 1-
3s screen with a centered fixation cross. Ratings scales were displayed and explained before
each block, and the left-right order of each rating type was separately randomized across
participants.

Day 2—The same 4-hour fasting and screening criteria were implemented in the second
session. After detailed instruction, participants performed a simple choice task in the
scanner. Every trial they were shown one food item and had to decide whether they wanted
to eat it at the end of the experiment. They indicated their choices using a 4-point scale
(Strong Yes, Yes, No, Strong No; left/right ordering randomized across participants), which
allowed us to measure simultaneously their decisions and the strength of their preferences.
Participants cared about their decisions because they knew that they would have to stay in
the lab for 20 minutes at the end of the experiment, and that the only thing that they would
be allowed to eat would be based on their decisions. Specifically, one trial was randomly
selected and participants were required to eat that food item if their response was “Strong
Yes” or “Yes”, and were not allowed to eat it otherwise.

The structure of the decision task was similar to the ratings task (Figure 1). The only
differences were as follows: 1) the initial “viewing period” of the foods now lasted either 1s
(Short condition) or 4s (Long condition), 2) participants had to indicate their decision within
1s of the beginning of the response period or the trial aborted, and 3) the intertrial intervals
were drawn uniformly from 1-6s. To maintain the spacing across trials, the unused fraction
of the response period was added to the intertrial interval. Stimuli were divided between the
Short and Long conditions based on each participant’s liking ratings in the behavioral
session, to equate the distribution of Liking ratings across conditions. Conditions were
blocked (25 trials/block), and block order was randomized subject to the constraint that there
were two blocks of each type (Short; Long) during each functional scan. Blocks were
preceded with an instruction cue indicating the duration of the viewing period in the
upcoming block of trials: (shown for 5s, followed by a 1s fixation cross) informing
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participants about the upcoming condition. There were 200 trials in each condition (400
trials total; 8 blocks of each trial type, 16 blocks total). See the Supplementary Materials for
details on how foods were distributed between conditions.

fMRI: Data collection

Scanning was performed at the Caltech Brain Imaging Center with a Siemens 3T TIM-Trio
full body scanner and a Siemens 32-channel phased array head coil. High-resolution
anatomical images were acquired using a T1-weighted protocol (FOV=256, 176 slices,
1x1x1mm). Functional imaging used a gradient echo EPI sequence (TR=2530ms, TE=30ms,
FOV=192, anterior to posterior phase encoding, ascending slice acquisition), acquiring 4
functional runs of 334 volumes, each with 40 oblique axial slices aligned 30° off the AC-PC
plane (to improve signal in the orbitofrontal cortex (Deichmann et al., 2003)), 3mm
isometric voxels, and a 0.3mm between-slice gap.

fMRI: Preprocessing

Two volumes were discarded before the beginning of data collection in each run to allow for
equilibration of the magnetic field. Data were preprocessed with SPM8 software (Statistical
Parametric Mapping 8, Wellcome Trust Center for Neuroimaging;

http://www fil.ion.ucl.ac.uk/spm/), including slice time correction, realignment (motion
correction), and spatial smoothing (isotropic 6mm FWHM Gaussian kernel). Functional runs
were coregistered and normalized to the standard Montreal Neurological Institute EPI
template. Data were high-pass filtered prior to analysis (cutoff = 128s).

fMRI: Whole brain analyses

Analysis was performed with SPM8 and custom MATLAB scripts (Mathworks, Natick,
MA, USA). Individual level whole brain general linear models (GLMs) with AR(1) and
SPMB8’s standard hemodynamic response function were estimated in three steps. First, we
estimated the model separately for each individual. Second, we calculated contrast statistics
at the individual level. Third, we computed second-level statistics by carrying out one-
sample t tests on the single-subject contrast coefficients.

GLM 1—This model contained the following three regressors of interest: R1) Regressor for
initial stimulus presentation, in the form of a boxcar function that ran from image onset to
response, pooling across both the Short and Long conditions; R2) Decision Value regressor,
created by modulating R1 by the subject’s decision value on each trial (Strong No= —1.5,
No =-0.5, Yes = 0.5, Strong Yes = 1.5); and R3) Response time regressor, in the form of a
stick function at the time of the response.

GLM 2—The second GLM consisted of the following regressors of interest: R1) Regressor
for Short trials only, in the form of a boxcar from image onset to response; R2) Tastiness
Rating regressor for Short trials, created by modulating R1 by the Tastiness rating (Very
Bad = —2 to Very Good = 2); R3) Healthiness Rating regressor for Short trials, created by
modulating R1 by the Healthiness rating (Very Unhealthy = —2 to Very Healthy = 2); R4)
Regressor for Long trials only, in the form of a boxcar from image onset to response; R5)
Tastiness Rating modulated regressor for Long trials; R6) Healthiness Rating modulated
regressor for Long trials; R7) Indicator for response in Short trials; and R8) Indicator for
response in Long trials.

In addition, both GLMS also included the following nuisance regressors: estimates of
motion from preprocessing, and separately for each condition, boxcars for the pre-block
instruction cues (5s), transient predictors for item presentation when participants failed to
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respond, transient predictors for item presentation when participants responded too early,
and transient predictors for the response itself when participants responded too early.

In our whole-brain analysis we localize activity for the contrasts of interest using the a
liberal but common statistical threshold: p < 0.001 uncorrected with a 5 contiguous voxel
extent threshold. We chose this criterion to give the best chance of identifying the desired
regions of interest (ROIs) for further investigation..

fMRI: ROI definition

Most analyses in the paper examined the patterns of activation in two pre-specified ROls:
the VMPFC and left DLPFC regions exhibiting BOLD responses modulated by DVs (R2) in
GLM 1. The resulting functionally specified ROIs are depicted in Figure 2. The VMPFC
ROI consisted of all voxels significant in this contrast at p < 0.00001, uncorrected (78
voxels). This stringent threshold was necessary to prevent the inclusion of voxels from other
distinct areas of the brain (e.g. ventral striatum, cingulate). The DLPFC ROI consisted of all
voxels significant at p < 0.001, uncorrected (7 voxels). After identifying regions of interest
(ROIs) in whole-brain analyses, the responses within these regions was investigated in two
ways: 1) raw BOLD data was extracted from these ROIs for deconvolved (neural signal)
finite impulse response (FIR) analyses, and 2) mean parameters within the ROIs from the
whole-brain GLM 2 (Taste & Health) were extracted for use in conventional BOLD
analyses.

fMRI: Neural Estimate Analyses

Although standard approaches often present analyses based on BOLD responses,
hemodynamic responses are substantially delayed and prolonged relative to the neural
signals that generated them. This means that analyses sensitive to small differences in timing
(on the order of 1-3 seconds) can often be difficult to visualize or interpret using these
approaches. To better address questions specific to the timing of value signals, we therefore
turned to deconvolution methods designed to extract an estimated neural response (Gitelman
et al., 2003). This deconvolution procedure offers the additional benefit of using a
constrained set of HRF parameters rather than a single fixed HRF. This accounts for some of
the differences that may arise between regions, lowering the risk of systematic bias, and
increasing our ability to compare the “neural estimates’ across regions (see Supplementary
Materials for comparable analyses performed on the non-deconvolved BOLD responses).

This analysis proceeded in the following steps.

First, for every voxel within an ROI, the raw BOLD signal at each TR was extracted, mean-
corrected, and adjusted for motion using standard SPM tools.

Second, the resulting timecourses for each individual’s extracted data were then subjected to
singular value decomposition, and the first eigenvariate (i.e. the first principal component of
the raw time series from all voxels within the ROI) was used as the index of the regional
response (Friston et al., 1996; O'Reilly et al., 2010; Mars et al., 2011a; Mars et al., 2011b).
This technique captures the signal representing the greatest proportion of variance within the
ROI (i.e. that which is most coherent across the voxels), making it less susceptible to noise
from any given voxel, compared to a simple average (Friston et al., 1996; Gitelman et al.,
2003).

Third, a “neural estimate” was constructed by deconvolving the BOLD timecourse with the
formula for SPM8’s canonical hemodynamic response function (HRF) using standard SPM
scripts employing a parametric empirical Bayes formulation (Gitelman et al., 2003). This

deconvolution entailed assumptions common to all analyses using HRFs (including classic
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whole-brain general linear models), such as assumptions of HRF linearity, shape, and
consistency across regions. As in any analyses requiring these or similar assumptions, any
inferences are predicated on the accuracy of those assumptions.

Fourth, the ‘neural estimate’ resulting from this deconvolution was linearly interpolated (up-
sampled) to a resolution of 1/16% of a TR (0.158s). This fine temporal resolution is preferred
in order to reduce the temporal blurring associated with rounding event onset times to the
nearest data timepoint in the finite impulse response analyses described below.

Finally, we estimated finite impulse-response (FIR) models on these data for each
individual, ROI, and scan session. In an FIR model, events of interest are modeled with
multiple regressors, each estimating the signal at a single given timepoint relative to event
onset. Note that because this technique estimates the signal at discrete timepoints, regressors
must be similarly aligned, incurring temporal blurring proportional to the timecourse
resolution. Events of interest were modeled with 19 sequential non-overlapping transient
predictors in the Short (1s) condition (covering the three seconds from the onset of the
image to the end of the trial), and 38 transient predictors in the Long (4s) condition (to cover
the six seconds from image onset to the end of the trial). The resulting models included
separate regressors for each response type (Strong Yes, Yes, No, and Strong No) and a
session constant. After estimation, parameter estimates were averaged across the four scan
sessions for each participant. Because the hemodynamic response was deconvolved from the
ROI data, no hemodynamic lag is expected in the “neural estimates’. One participant was
excluded from the FIR analyses because they never provided a Strong No response.

We report three different types of FIR analyses. First, we examine the instantaneous
differences in the FIR estimates between Strong-Yes (SY) and Strong-No (SN) trials. This
provides a measure of the instantaneous DV signal (i.e., the difference score increases as the
neural responses associated with DV signals become more discriminating between SY and
SN trials). Second, because computational models of choice behavior suggest that decisions
result from the accumulation of information over time (Kiani et al., 2008; Ratcliff and
McKoon, 2008; Kiani and Shadlen, 2009), we also looked at differences in the cumulative
value signal. In particular, for any time t, let v(t) be the SY-SN difference score at that time.
The cumulative value difference at time T is then given by the sum of all v(t) from t=0 to
t=T. This analysis allows us to test if there are differences across conditions or regions in
how the DV signals accumulate over time. Third, we examined differences in the timing of
valuation by a) computing the time of the peak value computation (t at which SY-SN; =
max[SY-SN]), and b) computing the number of time-points we had to shift the Short SY-SN
curve to best match the Long SY-SN curve, by minimizing the sum of the squared
differences at the overlapping points (intuitively, the point at which the two curves were the
most similar).

fMRI: BOLD ROI analyses

RESULTS

Using the VMPFC and DLPFC ROls, we also conducted a standard analysis based on the
BOLD signal. Using GLM 2, we extracted average beta coefficients for the weighting of
Tastiness and Healthiness in the Short and Long conditions from each ROI for each subject
and subjected them to a detailed analysis examining the influence of decision time on the
neural representation of each attribute.

This section is organized as follows. First, we described the results of a whole brain analysis
of the BOLD data designed to identify areas of VMPFC and DLPFC in which BOLD
responses are correlated with DVs, for both experimental conditions. The results of this

Eur J Neurosci. Author manuscript; available in PMC 2013 April 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Sokol-Hessner et al.

Page 7

analysis are used to defined two functional ROIs, one for VMPFC and one for DLPFC,
which are similar to those that have been identified in previous studies. Second, we carry out
various ROI based analyses of the properties of the DV signals encoded in these two areas,
which are used to systematically address the four questions posed in the introduction.

Whole brain analysis: Correlation with DVs during the evaluation period

We estimated a general linear model of brain responses in which activity during the entire
evaluation period (i.e., from stimulus onset to response prompt, 1s in Short condition and 4s
in Long condition) was modulated by DVs (see GLM 1 in Methods for details). DVs were
measured using the 4-point response scale (Strong-No, No, Yes, Strong-Yes). Figure 2A
depicts regions in which the BOLD responses were positively correlated with DVs, which as
expected included areas of VMPFC and left DLPFC (see Table S1 in supplementary
materials for full list of activations).

These results were used to functionally define ROIls in VMPFC and DLPFC, depicted in
Figure 2B, that are used in all subsequent analyses. Note that their location aligned well with
previous reports (Figure 2c; McClure et al., 2004; Plassmann et al., 2007; Hare et al., 2008;
Plassmann et al., 2010) and that their definition was statistically independent of tests below
that compare the two conditions, since GLM 1 imposes a common estimate for the DV
regressor for both conditions.

Question 1: Does available decision time influence the timing of DV signals?

Our primary research question concerned whether the amount of available decision time
influenced the timing of decision value computations in the brain (e.g., changing the onset,
duration, or trajectory, as compared to the null hypothesis that time has no influence on
these computations). Evidence for such changes would help to explain behavioral findings
that time pressure can lead to less accurate choices (Milosavljevic et al., 2010; Milosavljevic
et al., 2011) and might complement evidence from the perceptual literature that evidence
accumulation begins immediately but continues only until a decision threshold is crossed,
even if more time and information are available (Kiani et al., 2008; Kiani and Shadlen,
2009). This evidence suggests that we should observe changes in the timing of subjective
decision value computation as a function of available decision time, although the precise
nature of these changes could take several forms, three of which we test below.

We tested this hypothesis using extracted ‘neural estimates’ of value-related activity in
VMPFC and DLPFC and finite impulse response (FIR) analyses that estimate neural
responses in each ROI, time bin, and condition separately for each response type (Strong
Yes, Yes, No, and Strong No). This combination of methods allows us to compare signals,
without lag, across regions because it does not assume the same shape for the hemodynamic
response in each area (see Methods for full details and justification. For analyses reported in
the paper, we defined an index of the instantaneous DV signal in each time bin by the
difference between the Strong-Yes (SY) and Strong-No (SN) responses (Figure 3A, B; see
Figure S1 for separate SY, Y, N, and SN responses). The larger the SY-SN score (i.e. the
more strongly items were differentiated based on value), the more value computation was
taking place. Intuitively, an SY-SN difference score of zero at a given moment indicates no
value computation at that time. As the SY-SN difference score becomes significantly
different from zero, it indicates a stronger and more consistent representation of stimulus
values.

We first tested for differences in onset of DV computations in Short vs. Long trials. We
found that in both ROIs, the onset of value computation appeared to be immediate and of
identical magnitude. In other words, the magnitude of the response during the first second
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was significantly above zero at all time points, and did not differ between Short and Long
trials in either region (all timepoints n.s.).

We next compared differences in the duration of DV computation. This comparison revealed
significantly longer DV computation in the Long condition, in both regions. In other words,
whereas in the Short condition the DV signal becomes statistically indistinguishable from
zero about two 2s after stimulus onset (DLPFC timepoint 15, 2.37s; VMPFC timepoint 12,
1.89s), in the Long condition the DV signal is present for nearly twice as long (DLPFC
timepoint 26, 4.11s; VMPFC timepoint 25, 3.95s). Note that although the termination of
computation aligns to the end of the viewing window in the Long condition, it extends a full
second past this point in the Short condition. To test these observations of duration
differences more formally, we defined a measure of the cumulative value computation
during the full viewing window. For any time bin T, the measure was constructed for each
subject by adding up the instantaneous estimates reported in Figure 3 from all bins between
0 and T, which is basically a measure of the area under the instantaneous curve (Figure 4A,
see Methods for full details). Larger cumulative value scores indicate a longer duration of
value computation. To compare conditions within each ROI, we computed the value of the
cumulative signal at the end of the stimulus presentation period (1s for Short, 4s for Long).
In both regions, the mean cumulative signal at the end of the period was larger in the Long
condition (t(20) = 3.9, p = 0.0009) and DLPFC (t(20) = 2.2, p = 0.04), demonstrating that
longer viewing windows resulted in a significantly longer duration of value integration.

Taken together, this set of results indicates the following robust properties of the DV signals
in VMPFC and DLPFC. First, the DV signals were indistinguishable across conditions for
the first second of computation, when the stimulus is present in both cases. Second, but they
began to differ after that: the signal ramped down in the Short condition, but remained above
zero for significantly longer in the long condition.

Question 2: Does extra decision time result in more accurate choices?

The computational models of choice that state that decision values must be computed and
compared to make a choice suggest that the additional computation time we observed in
VMPFC and DLPFC should result in more accurate choices. To determine whether this was
the case, we tested for differences either in average DVs, or in the relationship between DVs
and the temporally unconstrained Liking ratings (mean =0.12, and standard error of 0.08)
made during Session 1. Differences in the averages, or lower explained variance in the Short
versus Long conditions would indicate reduced consistency or accuracy in choices.
However, we observed no evidence of changes in either measure. The mean decision values
and the variance explained by Liking ratings did not differ across conditions (mean DV
Short = —0.04 (0.06); mean DV Long = —0.03 (0.06); R%gport = 0.57, R? gng = 0.56; see
Table 1). To ensure that lack of differences did not result from extra time taken by
participants during the response period, we also examined reaction times. If decisions are
not computed fully within 1 second, participants may use more of the response period to
achieve greater accuracy. However, participants were slightly faster in the Short condition
than the Long condition (average participant median reaction time (with standard errors) in
Short = 345ms (12ms), in Long = 376ms (8ms); t(21) = 3.56, p = 0.002). Explanations for
this small but counterintuitive difference could be the release of response inhibition in the
Long condition or the greater predictability of response onset in the Short condition. Future
research might seek to examine the source of this discrepancy and its consequences for the
control of valuation. Regardless, these results suggest that choice accuracy was identical in
the Short and Long conditions, and at ceilingl. Despite evidence of neural differences, a
computation time of one second was enough to saturate the value estimates driving
behavior.
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Question 3: Do decision value signals evolve differently over time in VMPFC vs. DLPFC?

Although we observed some differences in the temporal course of DV signals in both
VMPFC and DLPFC, it is also possible that there are differences between these two regions
specifically in their evolution over time. This hypothesis was motivated by the informal
observation that presentation times of less than 2s were sufficient to reliably engage
VMPFC, but such short times led to inconsistent findings of DLPFC (Kim et al., 2008; Litt
et al., 2010; Harris et al., 2011), compared to a presentation time of 4s which tended to
engage both (McClure et al., 2004; Plassmann et al., 2007; Hare et al., 2008; Hare et al.,
2009).

We tested the hypothesis that these regions display differences in the timing of their value
computation signals (which could explain these observations) against the null hypothesis
that they proceed identically and in parallel. To do so, we performed three closely related
analyses: 1) identification of the peak timepoint of individuals’ SY-SN curves in each region
of interest and condition; 2) computing the best fit shift for each region of the Short SY-SN
curve to match the Long curve (intuitively, the point at which the two curves were the most
similar); and 3) calculating the correlation, across participants, of the total accumulated
decision value signal in the DLPFC and VMPFC.

The identification of peaks in the SY-SN score serve as a crude measure of the relative
timing of a response. This analysis indicated no significant difference in the timing of the
peaks in the Short condition (DLPFC peak = 9.8, VMPFC peak = 8.8). However, in the
Long condition, the DLPFC (peak = 21.7) peaked significantly later than the VMPFC (peak
=13.4;t(20) = 2.7, p = 0.01).

To identify the shift, we minimized the sum of squared differences between the overlapping
points of the Short and Long curves for each region. This yielded a shift of anywhere from
zero (no shift) to 19 timepoints (3 seconds), which averaged 11.8 timepoints (1.87s) in the
DLPFC, and 8.5 timepoints (1.34s) in the VMPFC. This corroborates the peak analysis,
suggesting that in the Long condition, the DLPFC response was shifted later compared to
VMPFC, relative to the respective original responses in the 1s condition. However,
estimates of this shift were highly non-normal, bounded, and quantized, violating common
fundamental assumptions of parametric tests, for which reason we limit these results to
descriptive statistics.

In concert, these findings suggest subtle but significant differences in the timing of
computations performed in VMPFC and DLPFC. Given this, we turned next to an
investigation of differences in the content of those value signals.

Question 4: Are there differences in the information that is integrated to compute decision
value signals in VMPFC and DLPFC?

Computation models posit that decision values are the result of accumulation and integration
of multiple sources of information (e.g. different stimulus attributes) (Ratcliff and McKoon,
2008). Recent work suggests that value computations in VMPFC may be biased toward low-
level, primary attributes of a stimulus, such as Tastiness, and that DLPFC may be required
to incorporate more abstract attributes, such as Healthiness, into decisions (McClure et al.,
2004; Hare et al., 2009). A natural hypothesis based on the above observations is that the
differences we observed in timing may result from difference in content.

1\We also observed that extreme (“Strong Yes” and “Strong No”) responses were faster than weak (“Yes” and “No”) responses
(average participant median reaction time (SEM) for extreme responses = 351ms (9ms), for weak responses = 370ms (9ms); t(21) =
3.9, p = 0.0008), but this effect did not differ by condition.
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Before examining neural differences, we asked whether computation time affects the
determinants of value signals driving decisions as observed behaviorally. We regressed each
participant’s choices (DVs; see Methods) on their ratings of Tastiness & Healthiness of
those same items, separately for the Short condition and the Long condition. If these
attributes differentially predict choice as a function of time, we should see differences in the
parameters across the two conditions. However, we observed little evidence of such
changes. Across participants, mean (and standard error) for ratings of the food items were
0.24 (0.08) for Taste and —0.44 (0.06) for Health. In both conditions, Tastiness was the
primary driver of choice (Oshort = 0.474, Ojong = 0.491, both ps < .01), while Healthiness
played a much smaller role (oghort = 0.033, Ojong = 0.056). There were no significant
differences between the Short and Long conditions for any of the parameters of interest
(Table 2), although Healthiness did play a marginally significant role in choices made in the
Long condition (p = 0.063) but not in the Short condition (p = 0.18). Individual-level
parameter significance tests also revealed no consistent patterns across conditions (not
shown). In summary, there was no strong behavioral evidence that different attributes of the
stimuli were driving decision values in the Short versus Long conditions.

Although we did not observe differences in the behavioral weighting of these two properties,
it is still possible that different regions may differentially represent these components of
value, or that such a representation interacts with the available decision time. We thus tested
for neural differences in the representation of Tastiness and Healthiness in VMPFC and
DLPFC by condition. To do this, we ran a second GLM regressing Tastiness and
Healthiness against the BOLD response separately in the Short and Long conditions (see
Methods, GLM 2). We then extracted parameter estimates for the VMPFC and DLPFC for
each attribute and condition and subjected them to a 2 (Region: DLPFC & VMPFC) x 2
(Attribute: Health & Taste) x 2 (Condition: Short & Long) repeated-measures ANOVA.
This analysis indicated a strong main effect of Attribute (F(1,21) = 22.4, p = 0.0001; Taste >
Health), a weak main effect of Condition (F(1,21) = 3.5, p = 0.08; Short > Long), and a
weak Condition x Attribute interaction (F(1,21) = 4.1, p = 0.06), driven by the decrease in
responses to Taste in the Long relative to the Short condition in both regions (DLPFC t(21)
= 2.1, p=0.05; VMPFC t(21) = 2.2, p = 0.04), with no similar decrease in responses to
Health (all ps > 0.35) (Figure 5). Note that conclusions based on these differences are
subject to the caveat that the canonical hemodynamic response, as implemented in the GLM,
fits the brain activity equally well in both conditions.

Taken together, these results suggest that there are few if any behavioral or neural
differences in the attributes driving the computation of decision value.

The combination of differences in timing but not content in VMPFC and DLPFC value
signals could result from a sharing of information between the two. This suggests two
complementary hypotheses: 1) value signals in the two regions should be correlated, and 2)
greater computation times should allow for greater convergence in their signals, leading to
stronger correlations in the Long vs. Short condition. To test these hypotheses, we calculated
the correlation between the total accumulated DV signal in these regions across participants.
In both Short and Long conditions, these measures were highly correlated (Short: r(19) =
0.53, p =0.01; Long: r(19) = 0.78, p = 0.00004). Moreover, the correlation in the long
condition was marginally greater (one-tailed Fisher’s r-to-z, z = 1.37, p = 0.09) (Figure 6).
These results provide modest support for the sharing of value-related information between
these regions.
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DISCUSSION

Finding 1

In this study, we address four questions related to whether and how available computation
time affects neural decision value signals and behavioral responses. We found that while the
available computation time did not change choices or the attributes driving them, decision
value signals in the DLPFC and VMPFC showed marked intra-and interregional differences,
providing novel constraints on our understanding of decision values.

Previous studies involving different species and techniques have found that activity in
VMPFC and DLPFC reflects the computation of DV signals (Rangel and Hare, 2010; Wallis
and Kennerley, 2010; Padoa-Schioppa, 2011), which are then compared to make a choice
(Basten et al., 2010; Milosavljevic et al., 2010; Hare et al., 2011b). Activity in the same
regions also correlated with DVs in the current study, in both the Short and the Long
conditions. This provides additional support in favor of the hypothesis that these two areas
are central to the computation of DVs, and hence choices. But the main goal of the study
was to extend this literature, by characterizing several unknown properties of the DV signals
encoded in these two regions, including their relationship to choices, and signals in these
areas differ and interact. Our findings support the following conclusions.

The temporal profile of DV signals depends on the available decision time. In particular,
during the first second of the trial, the signals were indistinguishable across the Short and
Long conditions, but began to diverge thereafter. This suggests that these value
computations were sensitive to the presence of the stimulus and/or the onset of the response
window. In particular, in the Short condition, DV signals in both regions began ramping
down after the viewing window ended and a response was required, but remained high in the
Long condition through its entire four second length, only ramping down at the end.

This finding provides useful insights about the nature of the DV computations. First, it
shows that in our task the computation of DVs expands to fit the available computation time
(and in fact may extend beyond this point in the Short condition). This stands in contrast to
neurophysiological studies which suggest that evidence accumulation in parietal neurons
during perceptual tasks continues only until a decision threshold is crossed and no further,
even if there is more computation time available (Kiani et al., 2008; Kiani and Shadlen,
2009). Since there are many differences between the two tasks, an important question for
future work will be to characterize what determines the duration of basic perceptual and
valuation computations, across a wide variety of tasks. Second, although the start and end of
DV computation aligns well with the presence of the stimulus, suggesting that valuation is
strictly stimulus-locked. However, we think our data suggest a more complex relationship.
Specifically, there is evidence that these computations may not be strictly stimulus locked as
DV computation in the Short condition continues after, and in the Long condition stops
before the response has been entered and the stimulus is removed from the screen.

It is important to acknowledge that there may be alternative explanations for these response
profiles. For example, neural adaptation could account for some of the differences across the
Short and Long conditions; alternatively, the observed value signals may represented the
maintenance of a stored value signal and not its ongoing computation. The overwhelming
evidence that these regions engage in active and consequential DV computation argues
against these interpretations, but future work will be necessary to fully address these
alternatives. For example to test whether adaptation explains the patterns of the observed
neural estimates, future studies could vary the length of the viewing window, repeat items a
variable number of times, prime item presentations with other objects, or vary the stimuli to
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be simpler or more complex. Observing how computation might change in these cases could
shed light on these possible explanations.

The Long condition resulted in greater cumulative DV signals in both ROIs. This larger
cumulative signal could be interpreted to indicate a stronger representation of value, which
could have implications for the quality and reliability of downstream processes. Although
the increase in available decision time did not lead to improvements in choice quality in this
study, our results are consistent with previous studies of speed-accuracy trade-offs in
valuation (Ratcliff and McKoon, 2008; Milosavljevic et al., 2010; Milosavljevic et al.,
2011).

This finding also provides additional insights into the nature of the valuation process. First,
it shows that the DVs are not computed using a computationally efficient process.
Specifically, we found that they continued after the response in the Short condition, and that
choices were no different across conditions despite an almost five-fold difference in the total
amount of computation. This seems highly inefficient since computation is metabolically
costly (Kandel et al., 2000), and in the above cases either cannot or did not affect choices. It
is possible the additional computation would have effects on other aspects of behavior we
did not observe (e.g. learning, changes over time, etc.), but this remains a question for future
research.

This inefficiency also suggests that DV signals need only be of sufficient quality for
consistent, accurate choice (for example, to average out the noise). This is consistent with a
growing number of studies finding that values are compared to make a choice using
algorithms that resemble a Drift-Diffusion Model (Gold and Shadlen, 2002; Bogacz et al.,
2006; Basten et al., 2010; Krajbich et al., 2010; Milosavljevic et al., 2010; Hare et al.,
2011b). In these models the comparison process terminates when the cumulative DV signal
crosses a pre-specified barrier. As a consequence, further improvements in the signal beyond
that point in time do not affect choices. Participants’ choices in our study were highly
accurate in both conditions, which suggests that even in the Short condition, the amount of
signal computed was sufficient to cross the associated barriers. This could explain why the
additional calculation of the DVs in the Long condition did not improve choice quality.

How can we reconcile our findings of consistently accurate choices with evidence that
neural estimates of value signals extend beyond the effective or necessary amount of time?
Recent research suggests that value signals may be used after choice for other reasons,
including online response adjustment or inter-trial learning, as proposed elsewhere (Resulaj
et al., 2009; Ding and Gold, 2011).

In the Long condition, DV signals of equivalent magnitude appeared later in DLPFC than in
VMPFC. A similar difference could not be found for the Short condition, though a careful
look at Figure 3 suggests that the null results for the Short condition might be the product of
limited statistical power. Nevertheless, this finding is consistent with previous studies of the
DV signals in monkeys (Wallis and Miller, 2003), which also found that the DLPFC signal
lagged the one in VMPFC. The authors’ interpretation of the delay was that the VMPFC
value signals were subsequently passed to DLPFC to influence the selection of motor
responses. This interpretation is inconsistent with recent fMRI studies of the network
involved in making choices (Basten et al., 2010; Hare et al., 2011b), which find that the
DLPFC plays a role in controlling the comparison process, but that its activity does not
reflect the computation of DVs. Regardless of the precise computational relationship
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between the two regions, we demonstrate that they do not have the same temporal profile,
and specifically that computation in the DLPFC is shifted later relative to the VMPFC. Such
a temporal difference could arise, for example, if the two areas used different inputs to
compute the DVs, which were themselves computed with different latencies, or if value
information was shared between these regions, as mentioned above.

VMPFC and DLPFC, contrary to hypotheses that these regions would represent different
attributes, were equally sensitive to Tastiness and Healthiness of foods, two attributes that
can be used to compute DVs (Basten et al., 2010; Rangel and Hare, 2010). Others have
argued that VMPFC signals may reflect the integration of ‘basic attributes’ (e.g., taste),
whereas DLPFC may reflect the integration of ‘abstract attributes’ (e.g., health) (McClure et
al., 2004; Hare et al., 2011a). However, an important caveat to conclusions in the current
study was the weak behavioral relationship we observed between Healthiness and DVs. It is
possible that if participants had been more motivated to consider Healthiness in their choices
(e.g. were dieting), we would have observed differences within and between the DLPFC and
VMPFC signals. Regardless, our findings are not fully consistent with this view, since the
relative weight of Tastiness, which was tightly linked to decision value, were represented
similarly in both areas. The results also show that the ability of DLPFC to consider more
abstract attributes, such as health, does not necessarily increase with additional
computational time. Future research will be needed to examine how Healthiness, and other
attributes not considered here, may play a role in the computation of decision value, and
interact with longer amounts of decision time.

By controlling the amount of time in which a very simple choice must be reached, this study
provides a lower bound on the consequences of altering the temporal constraints of
valuation. Value circuitry shifts computation to accommaodate the time given. That it did so
was not a foregone conclusion. This suggests both a high degree of neural flexibility at the
cost of efficiency, but limited exploitation of the available time. VValue computation may be
basic, or even primitive, but it is also a remarkably flexible process, sensitive to both
external constraints and internal control.
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Figure 1.
Scanner choice task. On each trial, a color image of a food item appeared surrounded by a

white box for either 1s (Short condition) or 4s (Long condition). During this time
participants were not allowed to enter a response. Afterwards the white box disappeared and
participants had up to 1s to enter their choice on a 4-point scale (Strong Yes, Yes, No, or
Strong No). Immediately after response, a 1s confirmation screen appeared with a green
fixation cross. Trials were separated by an inter-trial interval of 1-6s rand duration.
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Figure 2.

Whole-Brain localization of DV signals and ROIs. A) Areas in which BOLD responses
during the initial period of stimulus presentation were positively modulated by decision
values, regardless of condition (p < 0.001 unc, k =5, see GLM 1). Hot colors indicate
positive contrast values, cold colors indicate negative contrast values. The circles identify
the VMPFC (top) and DLPFC (bottom) regions correlated with decision value. B) ROIs
used in further analyses: VMPFC = yellow, DLPFC = red. C) Relationship between the
ROIs and areas in VMPFC and DLPFC that have been shown elsewhere to correlate with
DV:s at the time of choice: Plassmann et al, 2010 (left DLPFC, purple), Plassmann et al,
2007 (right DLPFC, blue), McClure et al, 2004 (VMPFC, cyan), and Hare et al, 2007
(VMPFC, green).
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Figure 3.

Instantaneous Neural Estimate Analyses. A) Estimate of the difference in activity levels in
the DLPFC ROI between trials with Strong-Yes (SY) and Strong-No (SN) responses, for
each time bin and condition. Gray and black bars at the bottom of the figure indicate the
length of time the foods were initially shown in each condition. Gray or black asterisks
indicate that the difference between SY and SN was significantly different from zero at p <
0.05 (pluses indicate marginally different at p < .1), based on a paired t-test computed across
subjects. B) Analogous estimates for the VMPFC ROI. Black carets indicate a marginal
difference between the estimates for the two conditions (p < 0.1, paired t-test). Error bars are
standard error of the mean calculated across participants. See Methods and Results section
for details on how the measures are computed. “a.u.” = arbitrary units.
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Cumulative Neural Estimate Analyses. A) Estimate of the cumulative difference in activity
levels in the DLPFC ROI between trials with SY and SN responses, for each time bin and
condition. The cumulative level of activity for any time bin t, subject, and condition was
computed by adding the instantaneous activity levels depicted in Figure 3, from bin 0 to bin
t. Gray and black bars at the bottom of the figure indicate the length of time the foods were
initially shown in each condition. Gray or black asterisks indicate that the difference was
significantly different than zero at p < 0.05 (pluses indicate marginally different at p <.1),
based on a paired t-test computed across subjects. Note that the two curves lie almost on top
of each other. B) Analogous estimates for the VMPFC ROI. Error bars are standard error of
the mean calculated across participants. C) Individual estimates of the cumulative difference
in DLPFC activity between trials with SY and SN responses, measured at the end of the
initial non-response viewing period for each condition. Each circle denotes one subject.
Black diamonds are the group mean. The dashed line indicates the line of identity. D)
Analogous plot for the VMPFC ROI. A paired t-test across subjects indicates that in both
cases the cumulative value signal at the end of initial item presentation was greater in the
Long condition (DLPFC: p=0.04; VMPFC: p = 0.0009, N=21
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1 SHORT
LONG

J VMPFC

ROI analysis of BOLD responses to health and taste ratings. Average estimated beta values
for each type of rating, ROI, and condition (see GLM 2). Asterisks indicate a significant
difference at p < 0.05 (one-sample or paired two-tailed t-tests, as applicable). In all ROls
and conditions, Taste betas were significantly greater than Health betas (p < 0.05).
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Figure 6.

Correlations of Cumulative Neural Estimate Analyses Across Regions. A) For Short trials
only: estimates of the cumulative difference in activity between trials with SY and SN
responses, measured at the end of the initial 1s viewing period, in the DLPFC and VMPFC
ROls. Each circle denotes one subject. Black diamonds are the group mean. The line
indicates the best fit regression. B) Analogous plot for the Long condition. Plot shows that in
both conditions there is a positive correlation between the estimate in both ROIs (Short:
r(19) = 0.53, p = 0.01; Long: r(19) = 0.78, p = 0.00004; Pearson’s correlation; N=21).
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Table 1

Mixed effect estimates for a linear regression of choices on liking ratings. For each individual and condition,
the decisions made in the scanner (represented by their DVs; see Methods) were regressed against the liking
ratings provided in the first experimental session. The table reports the mean estimated coefficients of the
regression, as well as p-values for two-tailed groupwise one-sample t-tests against the null hypothesis that the
mean estimated coefficient is zero (N=22).

Estimated Constant Coefficient | Estimated Liking Rating Coefficient | R2
Short | —0.111 (p = 0.048) 0.481 (p = 1.6x10715) 0.57
Long | —0.107 (p = 0.046) 0.494 (p = 5.4x10715) 0.56
Short vs. Long two-tailed paired sample t-test | p =0.81 p=0.36 p=0.80
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Table 2
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Mixed effect estimates for a linear regression of choices on health and taste ratings. For each individual and
condition, the decisions made in the scanner (represented by DVs; see Methods) were regressed against the
Taste and Health ratings provided in the first experimental session. The table reports the mean estimated
coefficients of the regression, as well as p-values for two-tailed groupwise one-sample t-tests against the null
hypothesis that the mean estimated coefficient is zero (N=22).

Estimated Health Rating

Estimated Taste Rating

tailed paired sample t-
test

Estimated Constant Coefficient | Coefficient Coefficient R?
Short | —0.158** (p = 0.0016) 0.033 (p=0.18) 0.474 (p = 2.7x10712) 0.54
Long | —0.155** (p =0.0012) 0.056 (p = 0.063) 0.491 (p = 6.8x10712) 0.56
Short vs. Long two- | p=0.86 p=0.11 p=023 p=042
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